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Abstract

In this article, we will introduce a new five-parameter continuous model, called the Kumaraswamy Weibull exponential
distribution based on Kumaraswamy Weibull-G family [A. S. Hassan, M. Elgarhy, Adv. Appl. Stat., 48 (2016), 205-239]. The
new model contains some new distributions as well as some former distributions. Various mathematical properties of this
distribution are studied. General explicit expressions for the quantile function, expansion of distribution and density functions,
moments, generating function, incomplete moments, conditional moments, residual life function, reversed residual life function,
mean deviation, inequality measures, Rényi and g-entropies, probability weighted moments, and order statistics are obtained.
The estimation of the model parameters is discussed using maximum likelihood method. The practical importance of the new
distribution is demonstrated through real data sets where we compare it with several lifetime distributions.
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1. Introduction

In the last few years, new generated families of continuous distributions have attracted several statis-
ticians to develop new models. These families have been obtained by introducing one or more additional
shape parameter(s) to the baseline distribution. Some of the generated families are: the beta-G [12, 19],
gamma-G (type 1) [27], Kumaraswamy-G (Kw-G) [6], McDonald-G (Mc-G) [2], gamma-G (type 2) [25],
transformed-transformer (T-X) [4], Weibull-G [5], Kumaraswamy odd log-logistic [3], Garhy-G [9], ex-
ponentiated Weibull-G [14, 15] introduced a new family called Kumaraswamy Weibull-generated, The
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additive Weibull-G [17], type II half logistic-G [10, 16] introduced exponentiated extended-G family. The
cumulative distribution function (cdf ) of Kumaraswamy Weibull-generated family is given by

G(x)
Fix) =1—[1—(1—e *=sx®yab. x S 0 a,b, 0, p >0, (1.1)

where a,b, 3 > 0 are the three shape parameters and « > 0 is the scale parameter. The cdf (1.1) provides
a wider family of continuous distributions. The probability density function (pdf) corresponding to (1.1)
is given by
p—1 G(x) G(x)
f(x) — ab(xﬁ(G(X)) %({?1) e*a[m]ﬁ[l _e*(x[i}ﬁ}a—l
(1-G(x)) (1.2)

G(x)
x[1—(1—e *raw®yapb=1 x5 0 ab,ap > 0.

In this paper we introduce a new five-parameter model as a competitive extension for the exponential
distribution using the KwW-G family. The new distribution extends some recent distributions and pro-
vides some new distributions. The rest of the paper is outlined as follows. In Section 2, we define the
Kumaraswamy Weibull exponential (KwWE) distribution and provide some special models. In Section 3,
we derive a very useful representation for the (KWWE) density and distribution functions. In the same
section, some general mathematical properties of the proposed distribution are derived. The maximum
likelihood method is applied to drive the estimates of the model parameters in Section 4. Simulation
study is carried out to estimate the model parameters of (KWWE) distribution in Section 5. Section 6
gives an illustrative example to explain how a real data set can be modeled by KwWWE and finally we
conclude the paper in Section 7.

2. The Kumaraswamy weibull-exponential

In this section, the five-parameter KWWE distribution is obtained based on the KwW-G family which
was explored in [14].

Let, the random variable X follows the exponential distribution with pdf given by

gGA) =Ae ™ x>0,A>0, (2.1)

where, A > 0 is the scale parameter.
The cdf of exponential distribution is given by

G(x;A) =1—e M, (2.2)

Substituting from pdf (2.1) and cdf (2.2) into cdf (1.1), then the cdf of Kumaraswamy Weibull exponential
distribution, denoted by KWWE(a,b, «, 3,A), takes the following form

FooW) =1—[1—(1—e e DHab g b o B, A>0, x>0,

where ¥ = (a,b, «, 3,A) is the set of parameters. Inserting the pdf (2.1) and cdf (2.2) into (1.2), then the
pdf of KWWE takes the following form

f(x;¥) = abapAle™ — 1P~ le{a(e™—DF-Ax}(q _ pale™—1)Fjalyy (1 _ pma(e™=1)Fyajp—1 (93

The pdf (2.3) contains some new distributions as well as some current distributions. Table (1) lists the
special sub-models of the KWWE distribution.
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Table 1: Special models of the Kumaraswamy Weibull-exponential distribution.

