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The study of q-Stirling numbers of the second kind began with Carlitz [L. Carlitz, Duke Math. J., 15 (1948), 987–1000] in
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1. Introduction

In mathematics, the Stirling numbers of second kind have been studied from many diverse viewpoints.
Originally, Stirling numbers of the second kind S(n,m) are equal to the number of partitions of the set
{1, 2, . . . ,n} into m non-empty disjoint sets. They have the important recurrence relation

S(n,m) = S(n− 1,m− 1) +mS(n− 1,m) (1.1)

with the conditions S(n, 0) = δn,0 and S(0,m) = δ0,m for all n,m ∈N∪ {0}. Here,

δm,m =

{
1, if n = m,
0, otherwise.

A proof of (1.1) using finite differences is presented in [12]. It is known that, for n > m > 0, S(n,m) can
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be computed by the explicit formula (also discussed in [12])

S(n,m) =
1
m!

m∑
j=0

(−1)m−j

(
m

j

)
jn, (1.2)

(see [1, 13, 16, 19]; and the references cited therein).
Gould [12] discussed some combinatorial identities related to (1.2) via finite differences. A combina-

torial proof of (1.2) based on the combinatorial definition of S(n,m) can be found in [7, pp. 204–205]; a
proof based on finite differences is given in [16, p. 169; see also 177–178 and 189–190].

Simsek [25] constructed new generating functions for the generalized λ-Stirling type numbers of the
second kind, generalized array type polynomials, generalized Eulerian type polynomials and numbers.
He derived some new identities, various functional equations and differential equations using these gen-
erating functions. Also, Simsek [24] obtained some combinatorial sums and identities including the
Bernoulli numbers and polynomials, the Stirling numbers of the second kind and some relations by using
the Bernstein basis functions and Bernstein operator with their integral.

A viewpoint of Carlitz [3], motivated by the counting problem for Abelian groups, is to study the
Stirling numbers as specializations of the q-String numbers. Now, we briefly summarize some basic
properties of q-calculus. Let n ∈ N and q ∈ (0, 1). For n an integer, the q-integer [n]q and q-factorial
[n]q! are respectively defined by

[n]q =
1 − qn

1 − q
= 1 + q+ · · ·+ qn−1, [n]q! =

{
1, if n = 0,
[n]q[n− 1]q · · · [1]q, if n ∈N.

The Gaussian binomial coefficient is defined by(
n

k

)
q

=
[n]q!

[n− k]q![k]q!
=

(
n

n− k

)
q

, 1 6 k 6 n

with
(
n
0

)
q
= 1 and

(
n
k

)
q
= 0 for n < k.

By a q-number [x]q we mean

[x]q =
1 − qx

1 − q
, (1.3)

which is well-defined for real x. If x is a natural number n, it would seem appropriate to speak of [n]q as
a q-natural number. By a q-binomial coefficient we shall of course mean(

x

k

)
q

=
[x]q[x− 1]q · · · [x− k+ 1]q

[k]q!
=

k∏
i=1

1 − qx−i+1

1 − qi
. (1.4)

Ward [30] has remarked about the lack of uniqueness and trouble which sometimes arises because of the
presence of powers of q in such pseudo-isomorphisms as

[a+ b]q = qb[a]q + [b]q = [a]q + q
a[b]q.

Thus we shall also need the following easily verified relations:

qn[x−n]q = [x]q − [n]q, [−x]q = −q−x[x]q,
(
x

n

)
q

=
[x]q
[n]q

(
x− 1
n− 1

)
q

.

We will use a well known q-analogue of the Stirling numbers of the second kind that goes back at least
to Carlitz ([3]; see also [21, 29]). We have the q-Stirling numbers of the second kind defined by Carlitz as
numbers an,k such that

[x]nq =

n∑
k=0

q(
k
2)
(
x

k

)
q

[k]q!an,k, (1.5)
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from which Carlitz found

an,k =
q−(

k
2)

[k]q!

k∑
j=0

(−1)jq(
j
2)
(
k

j

)
q

[k− j]nq .

