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In this paper, we investigate the existence and uniqueness of solutions for nonlocal initial and boundary value problems

of exponential fractional differential equations, by applying standard fixed point theorems. Enlightening examples are also
presented.
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1. Introduction

In recent years, the theory of fractional differential equations has been widely used in various fields,
such as physics, mechanics, chemistry, engineering, etc., see [10, 13, 15, 16, 19, 20]. Initial and boundary
value problems of nonlinear fractional differential equations have been addressed by several researchers
and has been growing rapidly, see [1–6, 11, 17, 18, 21, 22, 24, 25] and the references cited therein.

In [13, Section 5.2] fractional integrals and fractional derivatives of a function with respect to another
function were defined as the following.
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For an increasing and positive monotone function g : (a,b) → R (−∞ 6 a < b 6 ∞) having a
continuous derivative g ′(x) on (a,b), the left and right-sided fractional integrals of order α, R(α) > 0, of
a function f with respect to another function g on [a,b] are defined by

(Iαa+,gf)(x) =
1
Γ(α)

∫x
a

[g(x) − g(s)]α−1g ′(s)f(s)ds, x > a, (1.1)

and

(Iαb−,gf)(x) =
1
Γ(α)

∫b
x

[g(s) − g(x)]α−1g ′(s)f(s)ds, x < b, (1.2)

respectively. When a = 0 and b =∞, then

(Iα0+,gf)(x) =
1
Γ(α)

∫x
0
[g(x) − g(s)]α−1g ′(s)f(s)ds, x > 0, (1.3)

and
(Iα−,gf)(x) =

1
Γ(α)

∫∞
x

[g(s) − g(x)]α−1g ′(s)f(s)ds, x > 0, (1.4)

while, for a = −∞ and b =∞ then

(Iα+,gf)(x) =
1
Γ(α)

∫x
−∞[g(x) − g(s)]α−1g ′(s)f(s)ds, x ∈ R, (1.5)

and
(Iα−,gf)(x) =

1
Γ(α)

∫∞
x

[g(s) − g(x)]α−1g ′(s)f(s)ds, x ∈ R. (1.6)

It is well known that if g(x) = x then all results in (1.1)-(1.6) are reduced to the Riemann-Liouville
fractional integrals, and if g(x) = loge x then the above formulas (1.1)-(1.6) are reduced to the Hadamard
fractional integrals. In the case when g(x) = ex we have new kind of fractional calculus which is based on
exponential fractional integrals defined as the following.

Definition 1.1. The exponential left and right-sided fractional integral of a function f : R → R of order
α > 0 are defined by

eIαa+f(x) =
1
Γ(α)

∫x
a

(
ex − et

)α−1
f(t)etdt, x > a, α > 0, (1.7)

and
eIαb−f(x) =

1
Γ(α)

∫b
x

(
ex − et

)α−1
f(t)etdt, x < b, α > 0, (1.8)

respectively and eI0(·)f(x) = f(x).
If a = 0 and b =∞, then

eIα0+f(x) =
1
Γ(α)

∫x
0

(
ex − et

)α−1
f(t)etdt, x > 0, α > 0, (1.9)

and
eIα−f(x) =

1
Γ(α)

∫∞
x

(
ex − et

)α−1
f(t)etdt, x ∈ R, α > 0, (1.10)

while, if a = −∞, then

eIα+f(x) =
1
Γ(α)

∫x
−∞
(
ex − et

)α−1
f(t)etdt, x ∈ R, α > 0. (1.11)
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Let ACne [a,b] = {g : [a,b] → C : eDn−1g(x) ∈ AC[a,b], eD = e−x ddx }. For f ∈ ACne [a,b], where
−∞ 6 a < b 6 ∞, we define the exponential fractional derivatives of Riemann-Liouville and Caputo
types as follow.

Definition 1.2. The exponential left and right-sided fractional derivatives of Riemann-Liouville type of
order α > 0 for a function f : R→ R are defined by

eDαa+f(x) =
1

Γ(n−α)

(
e−x

d

dx

)n ∫x
a

(
ex − et

)n−α−1
f(t)

dt

e−t
, x > a, α > 0,

eDαb−f(x) =
1

Γ(n−α)

(
−e−x

d

dx

)n ∫b
x

(
ex − et

)n−α−1
f(t)

dt

e−t
, x < b, α > 0.

If a = 0 and b =∞, then

eDα0+f(x) =
1

Γ(n−α)

(
e−x

d

dx

)n ∫x
0

(
ex − et

)n−α−1
f(t)

dt

e−t
, x > 0, α > 0,

eDα−f(x) =
1

Γ(n−α)

(
−e−x

d

dx

)n ∫∞
x

(
ex − et

)n−α−1
f(t)

dt

e−t
, x ∈ R, α > 0,

while, if a = −∞, then

eDα+f(x) =
1

Γ(n−α)

(
e−x

d

dx

)n ∫x
−∞
(
ex − et

)n−α−1
f(t)

dt

e−t
, x ∈ R, α > 0,

and eD0f(x) = f(x), where n is the smallest integer greater than or equal to α.