Model | a | b | | B | A]| cdf Author
1| KwEE | - - - 1 - ( )_1_ 1—(1—6 (e Axfl))a]b
2/KwRE | - | - | - |2 |- |Fx)=1—-[1—(1—e (e M—1)2)a]b
3| EWE |- [1]-[-[-|Fx)=(1—e "D [11]
4 EEE -1 -] 1|-|Fx)=(1 _e—oc(e 1))a
5| ERE |- |1|-]2|-|Fx= (1_6 a(eM—1)%)a
6| WE [1]1]-]-]-]Fx)=1—eae™1F [23]
7] EE [1f1]-[1]-]Fx)=1—e "D
8] RE [1|1]-]2]-]Fx)=1—e ™17

The survival, hazard rate, and reversed-hazard rate functions of KwWE distribution are respectively
given by
ROGW) = [1—(1—e (e Dap,
abaPA[e — 1]Bflef{oc(em—1)ft>\x}(1 P ja-1

h(x;¥) = 1— (1_efoc(e7‘xfl)f5)a ’

and

abapAleN —1)F T (a(™ 1A (] e ale™ D yaipy (1 el D yajp-

T(x; V) = 1_[1_(1_67“((3%4,1)[3) Jb

Plots the pdf and hazard rate function of KWWE distribution for some parameter values are displayed
in Figures 1 and 2, respectively.
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Figure 1: Plots of the pdf of the KWWE distribution for ~ Figure 2: Plots of the hazard rate function of the KWWE
some parameter values. distribution for some parameter values.

3. Statistical properties

In this section some properties of the KWWE distribution are obtained.

3.1. Useful expansions

In this subsection representations of the pdf and cdf for Kumaraswamy Weibull exponential distribu-
tion are derived.
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Using the generalized binomial theorem, for § > 0 and |z| < 1,

(1—z)P 1 :'Zo(_l)i ( Bi_l ) % (3.1)

Then, by applying the binomial theorem (3.1) in (2.3), the distribution function of KwW — E distribution
where b > 0 becomes

f(x )—abcxﬁ?\ ]B 1o—{x(?

- )\X}Z ( b—1 ) [1_e—oc(lgi;ix)ﬁ]a(iﬂ)fl_

Then, using binomial expansion again in the last equation, leads to:

—AX o0 . o—AX
f(x) = abaﬁ)\[%]ﬁﬂexx Z (1) ( b‘—l ) < a(1+.1)—1 > o XD IZET50F (3.2)

1 )

e?\x

i,j=0

Using the power series for the exponential function, we obtain

e SIS i (1) (] +1)k[1*€_m]kﬁ.

(3.3)
—AX
P k! e

Inserting this expansion (3.3) in (3.2) we have

1+)+k k k _ . _ _ o—AX
X) = abapA Z G+1) ( b : 1 ) < a(1+'1) 1 > y e}"‘[l e ™ (1

1
i,j,k=0

we can write the last equation as

— abap Z 1+]+k k(]—i—l)k —Ax ( b'—l > ( a(i—i—.l)—l ) [( (1_6—)\X)[3(k+1)_1

1—(1— e—?\x))ﬁ(k+1)+1]’

o k! 1 j
then,
= (—1)¥tRek (1) e ™ b1 a(i+1)—1
f(x) = abafA ) . .
ij,k,m=0 K t )
o ( B(k+n11) +m ) [ — e Mxm+Br1)—1,

Now, using the binomial theorem, we can write the previous equation then, density function can be
expressed as an infinite linear combination of exponential distribution, i.e.,

o0

fx)= D Mijemee O (34)
Lj,km, 4 =0

where

ab[S)\ockH(—l)”j*kHl(j—|—1)k ( b—1 ) < a(1+1)—1 >
i

Nijkme = K j

" ( Bk+1)+m ) ( m+p(k+1)—1 )

m (81

Now, for an expansion for the cumulative function we will have the following.
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Using binomial expansion for [F(x)]", where h is an integer, leads to:

Since,
17677\)( ) B

Fx)I"=01-[1-01- e (T

)41,
Then,
w h 1—e M\

g=0
Using binomial expansion another time, leads to

=3 S (§) (oo

g=0p=0

Using binomial expansion again, leads to

h [e9)
_ Z Z (_1)g+p+q < h ) < bg ) ( ap )e“q(leexzx)ﬁ
g p q ’

g=0p,q=0

Using the power series for the exponential function in the previous equation, we obtain