They arose in connection with a problem of abelian group in [4]. Note that this expression reduces when
q→ 1 to (1.2) above.

The q-analog of Stirling numbers have been studied over the years by Carlitz [3, 4] and Gould [13].
Later, many important properties of q-Stirling numbers can be found in Milne [21] or Cigler [6]. Sagan [23]
considered various arithmetic properties of q-Stirling numbers of both kinds. Zeng [31] gave continued
fraction expansions for the ordinary generating functions of the q-Stirling numbers of both kinds. In [22],
Ozden et al. studied some identities and relations related to q-Bernoulli numbers and polynomials and
q-Stirling numbers of the second kind.

Our main aim is to find some identities and relations related to the q-Stirling numbers of the second
kind. The main results of this paper may be stated in Section 3.

2. Preliminaries

We consider a Carlitz’s q-difference operational argument due to Kim and Son [17]. Motivated by such
applications, we present q-analogues of Newton series by using q-difference operator (see (2.1) below).

If the constant difference between successive values of x is h, so that the general value of x is xk =
x0 + kh with k ∈ Z, and the corresponding functional value is f(xk) = f(x0 + kh) = fk. Let Eh be the
translating operator defined by

Eh(fk) = f(xk + h) = f(xk+1).

Applying Eh again increases the argument of f by h, i.e.,

E2
hf(xk) = Eh(Ehf(xk)) = f(xk + 2h) = f(xk+2) = fk+2

and generally Erhf(xk) = fk+r for r ∈N.
Now we consider the Carlitz’s q-difference operator

4nq,h =

{
I, if n = 0,
(Eh − qn−1) · · · (Eh − q)(Eh − I), if n > 1,

(2.1)

(see [3, 8, 17]). q-difference operator has very interesting property. For example in [17],

4nq,hfk = (−1)nq(
n
2)

n∑
i=0

(−1)i
(
n

i

)
q

fk+iq
i(i−2n+1)/2, (2.2)

where n ∈N. Specifically, taking k = 0 and n ∈N, we have

4nq,hf0 = (−1)nq(
n
2)

n∑
i=0

(−1)i
(
n

i

)
q

fiq
i(i−2n+1)/2,

which can be expressed as

4nq,hf(x) =

n∑
i=0

(−1)n−iq(
n−i

2 )
(
n

i

)
q

f(x+ ih). (2.3)

When h = 1 in (2.1), we use the notation
4nq = 4nq,1.



M.-S. Kim, D. Kim, J. Nonlinear Sci. Appl., 11 (2018), 971–983 974

As convention, define 40
q = I (the identity map). In particular, with x = 0,

4nqf(0) =
n∑
i=0

(−1)n−iq(
n−i

2 )
(
n

i

)
q

f(i). (2.4)

Using the binomial expansion, we arrive at the representation

fk =

k∑
i=0

(
k

i

)
q

4iq,hf0.

The q-factorial polynomials are given

[x]
(m)
q =

{
1 if m = 0,
[x]q[x− 1]q · · · [x−m+ 1]q, if m > 1

(2.5)

(see [3, 15, 17]). In view of formula (2.5), it is a matter of some interest to be able to express an arbitrary
function fq(x) in terms of the q-factorial polynomial. That is,

fq(x) :=

∞∑
m=0

am[x]
(m)
q = a0 + a1[x]

(1)
q + a2[x]

(2)
q + a3[x]

(3)
q + · · · .

We suppose that a0 = fq(0). By (2.1) and (2.5)

4qfq(x) = −qx+1([−1]qa1 + [−2]qa2[x]
(1)
q + · · ·+ [−m]qam[x]

(m−1)
q + · · · ).

If we set x = 0 in this expression, [1]qa1 = −q[−1]qa1 = 4qfq(0). Similarly, we obtain [2]q!a2 =
42
qfq(0) and

am =
4mq fq(0)
[m]q!