Definition 1.3. The exponential left and right-sided fractional derivatives of Caputo type of order α > 0
for a function f : R→ R is defined as

e
CD

α
a+f(x) =

1
Γ(n−α)

∫x
a

(
ex − et

)n−α−1
(
e−t

d

dt

)n
f(t)

dt

e−t
, x > a, α > 0,

and
e
CD

α
b−f(x) =

1
Γ(n−α)

∫b
x

(
ex − et

)n−α−1
(
e−t

d

dt

)n
f(t)

dt

e−t
, x < b, α > 0,

and e
CD

0
(·)f(x) = f(x), where n is the smallest integer greater than or equal to α. The cases a = 0,b = ∞

and a = −∞,b =∞ are defined analogously as in Definition 1.2.

Next, we state some important properties of exponential fractional calculus and also use the notations
eIαa , eDαa , and e

CD
α
a for the left-side exponential fractional integral and derivatives of Riemann-Liouville

and Caputo, respectively, which have the lower limit at a point a, where a ∈ R∪ {−∞} as

eIαaf(x) =
1
Γ(α)

∫x
a

(
ex − et

)α−1
f(t)etdt,

eDαaf(x) =
1

Γ(n−α)

(
e−x

d

dx

)n ∫x
a

(
ex − et

)n−α−1
f(t)

dt

e−t
,

and

e
CD

α
af(x) =

1
Γ(n−α)

∫x
a

(
ex − et

)n−α−1
(
e−t

d

dt

)n
f(t)

dt

e−t
.

The fractional integration and differentiation of the power function (ex − ea)β is given below.
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Property 1.4. If α,β > 0, then following relations hold for

eIαa (ex − ea)β =
Γ(β+ 1)

Γ(α+β+ 1)
(ex − ea)α+β ,

eDαa (ex − ea)β =
Γ(β+ 1)

Γ(β−α+ 1)
(ex − ea)β−α , x ∈ [a,b].

Theorem 1.5 (Semigroup property). If α,β > 0, then the equations

eIαa(
eIβaf)(x) =

eIβa (eIαaf) (x) =
eIα+βa f(x),

are satisfied for all x ∈ [a,b].

The relation between exponential fractional derivatives of Riemann-Liouville and Caputo types is
given by

e
CD

α
af(x) =

eDαa

[
f(t) −

n−1∑
k=0

eDkf(a)

k!
(
et − ea

)k]
(x),

where eD = e−x ddx .

Theorem 1.6. If 0 < β < α, and 1 6 p <∞, then for f ∈ Lp(a,b),

eDβa(
eIαaf)(x) =

eIα−βa f(x) and e
CD

β
a(
eIαaf)(x) =

eIα−βa f(x).

In addition, we have
eDαa(

eIαaf)(x) = f(x) and e
CD

α
a(
eIαaf)(x) = f(x).

Theorem 1.7. Let α > 0 and n = [α] + 1, then the following formulas are true:

(i) eIαa (eDαaf) (x) = f(x) −
∑n
j=1

(ex−ea)α−j

Γ(α−j+1)
eDn−j (eIn−αa f) (a);

(ii) eIαa
(
e
CD

α
af
)
(x) = f(x) −

∑n−1
j=0

(ex−ea)j

j!
eDjf(a).

Recently in [23] we studied initial and boundary value problems for exponential fractional differential
equations. Here we extend the results in [23] to cover nonlocal initial and boundary value problems
for exponential fractional differential equations. We consider a variety of initial and boundary value
problems of exponential fractional differential equations. Existence and uniqueness results are obtained
by using standard fixed point theorems, such as Banach’s contraction mapping principle, Krasnoselskii’s
fixed point theorem, and Leray-Schauder nonlinear alternative.

2. Main results

We study existence and uniqueness results for nonlocal initial and boundary value problems for ex-
ponential fractional differential equations.

2.1. Nonlocal initial value problems
In this subsection we consider the following initial value problem for fractional differential equations

with nonlocal initial conditions
e
CD

q
0 x(t) = f(t, x(t)), 0 < t < T , 0 < q 6 1,

x(0) +
m∑
j=1
γjx(tj) = 0, (2.1)

where eCD
q
0 is the exponential derivative of Caputo type of order q, f : [0, T ]×R → R, tj, j = 1, 2, . . . ,m
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are given points with 0 6 t1 6 . . . 6 tm 6 T , and γj are real numbers with

1 +

m∑
j=1

γj 6= 0.

The problem (2.1) was studied in [8] for q = 1, in [7] in time scales setting, and in [9] for Caputo
fractional differential equations. Here we extend the results of [7–9] to the exponential derivative of
Caputo type.

Let X = C([0, T ], R) denote the Banach space of all continuous functions from [0, T ] into R with the
norm

‖x‖ = sup
t∈[0,T ]

|x(t)|.

The notation L1([0, T ], R) denotes the Banach space of measurable functions x : [0, T ] −→ R which are
Lebesgue integrable and normed by

‖x‖L1 =

∫T
0
|x(t)|dt for all x ∈ L1([0, T ], R).

In order to define the solution of the problem (2.1), we consider the following lemma.