9+p+q+t((xq) h b 1—e ™
ZZ <9><pg>(‘§p>[e—m P

g=0p,q,t=0

we can write the last equation as

Z Z 9+p+Q+t(o(q) < h > ( bg ) ( ap ) [ 1—6_7\X)\ ]Bt/
g=0p,q,t=0 g 1% q 1-— (1 —€ )
by using the binomial expansion in the previous equation, we obtain

h 0
B (—1)9FPHatttb(gqq)t / h bg ap Bt+xk—1 Bt+« CAlyx
L 2 t! <9)<P><q>< K )( & >6M’

g=0p,q,t,k,€=0

Then,

h 0
= Z Z ﬂg,p,q,t,K,eze_MzX, (35)

g=0p,q,t,k, =0

_(—1)9fPrattrh(gq)t ( h > ( bg ) ( ap ) ( Bt+k—1 ) ( Bt -+« )
Nopatet = i g )\ p q K L )

3.2. Quantile and median

Quantile functions are used in theoretical aspects of probability theory, statistical applications, and
simulations. Simulation methods utilize quantile function to produce simulated random variables for
classical and new continuous distributions. The quantile function, say Q(u) = F~!(u) of X, is given by

_1_[1_(1_ eMQu) _ 1)ﬁ)a]b.

After some simplifications, it reduces to the following form

where,

>

A
Q(u) = In 1+(1n<1(1(1u)%)“> ) . (3.6)

Where, u is considered as a uniform random variable on the unit interval (0,1).
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In particular, the median can be derived from (3.6) be setting u = 0.5. That is, the median is given by
1y %
L =L\ B
1\a\ ¥~
Median =In{ 1+ | In <1 — (1 — (0.5)F> )

3.3. Moments

This subsection concerns with the rth moment and moment generating function for KWWE distribu-
tion. Moments are important in any statistical analysis, especially in applications. If X has the pdf (2.3),
then its rth moment can be obtained through the following relation

u/r =EX") = J x"'f(x; ¥)dx. (3.7)
Substituting (3.4) into (3.7) yields:
0 00
1§,k m, 8 =0 0

!
Then, ., becomes
o0

/ Z Nijkmel (r+1)

. 1
ij,k,m, =0 A6 +1)]"

Generally, the moment generating function of KWWE distribution is obtained through the following

relation
o0

tr = t'Nyikme N (r+1)
M — *E T — _ 7)1, 0T .
X(t) Z r! (X ) Z r! D\(el +1)]T+1

r=0 r,i,j,k,m, ;=0

3.4. Incomplete and conditional moments

The main application of the first incomplete moment refers to the Bonferroni and Lorenz curves. These
curves are very useful in economics, reliability, demography, insurance, and medicine. The answers to
many important questions in economics require more than just knowing the mean of the distribution, but
its shape as well. This is obvious not only in the study of econometrics but in other areas as well. The
incomplete moment, say @s(t) , is given by

Using (2.3), then,(t) can be written as follows

o0

t
es(t) = Z Nijkm, b J Xse—?\(eﬁ—l)xdx.
Lj,k,m, 0 =0 0

Then, using the lower incomplete gamma function, we obtain

(0.¢]

Z v(s+ 1AL +1)t)

Nij%m, e .
Lk, =0 (AL +1))

Ps(t) =

where v (s, t) = [ 8 x$~le *dx is the lower incomplete gamma function.
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Further, the conditional moment, say 75(t), is given by
Ts(t) :J x5 (x; ¥)dx.
t
Hence, by using pdf (2.3), we can write

o0

o0
. s —A(1+1)x
()= ) T]i,j,k,m,(’,lj xSe MbHLx gy
i,j,k,m, & =0 t

Then using the upper incomplete gamma function, we obtain

s M (s+1,A( +1)t)
Ts(t) = Nij,k,m,e
i,j,k;ﬂl—o RCES N

where T (s, t) = [{°x*~le *dx is the upper incomplete gamma function.

3.5. Residual life function

Several functions are defined related to the residual life. The failure rate function, mean residual life
function, and the left censored mean function, also called vitality function. It is well known that these
three functions uniquely determine F(x), see [13, 21, 28]. Moreover, the nth moment of the residual life,
say mp(t) = E[(X—1)"[X >1t],n =1,2,..., uniquely determine F(x) (see [22]). The nth moment of the
residual life of X is given by

1 [* n )
mn(t) = RO L (x —1)" f(x; ¥)dx.