,

where m = 0, 1, 2, . . . .
Therefore, we immediately have the following theorem.

Theorem 2.1. Let fq(x) be an arbitrary function in q-factorial polynomials. Then

fq(x) =

∞∑
m=0

4mq fq(0)
[m]q!

[x]
(m)
q ,

which obviously resembles the Newton series of fq(x) in terms of the basis {[x](m)
q : m ∈N0}.

Remark 2.2. When we set q → 1 in Theorem 2.1, we obtain an expansion of a function, say f, in terms of
difference polynomials, (x)0 = 1, (x)1 = x, (x)2 = x(x− 1), and in general (x)m = x(x− 1) · · · (x−m+ 1),
that is,

f(x) =

∞∑
m=0

4mf(0)
m!

(x)m,

which is Newton series. Here, the expression 4f(x) = f(x+ 1) − f(x) is the forward difference. In this
way a Newton series resembles a Taylor series, which is an expansion of f in terms of another basis, the
power polynomials pk(x) = xk for k = 0, 1, . . . (see [1]).

3. Main results

In this section we study three natural q-analogs of Stirling numbers of the second kind (see Propostion
3.1 below). We note particularly results Proposition 3.1 (2), Theorem 3.6, Theorem 3.7, Corollary 3.8,
Theorem 3.9, and Theorem 3.10 which appear to be either new or else new ways of expressing older ideas
more comprehensively.
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For example, the q-Stirling numbers of the second kind Sq(n,m) which are defined by Carlitz [3, (3.1)]
as

[x]nq =

n∑
m=0

q(
m
2 )Sq(n,m)[x]

(m)
q . (3.1)

In fact, Carlitz gave the corresponding expression for an,m in (1.5). Note that for q → 1, the q-Stirling
numbers Sq(n,m), reduces to the well known Stirling numbers of the second kind.

The expression (3.1) may be written as

n+1∑
m=0

q(
m
2 )Sq(n+ 1,m)[x]

(m)
q = [x]n+1

q =

(
n∑
m=0

q(
m
2 )Sq(n,m)[x]

(m)
q

)
[x]q. (3.2)

So putting [x]q = ([x−m]qq
m + [m]q) in (3.2), we have

[x]n+1
q =

n∑
m=0

q(
m
2 )Sq(n,m)[x]

(m)
q ([x−m]qq

m + [m]q)

=

n∑
m=0

q(
m
2 )+mSq(n,m)[x]

(m+1)
q + [m]q

n∑
m=0

q(
m
2 )Sq(n,m)[x]

(m)
q

=

n+1∑
m=0

(
q(
m−1

2 )+m−1Sq(n,m− 1) + q(
m
2 )[m]qSq(n,m)

)
[x]

(m)
q .

(3.3)

To prove the next-to-last equality, use Sq(0,m) = δ0m and Sq(n, 0) = δn0. From (3.2) and (3.3) it is clear
that Sq(n,m) satisfies the recurrence relation

Sq(n+ 1,m) = Sq(n,m− 1) + [m]qSq(n,m) (3.4)

(see [2, (2.1)], [3, (3.2)], and [21, (1.17)]). The Sq(n,m) themselves are not new, they have been considered
by Milne in [21], who gave them a combinatorial interpretation in terms of partitions. They are also
closely related to the q-Stirling numbers of second kind introduced by Gould in [13]. Just set

ym;q(t) =

∞∑
n=0

Sq(n,m)
tn

n!
.