Lemma 2.1. Assume that 1 +
m∑
j=1
γj 6= 0. For a given function ρ ∈ X, the unique solution of the nonlocal initial

value problem 
e
CD

q
0 x(t) = ρ(t), 0 < t < T , 0 < q 6 1,

x(0) +
m∑
j=1
γjx(tj) = 0, 0 6 t1 6 · · · 6 tm 6 T , (2.2)

is given by

x(t) =
1
Γ(q)

∫t
0
(et − es)q−1ρ(s)esds−

1

1 +
m∑
j=1
γj

m∑
j=1

γj
1
Γ(q)

∫tj
0
(etj − es)q−1ρ(s)esds. (2.3)

Proof. For any constant ξ ∈ R, we have

x(t) =
1
Γ(q)

∫t
0
(et − es)q−1ρ(s)esds− ξ. (2.4)

Then we obtain

x(tj) =
1
Γ(q)

∫tj
0
(etj − es)q−1ρ(s)esds− ξ.

Applying the initial condition for (2.2), we find that

ξ =
1

1 +
m∑
j=1
γj

m∑
j=1

γj
1
Γ(q)

∫tj
0
(etj − es)q−1ρ(s)esds.

Substituting the value of ξ in (2.4), we obtain the unique solution of (2.2) given by (2.3). This completes
the proof.

We shall assume throughout the remainder of the paper that 1 +
m∑
j=1
γj 6= 0, and put, for brevity,

α =

1 +

m∑
j=1

γj

−1

, A = 1 + |α|

m∑
j=1

|γj|.
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In view of Lemma 2.1, solutions of (2.1) are fixed points of the operator F : X→ X, defined by

(Fx)(t) =
1
Γ(q)

∫t
0
(et − es)q−1f(s, x(s))esds−α

m∑
j=1

γj

∫tj
0
(etj − es)q−1f(s, x(s))esds. (2.5)

Our first existence and uniqueness result is based on Banach’s fixed point theorem.

Theorem 2.2. Assume that f : [0, T ]×R→ R is a continuous function and satisfies the assumption:

(A1) |f(t, x) − f(t,y)| 6 L‖x− y‖, ∀t ∈ [0, T ], L > 0, x,y ∈ R.

If

L <
Γ(q+ 1)
A(eT − 1)q

,

then the nonlocal initial value problem (2.1) has a unique solution on [0, T ].

Proof. In view of Lemma 2.1, solutions of (2.1) are fixed points of the operator F : X→ X, defined by (2.5).

Setting supt∈[0,T ] |f(t, 0)| = M and choosing r >
A(eT − 1)qM

Γ(q+ 1) −A(eT − 1)qL
, we show that FBr ⊂ Br, where

Br = {x ∈ X : ‖x‖ 6 r}. For x ∈ Br, we have:

|(Fx)(t)| =

∣∣∣∣∣∣ 1
Γ(q)

∫t
0
(et − es)q−1f(s, x(s))esds−α

m∑
j=1

γj

∫tj
0
(etj − es)q−1f(s, x(s))esds

∣∣∣∣∣∣
6

1
Γ(q)

∫t
0
(et − es)q−1(|f(s, x(s)) − f(s, 0)|+ |f(s, 0)|) es ds

+ |α|

m∑
j=1

|γj|

∫tj
0
(etj − es)q−1(|f(s, x(s)) − f(s, 0)|+ |f(s, 0)|) es ds

6 (Lr+M)
1
Γ(q)

∫t
0
(et − es)q−1es ds+ |α|

m∑
j=1

|γj|

∫tj
0
(etj − es)q−1es ds


6 (Lr+M)

1
Γ(q+ 1)

(eT − 1)q + |α|(eT − 1)q
m∑
j=1

|γj|


=
A(eT − 1)q(Lr+M)

Γ(q+ 1)
6 r.

Now, for x,y ∈ X and for each t ∈ [0, T ], we obtain

|(Fx)(t) − (Fy)(t)| 6
1
Γ(q)

∫t
0
(et − es)q−1|f(s, x(s)) − f(s,y(s))|es ds

+ |α|

m∑
j=1

|γj|
1
Γ(q)

∫tj
0
(etj − es)q−1|f(s, x(s)) − f(s,y(s))|es dsds

6 L‖x− y‖ 1
Γ(q)

∫t
0
(et − es)q−1es ds+ |α|

m∑
j=1

|γj|
1
Γ(q)

∫tj
0
(etj − es)q−1es ds


6
L(eT − 1)qA
Γ(q+ 1)

‖x− y‖.

Since
L(eT − 1)qA
Γ(q+ 1)

< 1 it follows that F is a contraction. Thus, the conclusion of the theorem follows

by the contraction mapping principle (Banach fixed point theorem).
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Now we establish an existence result for the nonlocal initial value problem (2.9), via Leray-Schauder
nonlinear alternative.

Lemma 2.3 ([12, Nonlinear alternative for single valued maps]). Let E be a Banach space, C a closed, convex
subset of E, U an open subset of C, and 0 ∈ U. Suppose that F : U→ C is a continuous and compact (that is, F(U)
is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U; or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).

Theorem 2.4. Let f : [0, T ]×R→ R be a continuous function. Assume that:

(A2) There exist a function p ∈ L1([0, T ], R+), and Ω : R+ → R+ nondecreasing such that |f(t, x)| 6
p(t)Ω(‖x‖), ∀(t, x) ∈ [0, T ]×R.

(A3) There exists a constant K > 0 such that

K

AΩ(K)
1
Γ(q)

∫T
0
(eT − es)q−1p(s)esds

> 1.