)Tl

Applying the binomial expansion of (x —t

1 ad s al/ n Fn—d-+1A+1)1)
() = - (1) ( ) o, , 5.8
R, 2 a )Mkt G e 9

into the above formula , we get

where ' (s, t) is the upper incomplete gamma function.

Another interesting function is the mean residual life (MRL) function or the life expectation at age x
defined by m;(t) = E[(X —1)| X > t], which represents the expected additional life length for a unit which
is alive at age x. The MRL of the KwWE distribution can be obtained by setting n =1 in (3.8).

Furthermore, the nth moment of the reversed residual life, sayM(t) = E[(X—t)"|X < t], for t >
0,n=1,2,..., uniquely determines F(x) (see [22]). Hence, the nth moment of the reversed residual life of
X'is given by

1 [t n
Mn(t) = F(t)JO (t—x)" f(x)dx.

Applying the binomial expansion of (x —t)"into the above formula, we get

b vin—d+1, A +1)t)
(—1)re ()¢ < I )ni,',k, 0 — ,
Od% d )T Ny 4 1))

1 [oe)
Mp(t) = 0] ;e

iLjkm, b=

where v (s, t) is the lower incomplete gamma function.
The mean inactivity time or mean waiting time, also called the mean reversed residual life function,

is defined by M;(t) = E[(X—1)| X < t], and it represents the waiting time elapsed since the failure of an
item on condition that this failure had occurred in (0, x).

3.6. Inequality measures

Lorenz and Bonferroni curves are the most widely used inequality measures in income and wealth
distribution (see [20]). Zenga curve was presented in [26]. In this section, we will derive Lorenz, Bon-
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ferroni, and Zenga curves for the KWWE distribution. The Lorenz, Bonferroni, and Zenga curves are
obtained, respectively, as

0o v2A (0 +1)t)
fg xf(x)dx 24,k m, 6 =0 T km b W
LF (X) = E(X) = Z'OO. Tli,j,k/m,el 7
Likm =0 [x(e,+1)P
o0 . vRAGL+E)
Br(x) f; xf(x)dx  Lg(x) Zi,j,k,m,€1:0 Mij,k,m, 6 A(G+1))
F - = = MNijkme _ AX_1)B 7
E(X)F(x) F(x) Ziof},k,m,elzom [1—[1—(1—e x(e™-1F)ap]
and
p(x)
AF (X) = 1 - 7
nt(x)
where
o0 v(2A(0+1)t)
(x) f(; xf(x)dx Zi,j,k,elzoni,j,k,m,elw
X)) = =
o0 T]i,j,k,m,/l 4
E(X) 2 ik m, =0 m
and
oo v(2A(03+1)t)
Hx) = f:o xf(x)dx Zi,j,k,m,h:O ”i,i,k,m,elw
- _ - MNi,j,k,m,L _ Ax_1\B '
1—F(x) Y Km0 7[>\(;1+1)32 [1—(1—ex(e™=1)F)a]b

3.7. Rényi and g-entropies
The entropy of a random variable X is a measure of variation of uncertainty and has been used in
many fields such as physics, engineering, and economics. The Renyi entropy in [24] is defined by

15(X):11510gj fix; W)%dx, &>0 and & #1.

— 00

By applying the binomial theory (3.1) in the pdf (2.3), then the pdf f (x; W)%can be expressed as follows

o0
5 AL +8]x
f(x)® = z Wi km,e € lltalx)
i,j,k,m, ;=0

where

(abBA)® ok +3(—1) i+ (4 §)k / §(b—1) a(i+d)—5
Wi,j,k,m,€1 = k! i ]

B(k+d)+d+m—1 m+p(k+6)—05
X m 0 .