It is not hard to see that
d

dt
ym;q(t) − [m]qym;q(t) = ym−1;q(t)

by (3.4), where m = 1, 2, . . . , and ym;q(0) = 0 for m > 1, and y0;q(t) = 1.
We use Theorem 2.1 now to compute the q-Stirling numbers Sq(n,m) in equation (3.1). Take fq(x) =

[x]nq in Theorem 2.1 to obtain

[x]nq =

∞∑
m=0

{
1

[m]q!
4mq [x]nq

∣∣
x=0

}
[x]

(m)
q . (3.5)

A simple computation shows that 4qqix = (qi − 1)qix, i > 0 and so

4q[x]nq = 4q

(
(q− 1)−n

n∑
i=0

(
n

i

)
(−1)n−iqix

)
= (q− 1)−n

n∑
i=0

(
n

i

)
(−1)n−i(qi − 1)qix,

which yields (q− 1)−n
∑n
i=1
(
n
i

)
(−1)n−i(qi − 1) = 4q[x]nq

∣∣
x=0 . Also,

42
q[x]

n
q = (q− 1)−n

n∑
i=0

(
n

i

)
(−1)n−i(qi − 1)(qi − q)qix
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and (q− 1)−n
∑n
i=2
(
n
i

)
(−1)n−i(qi − 1)(qi − q) = 42

q[x]
n
q

∣∣
x=0 .

Continuing this way, the general formula is

(q− 1)−n
n∑
i=m

(
n

i

)
(−1)n−i(qi − 1) · · · (qi − qm−1) = 4mq [x]nq

∣∣
x=0 . (3.6)

Thus (3.5) becomes

[x]nq =

n∑
m=0

{
(q− 1)−n

[m]q!

n∑
i=m

(
n

i

)
(−1)n−i(qi − 1) · · · (qi − qm−1)

}
[x]

(m)
q

=

n∑
m=0

{
(q− 1)m−nq(

m
2 )

n∑
i=m

(−1)n−i
(
n

i

)(
i

m

)
q

}
[x]

(m)
q ,

(3.7)

since 4mq [x]nq
∣∣
x=0 = 0 for n < m and

(q− 1)mq(
m
2 )
(
i

m

)
q

[m]q! = (qi − 1) · · · (qi − qm−1). (3.8)

In view of (2.4), take fq(x) = [x]nq in Theorem 2.1 to obtain

[x]nq =

∞∑
m=0

{
1

[m]q!

m∑
i=0

(−1)m−iq(
m−i

2 )
(
m

i

)
q

[i]nq

}
[x]

(m)
q . (3.9)

Note that (3.9) is valid for all non-negative m,n; in particular then the right member vanishes for
n < m. By (3.1), (3.5), and (3.7) we prove the following result.

Proposition 3.1. Let the q-Stirling numbers Sq(n,m) be defined by equation (3.1). The followings are equivalent:

1. Sq(n,m) = q−(m2 )

[m]q! 4
m
q [x]nq

∣∣
x=0 ;

2. Sq(n,m) = (q− 1)m−n
∑n
i=m(−1)n−i

(
n
i

)(
i
m

)
q

;

3. Sq(n,m) = 1
[m]q!

∑m
i=0(−1)m−iq(

m−i
2 )−(m2 )

(
m
i

)
q
[i]nq .

Remark 3.2. We also note that the expression Proposition 3.1 (1) and (3) were obtained in [3, 10, 11, 21, 28].
Proposition 3.1 (2) is due to Carlitz [4, (9)]. It was stated by Gould [13, (3.10)].

From Proposition 3.1 (1), we observe that

4mq [x]nq
∣∣
x=0 = [m]q!q(

m
2 )Sq(n,m)

and
Sq(n,m) = 0 if n < m,

since 4mq [x]nq
∣∣
x=0 = 0 for n < m. Also, by (3.6) and (3.8), if n = m, then we get

4mq [x]mq
∣∣
x=0 = [m]q!q(

m
2 )

(see [21, p. 107]). This is a q-analog of Euler’s result 4m0m = 4m1 0m = m!, to which it reduces for q = 1.
In fact it is easy to see that

Sq(m,m) = 1.