Then the initial value problem (2.1) has at least one solution on [0, T ].

Proof. We show the boundendness of the set of all solutions to equations x = λFx for λ ∈ [0, 1], where F is
defined by (2.5). Let x be a solution of x = λFx for λ ∈ [0, 1]. Then for t ∈ [0, T ] we have

|x(t)| = |λ(Fx)(t)| 6
1
Γ(q)

∫t
0
(et − es)q−1f(s, x(s))esds+ |α|

m∑
j=1

|γj|
1
Γ(q)

∫tj
0
(etj − es)q−1f(s, x(s))esds

6
1
Γ(q)

∫t
0
(et − es)q−1p(s)Ω(‖x‖)esds+ |α|

m∑
j=1

|γj|
1
Γ(q)

∫tj
0
(etj − es)q−1p(s)Ω(‖x‖)esds

= AΩ(‖x‖) 1
Γ(q)

∫T
0
(eT − es)q−1p(s)esds,

and consequently
‖x‖

AΩ(‖x‖) 1
Γ(q)

∫T
0
(eT − es)q−1p(s)esds

6 1.

In view of (A3), there is no solution x such that ‖x‖ 6= K. Let us set

U = {x ∈ X : ‖x‖ < K}.

The operator F : U→ X is continuous and completely continuous. Indeed, the continuity is obvious since
f is continuous, and for completely continuous we remark that it is uniformly bounded, since

|Fx(t)| =

∣∣∣∣∣∣ 1
Γ(q)

∫t
0
(et − es)q−1f(s, x(s))esds−α

m∑
j=1

γj
1
Γ(q)

∫tj
0
(etj − es)q−1f(s, x(s))esds

∣∣∣∣∣∣
6

1
Γ(q)

∫t
0
(et − es)q−1p(s)Ω(‖x‖)esds+ |α|

m∑
j=1

|γj|
1
Γ(q)

∫T
0
(eT − es)q−1p(s)Ω(‖x‖)esds

= AΩ(r)
1
Γ(q)

∫T
0
(eT − es)q−1p(s)esds,
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and equicontinuous, since

|Fx(t2) − Fx(t1)| =

∣∣∣∣∣ 1
Γ(q)

∫t1

0

[
(et2 − es)q−1 − (et1 − es)q−1

]
f(s, x(s))esds

+

∫t2

t1

(et2 − es)q−1f(s, x(s))esds
∣∣∣∣

6

∣∣∣∣∣Ω(r)

Γ(q)

∫t1

0

[
(et2 − es)q−1 − (et1 − es)q−1

]
p(s)esds

+
Ω(r)

Γ(q)

∫t2

t1

(et2 − es)q−1p(s)esds

∣∣∣∣ .
From the choice of U, there is no u ∈ ∂U such that u = λF(u) for some λ ∈ (0, 1). Consequently, by

the nonlinear alternative of Leray-Schauder type (Lemma 2.3), we deduce that F has a fixed point u ∈ U
which is a solution of the problem (2.1). This completes the proof.

In the special case when p(t) = 1 and Ω(‖x‖) = k‖x‖+N, we have the following corollary.

Corollary 2.5. Let f : [0, T ]×R→ R be a continuous function. Assume that

(A4) there exist constants 0 6 k <
Γ(q+ 1)
A(eT − 1)q

, and N > 0 such that |f(t, x)| 6 k|x|+N for all t ∈ [0, T ], x ∈ R.

Then the initial value problem (2.1) has at least one solution.

Example 2.6. Consider the following nonlinear exponential fractional differential equation with nonlocal
(multi-point) initial condition of the form

e
CD

1/2
0 x(t) = f(t, x(t)), 0 < t < 3,

x(0) +
2
3
x

(
1
2

)
−

3
4
x (1) +

4
5
x

(
3
2

)
−

5
6
x (2) +

6
7
x

(
5
2

)
= 0.

(2.6)

Here q = 1/2, T = 3, m = 5, γ1 = 2/3, γ2 = −3/4, γ3 = 4/5, γ4 = −5/6, γ5 = 6/7, t1 = 1/2, t2 = 1,
t3 = 3/2, t4 = 2, and t5 = 5/2. So, we can check that 1+

∑5
j=1 γj = 1.740476190 6= 0 and A = 3.244870042.

(i) Let the function f is defined by

f(t, x) =
3 sin2 t

(10 + t)2

(
x2 + |x|

1 + |x|

)
+

1
4

. (2.7)

It is easy to compute that
Γ(q+ 1)
A(eT − 1)q

= 0.06251661312.

Since |f(t, x) − f(t,y)| 6 (6/100)|x− y|, we set a constant L = 3/50 < 0.06251661312. Hence all conditions
of Theorem 2.2 are satisfied. Therefore, the problem (2.6) with (2.7) has a unique solution.