Therefore, the Rényi entropy of KWWE distribution is given by

1 = % Al+8)]
Ié(X) = 15 10g Z Wi,j,k,m,fl JO e Mht ) *dx ,
i,j,%,m, & =0

then,

o0

1 Wisme

I X — 1 4], K, MM, L

s =gglog| D CER
i,j,k,m, ;=0

The g-entropy is defined by

log <1—J f(x;\l’)qu> ,q>0and q#1.
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Therefore, the g-entropy of KWWE distribution is given by

[e¢]

1 Wijx,m,e
Hq(X) = log¢1—| Y =l
1—q ikmt—o M+ gl

3.8. The probability weighted moments
The probability weighted moments can be obtained from the following relation

Ty s = EX"F(x)®] = JOO x"f(x)(F(x))® dx. (3.9)

Substituting (3.4) and (3.5) into (3.9), and replacing h with s, leads to:

%] s 00 00
T —A+Lr+1]x
Te= ) > X ng,p,q,t,x,ezm,j,k,m,elJ xleMarerx gy,
1,j,k,m, =0 g=0p,q,t,k,6,=0 0

Hence, the PWM of Kumaraswamy Weibull exponential distribution takes the following form

- 0 s 00 Ng,p,q.t,x0Mijkmi r(r+1)
Tr,s - Zi,j,k,m,@lzo Zg:O Z‘p,q,t,K,ezzo [7\[€1+22+1NT+1

3.9. Order statistics

Let Xi.n < Xoon < -+ < Xp:n be the order statistics of a random sample of size n following the
Kumaraswamy Weibull exponential distribution, with parameters a,b, «, 3, and A, then the pdf of the
kthorder statistic (see, [8]), can be written as follows

om0 = 05 gy ( nok ) Flx)v ! (3.10)
kin Bk,n—k-+1) v ! ’

v=0

where B(., .)is the beta function. Substituting (3.4) and (3.5) in (3.10), and replacing h with v +k —1, leads
to

o
fi. = —_—— * —}\[21+EZ+1}X,

n—k

* __ ([ v
where n* = (—1) < N

) MNij,kmeNgp,q.t,kL-

4. Maximum likelihood estimation

The maximum likelihood estimates of the unknown parameters for the Kumaraswamy Weibull expo-
nential distribution are determined based on complete samples. Let Xy, ..., X, be observed values from

the KWWE distribution with set of parameters ¥ = (a, b, &, f3, A)T. The total log-likelihood function for
the vector of parameters ¥ can be expressed as

n n
InL(Y) :nlna+nlnb+nlnoc+nln[3—i—nln?\—l—(ﬁ—1)Zln (e}‘xi—1> +7\in
i=1

i1
_ S A 1)]P B = _—o(eMio1)B B A e
oc;[(e x 1)} +(a IJ;In[l e ole }—k(b 1);1n[1 (1 o—ale ) }

The elements of the score function U(¥) = (Ug, Uy, Uy, Upg, U,) are given by

n ; n (1—e°<(e“il)ﬁ>a1n <1—e°‘(e”il)ﬁ>
Ug="4 Zln [1 _ oa(eio) ] —(b—1) Z - , (41)
R i—1 1_— <1 _ e“(emiUB)
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n A (}\x- 1)(3 a
Ub:b—i-;ln[l—(l—e ole > ] (4.2)
n n oAk 1)\P a—a(eMio1)?
n ; B (e 1)"e
Usa==—) (M =1)" +(a—1)
x x ;( ) ; 1_e—oc(e7‘xi—1)[3
n (eAXi 1)6 e—(x(ehxi_])ﬁ (1 —oc(e)‘xi—l)f5>a71 (43)
—a(b—l)Z - )
i=1 1— (1 _ e—oc(e""i—l)ﬁ)
n o« n
Up=p + Y (M —1)f o} (Mt —1)P In (M 1)
i=1 i=1
n xi B (e“‘i—l)ﬁ Axi
(eMi—1)" e ™ In (e 1)
~|—cx(a—1); P @

a—1

(e?\xi . 1)[3 ln(e?\xi o 1)e—oc(e7"‘i—1)f5 (1 - e—oc(e)"‘i—l)f5>

—aoc(b—l)Z

i=1 1-— (1—e*0¢(e“ifl)ﬁ)a

and

n = xieMi = Ax: B—1 ax:
UA:A”B—”Z@L_(“B;M@ o) e

i=1

AXi (67\7('1 _ 1) B—1 efoc(e)"‘ifl)‘5

ke Xi€
+apla—1
O(B(a ); 1_e_a(e)\xi_1)f3 (45)

a—1

n xijeli (67"‘i — 1) p-1 e—x(eMi-1)P (1 — eo‘(emil)6>

+in—aoc[3(b—l)z

i=1 i=1 1-— (1 — e—“(em—l)f“)

a

Then the maximum likelihood estimators of the parameters a,b, «, 3, and A are obtained by setting
equations (4.1)-(4.5) to be zero and solving them. Clearly, it is difficult to solve them, therefore applying
the Newton-Raphson’s iteration method and using the computer package such as Maple or R or other
software.