These calculations prove the following result.
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Corollary 3.3. For any positive integers m and n, we have

m∑
i=0

(−1)iq(
m−i

2 )
(
m

i

)
q

[i]nq =

{
0, if n < m,
(−1)m[m]q!, if n = m.

Remark 3.4. If we let q→ 1 in Corollary 3.3, we obtain Euler’s formula in classical analysis (see [12, (2.1)]).

More generally, from (2.3) with h = 1, the formula for Sq(n,m) is intimately connected with the m-th
q-difference operator 4mq . Let fq(x) = [x]nq for any nonnegative integer n. Then

4mq [x]nq =

m∑
i=0

(−1)m−iq(
m−i

2 )
(
m

i

)
q

[x+ i]nq

=

m∑
i=0

(−1)m−iq(
m−i

2 )
(
m

i

)
q

([x]q + q
x[i]q)

n

=

n∑
j=0

(
n

j

)
[x]n−jq qjx

m∑
i=0

(−1)m−iq(
m−i

2 )
(
m

i

)
q

[i]jq

=

n∑
j=0

(
n

j

)
[x]n−jq qjx[m]q!q(

m
2 )Sq(j,m).

(3.10)

If x→ 0, (3.10) becomes Proposition 3.1 (1).

Remark 3.5. Many authors investigated q-Stirling numbers in various aspects [3, 10, 11, 26–28]. In [3],
Carlitz defined the q-Stirling numbers of the second kind as the numbers Sq(n,m) in (3.1). In [10],
Corcino et al. defined two forms of q-analogue of noncentral Stirling numbers of the second kind and
obtained some properties parallel to those of noncentral Stirling numbers. In [11], Corcino and Montero
defined p,q-difference operator and obtained an explicit formula analogous to (2.2).

Theorem 3.6. The recurrence for Sq(n,m) is given by

Sq(n,m) = [−1]nqq
mn−(m2 )

n∑
j=0

(−1)m+n−j

(
n

j

)
[m]n−j1/q S1/q(j,m).

Proof. Noting that

[m− i]q = [i−m]1/q[−1]q = qm([i]1/q − [m]1/q)[−1]q,
(
m

i

)
q

= qi(m−i)

(
m

i

)
1/q

. (3.11)

Thus, by (3.11),

q(
m
2 )[m]q!Sq(n,m) =

m∑
i=0

(−1)m−iq(
m−i

2 )
(
m

i

)
q

[i]nq

=

m∑
i=0

(−1)iq(
i
2)
(
m

m− i

)
q

[m− i]nq

=

m∑
i=0

(−1)iq(
i
2)
(
m

i

)
q

(
qm([i]1/q − [m]1/q)[−1]q

)n (3.12)

=

m∑
i=0

(−1)iq(
i
2)qi(m−i)

(
m

i

)
1/q
qmn × [−1]nq

n∑
j=0

(−1)n−j
(
n

j

)
[i]j1/q[m]n−j1/q
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= [−1]nqq
mn+(m2 )

n∑
j=0

(−1)m+n−j

(
n

j

)
[m]n−j1/q ×

m∑
i=0

(−1)m−i(1/q)(
m−i

2 )
(
m

i

)
1/q

[i]j1/q,

since q(
i
2)−i

2+im = (1/q)(
m−i

2 )q(
m
2 ).

From Proposition 3.1 (3) and (3.12) we deduce that

Sq(n,m) = [−1]nqq
mn

[m]1/q!
[m]q!

n∑
j=0

(−1)m+n−j

(
n

j

)
[m]n−j1/q S1/q(j,m),

whence the theorem follows from
[m]1/q
[m]q

= 1
qm−1 .

The following theorem is a direct consequence of equation (3.1).

Theorem 3.7. The q-Stirling numbers Sq(n,m) are given by

n∑
j=0

(−1)jq−j[j]q!Sq(n, j) =
(
−

1
q

)n
,

n∑
j=0

(−1)jq−jx
(
x+ j− 1

j

)
q

[j]q!Sq(n, j) =
(
−

1
q

)n
[x]n1/q.