(ii) Let the function f is presented by

f(t, x) =
1

1 + t

(
3x6

10(1 + |x|5)
+

1
8

)
. (2.8)

By showing

|f(t, x)| 6
1

1 + t

(
3

10
|x|+

1
8

)
,

we set p(t) = 1/(1 + t) and Ω(u) = (3u/10) + (1/8) which leads to a constant K > 22.90686633 satisfying
inequality in (A3). By applying Theorem 2.4, we get that the problem (2.6) with (2.8) has at least one
solution on [0, 3].
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2.2. Nonlocal boundary value problems
In this subsection we study some nonlocal boundary value problems for exponential fractional differ-

ential equations. First we consider the following nonlocal boundary value problem
e
CD

α
0 y(t) = f(t,y(t)), t ∈ [0, T ],

y(0) = g(y), eDy(T) = h(y),
(2.9)

where e
CD

α
0 is the exponential derivative of Caputo type which has fractional order 1 < α < 2, f ∈

C([0, T ]×R, R) and g,h : C([0, T ], R)→ R are given continuous functions.

Lemma 2.7. The nonlocal boundary value problem (2.9) is equivalent to the following integral equation

y(t) = g(y) + (et − 1)

(
h(y) −

1
Γ(α− 1)

∫T
0
(eT − es)α−2f(s,y(s))es ds

)

+
1
Γ(α)

∫t
0
(et − es)α−1f(s,y(s))es ds.

(2.10)

Proof. Applying the exponential fractional integral of order α to both sides of the equation in (2.9) and
using Theorem 1.7, we obtain

y(t) = c1 + (et − 1)c2 +
1
Γ(α)

∫t
0
(et − es)α−1f(s,y(s))esds.

Substituting boundary conditions, it follows that the integral equation (2.10) holds. On the other hand, by
taking the exponential Caputo fractional derivative of order α to both sides of (2.10), we get eCD

α
0 y(t) =

f(t,y(t)). Also, we have y(0) = g(y) and

eDy(t) = h(y) −
1

Γ(α− 1)

∫T
0
(eT − ss)α−2f(s,y(s))es ds+

1
Γ(α− 1)

∫t
0
(et − es)α−2f(s,y(s))esds,

from which we get eDy(T) = h(y). The proof is completed.

Theorem 2.8. Let f : [0, T ]×R→ R be a continuous function. Assume that:

(H0) there exists L > 0 such that

|f(t, x) − f(t,y)| 6 L|x− y| for t ∈ [0, T ] and x,y ∈ R;

(H1) there exist k, ` > 0 such that

|g(x) − g(y)| 6 k|x− y|, |h(x) − h(y)| 6 `|x− y| for x,y ∈ R.

If

k+ `(eT − 1) + L(α+ 1)
(eT − 1)α

Γ(α+ 1)
< 1, (2.11)

then the nonlocal boundary value problem (2.9) has a unique solution on [0, T ].

Proof. We transform the boundary value problem (2.9) into the operator equation y = Ay, where the
operator A : X→ X is defined by

Ay(t) = g(y) + (et − 1)

(
h(y) −

1
Γ(α− 1)

∫T
0
(eT − ss)α−2f(s,y(s))es ds

)

+
1
Γ(α)

∫t
0
(et − es)α−1f(s,y(s))es ds.

(2.12)
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Next, we use the Banach contraction principle to prove that the operator A has a unique fixed point.
To accomplish this we define a ball radius r with

r >
|g(0)|+ (eT − 1)|h(0)|+ (M(α+ 1)(eT − 1)α/Γ(α+ 1))

1 − (L(α+ 1)(eT − 1)α/Γ(α+ 1)) − k− `(eT − 1)
,

by Br = {y ∈ X : ‖y‖ 6 r, r > 0}. Now, let sup{f(t, 0) : t ∈ [0, T ]} = M. For any y ∈ Br, and using the fact
that |g(y)| = |g(y) − g(0) + g(0)| 6 k‖y‖+ |g(0)| and |h(y)| 6 `‖y‖+ |h(0)|, we have

|Ay(t)| 6 |g(y)|+ (eT − 1)

(
|h(y)|+

1
Γ(α− 1)

∫T
0
(eT − ss)α−2(|f(s,y(s)) − f(s, 0)|+ |f(s, 0)|)esds

)

+
1
Γ(α)

∫t
0
(et − es)α−1(|f(s,y(s)) − f(s, 0)|+ |f(s, 0)|)esds

6 kr+ |g(0)|+ (eT − 1)

(
`r+ |h(0)|+ (Lr+M)

(eT − 1)α−1

Γ(α)

)
+ (Lr+M)

(eT − 1)α

Γ(α+ 1)

6
(
k+ (eT − 1)`

)
r+ |g(0)|+ (eT − 1)|h(0)|+ (α+ 1)(Lr+M)

(eT − 1)α

Γ(α+ 1)
6 r,

which implies that ABr ⊂ Br. Now, we show that the operator A is a contraction operator. Let x,y ∈ Br.
Then we have

|Ax(t) −Ay(t)| 6 |g(x) − g(y)|+ (eT − 1)

(
|h(x) − h(y)|

+
1

Γ(α− 1)

∫T
0
(eT − es)α−2|f(s, x(s)) − f(s,y(s))|esds

)

+
1
Γ(α)

∫t
0
(et − es)α−1|f(s, x(s)) − f(s,y(s))|esds

6 k‖x− y‖+ (eT − 1)

(
`‖x− y‖+ L(e

T − 1)α−1

Γ(α)
‖x− y‖

)
+ L

(eT − 1)α

Γ(α+ 1)
‖x− y‖

=

(
k+ `(eT − 1) + L(α+ 1)

(eT − 1)α

Γ(α+ 1)

)
‖x− y‖,

which yields that ‖Ax−Ay‖ 6
(
k+ `(eT − 1) + L(α+ 1)

(eT − 1)α

Γ(α+ 1)

)
‖x− y‖. From (2.11), the operator A

is a contraction which implies that A has a unique fixed point by Banach’s contraction principle. This, in
turn, shows that the problem (2.9) has a unique solution on [0, T ]. This completes the proof.

