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We present some general coincidence results based on coincidence principles for compact morphisms.
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1. Introduction

Morphisms (Vietoris fractions) in the sense of Gorniewicz and Granas was introduced in [4] and
discussed in detail in the books [3, 6] and in the papers [1, 5, 7, 8]. In this paper we present two general
coincidence results for morphisms defined on Hausdorff topological vector spaces. Our theory is based
on coincidence principles for compact morphisms.

Now we present some ideas needed in Section 2. Let H be the C̆ech homology functor with compact
carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero.
Thus H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the
q-dimensional C̆ech homology group with compact carriers of X. For a continuous map f : X → X, H(f)
is the induced linear map f? = {f?q}, where f?q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y, and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called a
Vietoris map (written as p : Γ ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic;
(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let D(X, Y) be the set of all pairs X
p⇐ Γ

q→ Y where p is a Vietoris map and q is continuous. We will

denote every such diagram by (p,q). Given two diagrams (p,q) and (p ′,q ′), where X
p ′
⇐ Γ ′

q ′
→ Y, we
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write (p,q) ∼ (p ′,q ′) if there are continuous maps f : Γ → Γ ′ and g : Γ ′ → Γ such that q ′ ◦ f = q, p ′ ◦ f = p,
q ◦ g = q ′, and p ◦ g = p ′. The equivalence class of a diagram (p,q) ∈ D(X, Y) with respect to ∼ is denoted
by

φ = {X
p⇐ Γ

q→ Y} : X→ Y

or φ = [(p,q)] and is called a morphism from X to Y. We let M(X, Y) be the set of all such morphisms.
Note if (p,q), (p1,q1) ∈ D(X, Y) (where X

p⇐ Γ
q→ Y and X

p1⇐ Γ ′
q1→ Y) and (p,q) ∼ (p1,q1) then it is easy

to see (use q ◦ g = q1 and p ◦ g = p1 where g : Γ ′ → Γ ) that for x ∈ X we have q1 (p
−1
1 (x)) = q (p−1(x)).

For any φ ∈M(X, Y) a set φ(x) = qp−1 (x) where φ = [(p,q)] is called an image of x under a morphism
φ. Let φ ∈ M(X, Y) and (p,q) a representative of φ. We define φ(X) ⊆ Y by φ(X) = q (p−1(X)).
Note φ(X) does not depend on the representative of φ. Now φ ∈ M(X, Y) is called compact provided
the set φ(X) is relatively compact in Y. Note we will identify a map f : X → Y with the morphism

f = {X
IdX⇐ X

f→ Y} : X→ Y. Let X ⊆ Y. A point x ∈ X is called a fixed point of a morphism φ ∈M(X, Y) if
x ∈ φ(x).

Let φ = {X
p⇐ Γ

q→ Y} : X→ Y be a morphism. We define the coincidence set

Coin(p,q) = {y ∈ Γ : p(y) = q(y)}.

We say φ has a coincidence provided the set C(φ) = p (Coin(p,q)) is nonempty (i.e., there exists x ∈
p (Coin(p,q)), i.e., there exists y ∈ Γ with x = p(y) = q(y)). Let (p ′,q ′) be another representation of φ,

say φ = {X
p ′
⇐ Γ ′

q ′
→ Y}. Note p(Coin(p,q)) = p ′(Coin(p ′,q ′)); to see this note if x ∈ p(Coin(p,q)) then

x = p(y) = q(y) for some y ∈ Γ and now since (p,q) ∼ (p ′,q ′) and with f : Γ → Γ ′ we have x = q(y) =
q ′(f(y)) and x = p(y) = p ′(f(y)) so f(y) ∈ Γ ′ and x = q ′(f(y)) = p ′(f(y)), i.e., x ∈ p ′(Coin(p ′,q ′)).
Thus the above definition does not depend on the choice of a representation (p,q). Also C(φ) 6= ∅ iff
Coin(p,q) 6= ∅ for any representation (p,q) of φ.