Proof. Using (1.4), (3.1) implies that

[x]nq =

n∑
j=0

q(
j
2)
(
x

j

)
q

[j]q!Sq(n, j) (3.13)

whenever j is a nonnegative integer. The first equation is (3.13) with x = −1 while the second equation is
(3.13) with x→ −x, since(

−x

j

)
q

=
[−x]q[−x− 1]q · · · [−x− j+ 1]q

[j]q!

=
(−q−x)[x]q(−q

−x−1)[x+ 1]q · · · (−q−x−j+1)[x+ j− 1]q
[j]q!

= (−1)j
1

qjx+(
j
2)

(
x+ j− 1

j

)
q

.

(3.14)

This completes the proof.

Corollary 3.8. For any nonnegative integer n, we have

n∑
j=0

(−1)jq−2j[j]q[j]q!Sq(n, j) =
(
−

1
q

)n (
[2]n1/q − 1

)
.

Proof. In second equation of Theorem 3.7, let x = 2. The left hand side, by(
j+ 1
j

)
q

= [j+ 1]q = qj[1]q + [j]q,

becomes
n∑
j=0

(−1)jq−2j (qj[1]q + [j]q
)
Sq(n, j) =

(
−

1
q

)n
[2]n1/q

and applying first equation of Theorem 3.7 leads to the required result.
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Theorem 3.9. The q-Stirling numbers Sq(n,m) are given by

n∑
j=0

(−1)jq−
j
2

[
1
2

]2j

q

([j]q1/2 !)2

[j]q!

(
2j
j

)
q1/2

Sq(n, j) = (−1)nq−
n
2

[
1
2

]n
q

.

Proof. First, we consider

[r]q

[
r−

1
2

]
q

[r− 1]q

[
r−

3
2

]
q

· · · [r− k+ 1]q

[
r− k+

1
2

]
q

= [2r]q1/2

[
1
2

]
q

[2r− 1]q1/2

[
1
2

]
q

[2r− 2]q1/2

[
1
2

]
q

[2r− 3]q1/2

[
1
2

]
q

× · · · × [2r− 2k+ 2]q1/2

[
1
2

]
q

[2r− 2k+ 1]q1/2

[
1
2

]
q

=

[
1
2

]2k

q

[2r]q1/2 !
[2r− 2k]q1/2 !

.

(3.15)

Multiplying (3.15) by 1
([k]q!)2 , it is to see that the left hand side of (3.15) can be written as

[r]q[r− 1]q · · · [r− k+ 1]q
[k]q!

[
r− 1

2

]
q

[
r− 3

2

]
q
· · ·
[
r− k+ 1

2

]
q

[k]q!
=

(
r

k

)
q

(
r− 1

2
k

)
q

(3.16)

and the right hand side of (3.15) becomes[
1
2

]2k

q

[2r]q1/2 !
[2r− 2k]q1/2 !([k]q1/2 !)2

([k]q1/2 !)2

([k]q!)2

=

[
1
2

]2k

q

[2r]q1/2 !
[2k]q1/2 ![2r− 2k]q1/2 !

[2k]q1/2 !
[2k− k]q1/2 ![k]q1/2 !

(
[k]q1/2 !
[k]q!

)2

=

[
1
2

]2k

q

(
[k]q1/2 !
[k]q!

)2(2r
2k

)
q1/2

(
2k
k

)
q1/2

.

(3.17)

From (3.16) and (3.17) it is clear that(
r

k

)
q

(
r− 1

2
k

)
q

=

[
1
2

]2k

q

(
[k]q1/2 !
[k]q!

)2(2r
2k

)
q1/2

(
2k
k

)
q1/2

. (3.18)

If we set k = r = j in (3.18), we get(
j− 1

2
j

)
q

=

[
1
2

]2j

q

(
[j]q1/2 !
[j]q!