Now we establish an existence result for the nonlocal boundary value problem (2.9), via Leray-
Schauder nonlinear alternative.

Theorem 2.9. Let f : J×R → R and g,h : C([0, T ], R) → R be continuous functions. Assume that (H1) holds.
In addition we suppose that:
(H2) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈ C([0, T ], R+) such

that
|f(t,u)| 6 p(t)ψ(‖u‖) for each (t,u) ∈ [0, T ]×R;

(H3) there exists a constant M > 0 such that

[1 − (k+ `(eT − 1))]M
|g(0)|+ (eT − 1)|h(0)|+ (α+ 1)(‖p‖ψ(M)(eT − 1)α/Γ(α+ 1))

> 1,

with k+ `(eT − 1) < 1.
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Then the nonlocal boundary value problem (2.9) has at least one solution on [0, T ].

Proof. We shall show that the operator A : X → X defined by (2.12) is continuous and completely contin-
uous. Obviously A is continuous since f,g,h are continuous. We show that A maps bounded sets into
bounded sets in X. It is enough to show that for any r > 0 there exists a positive constant ˜̀ such that for
each y ∈ Br = {y ∈ X : ‖y‖ 6 r}, we have ‖Ay‖ 6 ˜̀. By (H1) and (H2), for each t ∈ [0, T ], we have

|Ay(t)| 6 k‖y‖+ |g(0)|+ (eT − 1)

(
`‖y‖+ |h(0)|+

‖p‖ψ(‖y‖)
Γ(α− 1)

∫T
0
(eT − es)α−2esds

)

+
‖p‖ψ(‖y‖)
Γ(α)

∫T
0
(eT − es)α−1esds

6 k‖y‖+ |g(0)|+ (eT − 1)

(
`‖y‖+ |h(0)|+

‖p‖ψ(‖y‖)(eT − 1)α−1

Γ(α)

)
+
‖p‖ψ(‖y‖)(eT − 1)α

Γ(α+ 1)

6 (k+ `(eT − 1))r+ |g(0)|+ (eT − 1)|h(0)|+ (α+ 1)
‖p‖ψ(r)(eT − 1)α

Γ(α+ 1)
.

Thus

‖Ay‖ 6 (k+ `(eT − 1))r+ |g(0)|+ (eT − 1)|h(0)|+ (α+ 1)
‖p‖ψ(r)(eT − 1)α

Γ(α+ 1)
:= ˜̀.

Next we show that A maps bounded sets into equicontinuous sets of X. Let t1, t2 ∈ [0, T ] with t1 < t2,
Br be a bounded set of X as above. Then, for any y ∈ Br, we have

|Ay(t2) −Ay(t1)| 6 |et2 − et1 |

(
`r+ |h(0)|+

‖p‖ψ(r)(eT − 1)α−1

Γ(α)

)

+
1
Γ(α)

∫t1

0
[(et2 − es)α−1 − (et1 − es)α−1]|f(s,y(s))|esds

+
1
Γ(α)

∫t2

t1

(et2 − es)α−1|f(s,y(s))|esds

6 |et2 − et1 |

(
`r+ |h(0)|+

‖p‖ψ(r)(eT − 1)α−1

Γ(α)

)

+
‖p‖ψ(r)
Γ(α+ 1)

{∫t1

0
[(et2 − es)α−1 − (et1 − es)α−1]esds+

∫t2

t1

|(et2 − es)α−1|esds

}

6 |et2 − et1 |

(
`r+ |h(0)|+

‖p‖ψ(r)(eT − 1)α−1

Γ(α)

)

+
‖p‖ψ(r)
Γ(α+ 1)

{
2(et2 − et1)α + (et1 − 1)α − (et2 − 1)α

}
.

As t1 −→ t2, the right-hand side of the above inequality tends to zero. In consequence, the Arzelá-Ascoli
theorem follows that A : X −→ X is continuous and completely continuous.

Finally, we show that there exists an open set U ⊆ X with y 6= λAy for λ ∈ (0, 1) and y ∈ ∂U.
Let y ∈ X and y = λA(y) for some 0 < λ < 1. Then, for each t ∈ J, we have by the computations above

‖y‖ 6 (k+ `(eT − 1))‖y‖+ |g(0)|+ (eT − 1)|h(0)|+ (α+ 1)
‖p‖ψ(‖y‖)(eT − 1)α

Γ(α+ 1)
,

or
[1 − (k+ `(eT − 1))]‖y‖

|g(0)|+ (eT − 1)|h(0)|+ (α+ 1)(‖p‖ψ(‖y‖)(eT − 1)α/Γ(α+ 1))
6 1.
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In view of (H3), there exists M such that ‖y‖ 6=M. Let us set

U = {y ∈ X : ‖y‖ < M}.