5. Simulation study

It is very difficult to compare the theoretical performances of the different estimates (MLE) for the
KwWE distribution. Therefore, simulation is needed to compare the performances of the different meth-
ods of estimation mainly with respect to their biases, mean square errors, and Variances for different
sample sizes. A numerical study is performed using Mathematica 7 software. Different sample sizes are
considered through the experiments at size n = 20, 30, 50, and 100.

The experiment will be repeated 1000 times. In each experiment, the estimates of the parameters will
be obtained by maximum likelihood methods of estimation. The means, MSEs, and biases for the different
estimators will be reported from these experiments.
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Table 2: The MLEs, baises, and MSEs of KwWE distribution.

Par | Init | MLE | Bais MSE Init | MLE Bais MSE

2 2.0496 | 0.0496 | 0.1130 | 1.5 1.5531 | 0.0531 | 0.0646

05 |05335|0.0335 | 0.0186 | 0.5 |0.5239 | 0.0239 | 0.0169

20

05 | 05628 | 0.0628 | 0.0946 | 0.5 | 0.5334 | 0.0334 | 0.0263

05 03789 | -0.1211 | 0.0959 | 0.5 | 0.3780 | -0.1220 | 0.0532

05 |08185| 0318 |87494 |05 |0.3440 | -0.1560 | 203.1860

2 2.0278 | 0.0278 | 0.0746 | 1.5 1.5285 | 0.0285 | 0.0435

0.5 {05178 | 0.0178 | 0.0099 | 0.5 | 05144 | 0.0144 | 0.0095

30

05 05299 0.0299 |0.0192 |05 |05198 | 0.0198 | 0.0135

0.5 |0.3382]|-0.1618 | 0.0418 | 0.5 | 0.3516 | -0.1484 | 0.0368

05 | 07642 | 0.2642 | 3.4597 | 0.5 | 0.6287 | 0.1287 | 0.2094

2 2.0251 | 0.0251 | 0.0432 | 1.5 1.5090 | 0.0090 | 0.0242

0.5 |0.5089 | 0.0089 |0.00561 |05 | 05134 | 0.0134 | 0.0056

50

0.5 | 05138 | 0.0138 | 0.0088 | 0.5 | 05171 | 0.0171 | 0.0078

0.5 |0.3221|-0.1780 | 0.0390 | 0.5 | 0.3443 | -0.1557 | 0.0323

0.5 |05917|0.0917 | 01203 |05 | 05783 | 0.0783 | 0.0622

2 2.0054 | 0.0054 | 0.0214 | 1.5 1.5091 | 0.0091 | 0.0123

0.5 |05075|0.0075 | 0.0027 |05 | 05064 | 0.0064 | 0.0027

100

0.5 | 05111 0.0111 | 0.0044 | 0.5 | 0.5078 | 0.0078 | 0.0036

05 |0.3148 | -0.1852 | 0.0377 | 0.5 | 0.3322 | -0.1678 | 0.0317

0.5 | 05458 | 0.0458 | 0.0297 | 0.5 | 0.5362 | 0.0362 | 0.0214

2 2.1856 | 0.1856 | 0.4710 |2 22533 | 0.2533 | 0.9063

1.5 1.5742 | 0.0742 | 0.1409 | 2 2.0872 | 0.0872 | 0.2610

20

0.5 |05613|0.0613 | 0.0672 |05 | 05736 | 0.0736 | 0.1787

0.5 0.4598 | -0.0402 | 0.0422 | 0.5 0.4827 | -0.0173 | 0.0415

0.5 |0.6340 | 0.1340 | 0.2020 | 0.5 | 0.5949 | 0.0949 | 0.1111

2 2.1162 | 0.1162 | 0.3080 | 2 2.1420 | 0.1419 | 0.3793

1.5 1.5452 | 0.0452 | 0.0815 | 2 2.0750 | 0.0750 | 0.1608

30

0.5 | 05350 | 0.0350 | 0.0259 | 0.5 | 0.5448 | 0.0448 | 0.0356

05 | 04295 -0.0705 | 0.0232 | 0.5 | 0.4693 | -0.0307 | 0.0230

0.5 | 05689 | 0.0688 | 0.0570 |05 |0.5678 | 0.0678 | 0.0516

2 2.0708 | 0.0708 | 0.1373 | 2 2.0924 | 0.0924 | 0.1980

1.5 1.5312 | 0.0312 | 0.0477 | 2 2.0320 | 0.0320 | 0.0860

50

0.5 |05209|0.0209 |0.0127 |05 |0.5199 |0.0199 | 0.0152