)2(2j
j

)
q1/2

. (3.19)

Similarly, putting x = 1
2 in (3.14), we get(

j− 1
2
j

)
q

= (−1)jq
j2
2

(
−1

2
j

)
q

. (3.20)

Hence, by (3.19) and (3.20), (
−1

2
j

)
q

= (−1)jq−
j2
2

[
1
2

]2j

q

(
[j]q1/2 !
[j]q!

)2(2j
j

)
q1/2

. (3.21)
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Using (3.21) we substitute x = −1
2 in (3.13), obtaining

n∑
j=0

(−1)jq−
j
2

[
1
2

]2j

q

([j]q1/2 !)2

[j]q!

(
2j
j

)
q1/2

Sq(n, j) = (−1)nq−
n
2

[
1
2

]n
q

.

This completes the proof.

Theorem 3.10. Let fq(x) be an arbitrary polynomial of degree n in [x], that is, fq(x) =
∑n
k=0 ak[x]

k
q. Then

fq(x) =

n∑
k=0

(
x

k

)
q

k∑
j=0

(−1)jq(
j
2)
(
k

j

)
q

fq(k− j).

Proof. Since
n∑
k=0

k∑
α=0

Ak,α =

n∑
α=0

n∑
k=α

Ak,α,

we can apply Proposition 3.1 and (3.13) to obtain

fq(x) =

n∑
k=0

ak

k∑
α=0

q(
α
2)
(
x

α

)
q

[α]q!Sq(k,α)

=

n∑
α=0

q(
α
2)
(
x

α

)
q

[α]q!
n∑
k=α

akSq(k,α)

=

n∑
α=0

q(
α
2)
(
x

α

)
q

[α]q!
n∑
k=0

akSq(k,α) (by using Sq(k,α) = 0 if k < α)

=

n∑
α=0

(
x

α

)
q

n∑
k=0

ak

α∑
j=0

(−1)jq(
j
2)
(
α

j

)
q

[α− j]kq

=

n∑
α=0

(
x

α

)
q

α∑
j=0

(−1)jq(
j
2)
(
α

j

)
q

fq(α− j).

This completes the proof.

Remark 3.11. If fq(x) = [x]nq , then Theorem 3.10 becomes (3.13) by using Proposition 3.1 (3). Here are two
more examples of Theorem 3.10:(

x+n

n

)
q

=

n∑
k=0

(
x

k

)
q

k∑
j=0

(−1)jq(
j
2)
(
k

j

)
q

(
k− j+n

n

)
q

,

(
mx

n

)
q

=

n∑
k=0

(
x

k

)
q

k∑
j=0

(−1)jq(
j
2)
(
k

j

)
q

(
mk−mj

n

)
q

.

4. The q-analogue of
(
x d
dx

)n
and its applications

At the centre is the q-derivative operator or Jackson-derivative, here denoted as Dq and defined for
any polynomial f as follows where Dq (q-derivative or Jackson’s derivative) is defined by

Dqf(x) =
f(qx) − f(x)

(q− 1)x
if x 6= 0,

and Dqf(x) = f ′(0) if x = 0, where q is a complex numbers such that q 6= 0 and |q| 6= 1. It is a simple
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consequence that
Dqx

n = [n]qx
n−1. (4.1)

In the standard approach to the q-calculus two exponential functions are defined by

exq =

∞∑
n=0

xn

[n]q!
=

1
(1 − (1 − q)x)∞q and Exq =

∞∑
n=0

q(
j
2)
xn

[n]q!
= (1 + (1 − q)x)∞q , (4.2)

where q is positive, x is complex, and

(1 + x)∞q =

∞∑
j=0

q(
j
2)

xj

(1 − q)(1 − q2) · · · (1 − qj)
,

1
(1 − x)∞q =

∞∑
j=0

xj

(1 − q)(1 − q2) · · · (1 − qj)
.

From (4.2), we easily see that Exq = ex1/q and

exqE
−x
q = 1.