Note that the operator A : U → X is continuous and completely continuous. From the choice of U, there
is no y ∈ ∂U such that y = λAy for some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-
Schauder type (Lemma 2.3), we deduce that A has a fixed point y ∈ U which is a solution of the problem
(2.9). This completes the proof.

The final existence result is based on Krasnoselskii’s fixed point theorem [14].

Lemma 2.10 ([14, Krasnoselskii’s fixed point theorem]). Let S be a closed, convex, and nonempty subset of a
Banach space X. Let A,B be the operators such that (a) Ax+ By ∈ S whenever x,y ∈ S; (b) A is compact and
continuous; (c) B is a contraction mapping. Then there exists z ∈ S such that z = Az+Bz.

Theorem 2.11. Assume that (H0) holds. In addition we assume that:

(H4) |f(t,y)| 6 µ(t), |g(y)| 6 λ(t), |h(y)| 6 ν(t), and µ, λ,ν ∈ C([0, T ], R+).

Then the nonlocal boundary problem (2.9) has at least one solution on [0, T ], provided

k+ `(eT − 1) + L
(eT − 1)α

Γ(α)
< 1. (2.13)

Proof. To apply Lemma 2.10, we define the operators P and Q by

Py(t) = g(y) + (et − 1)

(
h(y) −

1
Γ(α− 1)

∫T
0
(eT − ss)α−2f(s,y(s))es ds

)
and

Qy(t) =
1
Γ(α)

∫t
0
(et − es)α−1f(s,y(s))es ds, t ∈ [0, T ].

Setting supt∈[0,T ] |µ(t)| = ‖µ‖, supt∈[0,T ] |λ(t)| = ‖λ‖, supt∈[0,T ] |ν(t)| = ‖ν‖, and choosing a constant

ρ > ‖λ‖+ (eT − 1)‖ν‖+ ‖µ‖(α+ 1)
(eT − 1)α

Γ(α+ 1)
,

we define a ball Bρ = {y ∈ C(J, R) : ‖y‖ 6 ρ}. For any y, z ∈ Bρ, we have

|Py(t) +Qz(t)| 6 |g(y)|+ (eT − 1)
(
|h(y)|+ ‖µ‖(e

T − 1)α−1

Γ(α)

)
+ ‖µ‖(e

T − 1)α

Γ(α+ 1)

6 ‖λ‖+ (eT − 1)‖ν‖+ ‖µ‖(α+ 1)
(eT − 1)α

Γ(α+ 1)
6 ρ.

Hence
‖Py+Qz‖ 6 ρ,

which shows that Py+Qz ∈ Bρ. It is easy to see using (2.13) that P is a contraction mapping.
Continuity of f implies that the operator Q is continuous. Also, Q is uniformly bounded on Bρ as

‖Qy‖ 6 ‖µ‖(e
T − 1)α

Γ(α+ 1)
.

Also Q is equicontinuous, as proved in Theorem 2.9. So Q is relatively compact on Bρ. Hence, by the
Arzelá-Ascoli theorem, Q is compact on Bρ. Thus all the assumptions of Lemma 2.10 are satisfied. So the
conclusion of Lemma 2.10 implies that the problem (2.9) has at least one solution on [0, T ].
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Example 2.12. Consider the following nonlinear exponential fractional differential equation with nonlocal
boundary condition of the form

e
CD

3/2
0 y(t) = f(t,y(t)), 0 < t < 1,

y(0) = g(y), eDy(T) = h(y).
(2.14)

Here q = 3/2 and T = 1. Next we give some cases of nonlinear function and nonlocal boundary
conditions.

(i) Let the functions f, g, and h are defined by

f(t,y) =
1

10(
√
t+ 3)

(
y2 + 6|y|

5 + |y|

)
+

1
2

, g(y) =
|y (1/2) |

3 + |y (1/2) |
, h(y) =

1
6

sin
(
y

(
2
3

))
. (2.15)

Then we have

|f(t, x) − f(t,y)| 6
1
15

|x− y|, |g(x) − g(y)| 6
1
3
|x− y|, and |h(x) − h(y)| 6

1
6
|x− y|, ∀x,y ∈ R.

Setting L = 1/15, k = 1/3, and ` = 1/6, we see that

k+ `(eT − 1) + L(α+ 1)
(eT − 1)α

Γ(α+ 1)
= 0.9021067798 < 1.

By applying Theorem 2.8, the problem (2.14) with (2.15) has a unique solution.

(ii) Let the given functions f, g, and h are defined as

f(t,y) =
(

1
t2 + 3

)(
y8

6(1 + |y|7)
+

2
3

)
, g(y) =

1
4

tan−1
(
y

(
1
3

))
+

4
3

, h(y) =
|y(1/8)|

7(1 + |y(1/8)|)
+

1
5

. (2.16)

From the above information, we get

|f(t,y)| 6
(

1
t2 + 3

)(
1
6
|y|+

2
3

)
,

and |g(x) − g(y)| 6 (1/4)|x − y| and |h(x) − h(y)| 6 (1/7)|x − y|. Then we choose p(t) = 1/(t2 + 3),
ψ(u) = (1/6)u+ (2/3), k = 1/4, ` = 1/7, g(0) = 4/3, h(0) = 1/5. Consequently, we can find that there
exists a constant M > 9.726098262 satisfying the inequality in condition (H3). By mean of Theorem 2.9,
we have that the problem (2.14) with (2.16) has at least one solution on [0, 1].