Suppose φ ∈ M(X,X) (here φ = {X
p⇐ Γ

q→ X}) has a coincidence point for (p,q), i.e., suppose there
exists y ∈ Γ with p(y) = q(y). Now since p is surjective, there exists w ∈ X with y ∈ p−1(w) (note
p(w) = y) and so w ∈ q(p−1(w)) = φ(w) (note pp−1(w) = w and the set q(p−1(w)) is the image of w
under φ) i.e., φ has a fixed point. As a result

p(y) = q(y), y ∈ Γ (and let w = p(y))⇔ w ∈ q(p−1(w));

note if w ∈ q(p−1(w)), then there exists y ∈ p−1(w) with w = q(y) so p(y) ∈ pp−1(w) = w (i.e., p(y) = w)
and so p(y) = q(y). In particular if the morphism φ ∈ M(X,X) (here (p,q) is a representation of φ) has
a fixed point (say w, i.e., w ∈ q(p−1(w))) then there exists y ∈ p−1(w) with q(y) = p(y), so φ has a
coincidence point for (p,q), and now since we can do this argument for any representation (p,q) of φ
(recall if (p1,q1) is another representation of φ then (p,q) ∼ (p1,q1) and as above q(p−1(w)) = q1(p

−1
1 (w))

so w ∈ q1(p
−1
1 (w)) so there exists y1 ∈ p−1

1 (w) with q1(y1) = p1(y1)), then Coin(p,q) 6= ∅ for any
representation (p,q) of φ, i.e., φ has a coincidence.

2. Coincidence theory

We present immediately our main result.

Theorem 2.1. Let X be a Hausdorff topological vector space, φ = {X
p⇐ Γ

q→ X} ∈M(X,X) (here Γ is a Hausdorff
topological space), and x0 ∈ p(Γ). Assume the following conditions hold:

(1) A ⊆ Γ , A = p−1 (co ({x0}∪ q(A))) implies co (q(A)) is compact;
(2) for any nonempty convex compact subset K of X and any ψ ∈M(K,K) we have that ψ has a coincidence.

Then φ has a coincidence.
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Remark 2.2. Conditions (i.e., spaces X and sets K) to guarantee (2) can be found in [4, 7].

Proof. Let F be the family of all subsets D of Γ with p−1 (co ({x0}∪ q(D))) ⊆ D. Note F 6= ∅ since Γ ∈ F

(recall p is surjective). Let

D0 = ∩D∈FD and D1 = p−1 (co ({x0}∪ q(D0))) . (2.1)

We now show D1 = D0. Now for any D ∈ F we have since D0 ⊆ D that q(D0) ⊆ q(D), so

D1 = p−1 (co ({x0}∪ q(D0))) ⊆ p−1 (co ({x0}∪ q(D))) ⊆ D,

and as a result D1 ⊆ D0. Next since D1 ⊆ D0 we have q(D1) ⊆ q(D0), so

p−1 (co ({x0}∪ q(D1))) ⊆ p−1 (co ({x0}∪ q(D0))) = D1,

and as a result D1 ∈ F, so D0 ⊆ D1. Consequently (see (2.1))

D0 = p−1 (co ({x0}∪ q(D0))) . (2.2)

Now (1) guarantees that co (q(D0)) is compact. For convenience let K = co (q(D0)). Note from (2.2) that
p−1(K) ⊆ D0 so q(p−1(K)) ⊆ q(D0) ⊆ K. Also note φ ∈ M(K,K) since φ|K = {K

p0⇐ p−1(K)
q0→ K}, where

p0 and q0 denote contractions of the appropriate maps p and q (see [2, pp 214])). Now (2) guarantees that
φ has a coincidence.

Theorem 2.3. Let X be a Hausdorff topological vector space, φ = {X
p⇐ Γ

q→ X} ∈M(X,X) (here Γ is a Hausdorff
topological space), and x0 ∈ p(Γ). Let

D0 = p−1 (co ({x0}∪ q(Γ))) , Dn+1 = p−1 (co ({x0}∪ q(Dn))) for n ∈ {0, 1, 2, . . .}

and D = ∩∞n=0Dn. Suppose

co (q(D)) is compact

and assume (2) in Theorem 2.1 holds. Then φ has a coincidence.

Proof. The result follows once we show

p−1 (co ({x0}∪ q(D))) ⊆ D.

To see this, note D ⊆ Γ , so q(D) ⊆ q(Γ) and as a result

p−1 (co ({x0}∪ q(D))) ⊆ p−1 (co ({x0}∪ q(Γ))) = D0.

Also D ⊆ D0 implies q(D) ⊆ q(D0) and as a result

p−1 (co ({x0}∪ q(D))) ⊆ p−1 (co ({x0}∪ q(D0))) = D1.

Continuing, we obtain p−1 (co ({x0}∪ q(D))) ⊆ Dk for each k ∈ {0, 1, 2, . . .} and as a result

p−1 (co ({x0}∪ q(D))) ⊆ ∩∞n=0Dn = D.
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