Moreover,
Dqe

x
q = exq, DqE

x
q = Eqxq . (4.3)

It is known that

(xDq)
n =

n∑
k=0

q(
k
2)Sq(n,k)xkDkq. (4.4)

This result was already derived in [20, (76)], [5, Corollary 5.2], and can be shown by a simple example
(see also [6, (42)]). Notice that as q→ 1, (4.4) reduces to the well-known operator

(
x ddx

)n
first thoroughly

investigated by Grunert [14] and also by Knopf [18]. That is,(
x
d

dx

)n
=

n∑
k=0

xkS(n,k)
dk

dxk
.

Next we consider some expansion of exq. From (4.1), we obtain

(xDq) e
x
q = x

(
[1]q
[1]q!

x0 +
[2]q
[2]q!

x1 + · · ·+
[j]q
[j]q!

xj−1 + · · ·
)

=

∞∑
j=1

[j]q
[j]q!

xj.

Similarly,

(xDq)
nexq =

∞∑
j=1

[j]nq
[j]q!

xj. (4.5)

By (4.3) and (4.4), we may write

(xDq)
nexq =

n∑
k=0

q(
k
2)Sq(n,k)xkDkqe

x
q = exq

n∑
k=0

q(
k
2)Sq(n,k)xk,

so that, using (4.5),

exq

n∑
k=0

q(
k
2)Sq(n,k)xk =

∞∑
j=1

[j]nq
[j]q!

xj. (4.6)

Multiplying both sides of (4.6) by E−xq and substituting the series for E−xq gives

n∑
k=0

q(
k
2)Sq(n,k)xk = E−xq

∞∑
j=1

[j]nq
[j]q!

xj =

( ∞∑
n=0

q(
j
2)
xn

[n]q!

) ∞∑
j=0

[j]nq
[j]q!

xj


=

∞∑
k=0

(
1

[k]q!

k∑
i=0

(−1)iq(
i
2)
(
k

i

)
q

[k− i]nq

)
xk.

(4.7)

Equating corresponding coefficients of xk in (4.7) for k = 0, 1, . . . ,n gives
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Sq(n,k) =
1

[k]q!

k∑
i=0

(−1)iq(
i
2)−(

k
2)
(
k

i

)
q

[k− i]nq ,

which is equivalent to Proposition 3.1 (3).
Letting fn,r(x) =

∑n
k=0 q

k[k]rqx
k, by (4.1) it is immediate that

(xDq) fn,r(x) =

n∑
k=0

qk[k]r+1
q xk = fn,r+1(x),

and that, by induction on `,

(xDq)
` fn,r(x) =

n∑
k=0

qk[k]r+`q xk = fn,r+`(x).

If we let r = 0, it is obvious that

fn,`(x) = (xDq)
` fn,0(x) = (xDq)

`

(
n∑
i=0

qixi

)
.

By (4.1) and (4.4) we see that

fn,r+`(x) =
∑̀
k=0

q(
k
2)Sq(`,k)xkDkq

(
n∑
i=0

qixi

)
=
∑̀
k=0

q(
k
2)[k]q!Sq(`,k)

n∑
i=0

qi
(
i

k

)
q

xi. (4.8)

If x = 1, (4.8) becomes

n∑
k=0

qk[k]`q =
∑̀
k=0

q(
k
2)[k]q!Sq(`,k)

n∑
i=0

qi
(
i

k

)
q

=
∑̀
k=0

q(
k
2)[k]q!Sq(`,k)qk

(
n+ 1
k+ 1

)
q

, (4.9)

where the last equality in (4.9) follows from the q-analogues of the Hockey Stick identities [9, p. 7]:(
n+ 1
k+ 1

)
q

=

n∑
i=k

qi−k
(
i

k

)
q

=

n∑
i=0

qi−k
(
i

k

)
q

.

Note that (4.9) is equivalent to (6.1) in [3, p. 994].
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