(iii) Let the functions f, g, and h are given by

f(t,y) =
e−t

8 + t3 | siny|+
1
4

, g(y) =
|y(1/4)|

3(1 + |y(1/4)|)
+

1
3

, and h(y) =
5
12

+
1
6

tan−1 y

(
5
6

)
. (2.17)

Now, we can show that

|f(t,y)| 6
e−t

8 + t3 +
1
4

, |g(y)| 6
2
3

, h(y) 6
5 + π

12
,

and also |f(t, x) − f(t,y)| 6 (1/8)|x− y|, |g(x) − g(y)| 6 (1/3)|x− y| and |h(x) − h(y)| 6 (1/6)|x− y|. It
follows that

k+ `(eT − 1) + L
(eT − 1)α

Γ(α)
= 0.9374059226 < 1.

This implies by Theorem 2.11 that the problem (2.14) with (2.17) has at least one solution on [0, 1].
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3. Remarks

Many other boundary value problems can be studied by using the methods of this paper. For example,
let us consider the following boundary value problem

e
CD

α
0 y(t) = f(t,y(t)), t ∈ [0, T ],

y(0) = g(y), eDy(T) = λy(η), η ∈ (0, T),
(3.1)

where e
CD

α
0 is the exponential derivative of Caputo type which has fractional order 1 < α < 2, f ∈

C([0, T ] × R, R), g : C([0, T ], R) → R is a given continuous function and λ a real constant with λ 6=
(eη − 1)−1. This is a special case of the problem (2.9) with h(y) = λy(η).

Lemma 3.1. The nonlocal boundary value problem (3.1) is equivalent to the following integral equation

y(t) = g(y) +
(et − 1)

1 − λ(eη − 1)

(
λg(y) +

λ

Γ(α)

∫η
0
(eη − es)α−1f(s,y(s))es ds

−
1

Γ(α− 1)

∫T
0
(eT − es)α−2f(s,y(s))es ds

)
+

1
Γ(α)

∫t
0
(et − es)α−1f(s,y(s))es ds.

We include without proofs the results.

Theorem 3.2. Let f : [0, T ]×R→ R be a continuous function. Assume that (H0) and (H1) hold. If

k+
eT − 1

|1 − λ(eη − 1)|

{
λk+ Lλ

(eη − 1)α

Γ(α+ 1)
+ L

(eT − 1)α−1

Γ(α)

}
+ L

(eT − 1)α

Γ(α+ 1)
< 1,

then the nonlocal boundary value problem (3.1) has a unique solution on [0, T ].

Theorem 3.3. Let f : J×R → R and g,h : C([0, T ], R) → R be continuous functions. Assume that (H1) and
(H2) hold. In addition we suppose that:

(H3)’ there exists a constant M > 0 such that

BM

A1|g(0)|+A2‖p‖ψ(M)
> 1,

where

B = 1 − k− k|λ|
(eT − 1)

|1 − λ(eη − 1)|
> 0, A1 = 1 +

|λ|(eT − 1)
|1 − λ(eη − 1)|

,

A2 =
(eT − 1)

|1 − λ(eη − 1)|
|λ|(eη − 1)α

Γ(α+ 1)
+

(eT − 1)α

Γ(α)|1 − λ(eη − 1)|
+

(eT − 1)α

Γ(α+ 1)
.

Then the nonlocal boundary value problem (3.1) has at least one solution on [0, T ].

Theorem 3.4. Assume that (H0) and (H4) hold. Then the nonlocal boundary value problem (3.1) has at least one
solution on [0, T ], provided

k+
eT − 1

|1 − λ(eη − 1)|

{
λk+ L

(eη − 1)α

Γ(α+ 1)
+ L

(eT − 1)α−1

Γ(α)

}
< 1.
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As a second example, we consider the following boundary value problem with nonlocal boundary
conditions 

e
CD

α
0 y(t) = f(t,y(t)), t ∈ [0, T ],

y(0) = g(y), y(T) =
n∑
i=1

γiy(ξi), ξi ∈ (0, T),
(3.2)

where e
CD

α
0 is the exponential derivative of Caputo type which has fractional order 1 < α < 2, f ∈

C([0, T ]×R, R), g : C([0, T ], R)→ R is a given continuous function, and γi, i = 1, 2, . . . ,n are real constants

with
n∑
i=1

γi(e
ξi − 1) 6= eT − 1.

In the next lemma we give only the expression of the solution. The results can be obtained as in the
previous boundary value problems and are omitted.

Lemma 3.5. Assume that Λ := eT − 1 −
∑n
i=1 γi(e

ξi − 1) 6= 0. Then the nonlocal boundary value problem (3.2)
is equivalent to the following integral equation

y(t) = g(y) +
(et − 1)
Λ

{
n∑
i=1

γi

[
g(y) +

1
Γ(α)

∫ξi
0
(eξi − es)α−1f(s,y(s))es ds

]

− g(y) −
1
Γ(α)

∫T
0
(eT − es)α−1f(s,y(s))es ds

}
+

1
Γ(α)

∫t
0
(et − es)α−1f(s,y(s))es ds.
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