0.5 |04197|-0.0803 | 0.0170 | 0.5 | 0.4474 | -0.0526 | 0.0146

0.5 | 05448 | 0.0448 | 0.0283 | 0.5 |0.5323 | 0.0323 | 0.0237

2 2.0353 | 0.0353 | 0.0626 |2 2.0305 | 0.0305 | 0.0809

1.5 | 1.5135| 0.0135 | 0.0240 |2 2.0236 | 0.0236 | 0.0381

100

0.5 | 05094 | 0.0094 | 0.0059 |05 |0.5118 | 0.0118 | 0.0055

0.5 | 04056 | -0.0944 | 0.0140 | 0.5 | 0.4378 | -0.0622 | 0.0088

>R QT | >R QT >R T | >R QT >R T[> T[> [ > |T| @

0.5 |05203|0.0203 |0.0127 |05 |0.5188 | 0.0188 | 0.0091

6. Data analysis

In this section, one real data set are analyzed to illustrate the merit of KWWE distribution compared
to some sub-models; namely, Weibull exponential (WE) [23], beta Weibull (BW) [7], and Weibull Weibull
(WW) [1] distributions.
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We obtain the MLE and their corresponding standard errors (in parentheses) of the model parameters.
To compare the distribution models, we consider criteria like; minus of log-likelihood function (—21InL),
Kolmogorov-Smirnov (K-S) statistic, Akaike information criterion (AIC), the correct Akaike information
criterion (CAIC), Bayesian information criterion (BIC), Hannan Quinn information criterion (HQIC) and
p-value. However, the better distribution corresponds to the smaller values of —2InL, AIC, BIC, CAIC,
HQIC, K-S criteria and biggest p-value. Furthermore, we plot the histogram for each data set and the
estimated pdf of the KWWE, WE, BW, and WW models. Moreover, the plots of empirical cdf of the data
sets and estimated pdf of KwWE, WE, BW, and WW models are displayed in Figures 3 and 4, respectively.

The data set have been obtained from [18] and represents thirty successive values of March precipita-
tion (in inches) in Minneapolis/St Paul. The data are as follows:

0.77,1.74,0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81,
2.81,1.87,1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.

Table 3 gives MLEs of parameters of the KwWE and their standard error (S.E). The values of the
log-likelihood functions, AIC, CAIC, BIC, HQIC, K-S and p-value are presented in Table 4.

Table 3: The MLEs and S.E of the model parameters for the data set.

Model MLEs and S. E
KwWE(a,b,o, 3,A) | 8.784 (0.85748) | 5.397 (0.772) 5.964 (0.194) 0.469 (0.015) | 0.037 (0.287)
WE(o, B, A) - - 35.218 (0.26269) | 1.69 (0.234) | 0.06 (0.044)
BW(a, b,o,B) 25.851 (1.533) | 15.276 (0.787) | 0.884 (0.201) | 0.335 (0.027) -
WW(o, BAy) | 39.853 (0.414) | 3.154 (0.518) | 0.196 (0.102) | 0.5 (0.072) -
Table 4: The values of -2LnL , AIC, BIC, CAIC, HQIC, K-S, and p-value for the data set.
Distribution | -2LnL AIC CAIC BIC HQIC K-S | p-value
KwWE 107911 | 117.911 | 120.411 | 115.296 | 120.152 | 0.06103 | 0.99988
WE 112.107 | 118.107 | 119.031 | 116.539 | 119.452 | 0.0753 0.996
BW 149.897 | 157.897 | 157.326 | 159.497 | 161.522 | 0.07958 | 0.9913
WW 138.194 | 146.194 | 145.623 | 147.794 | 149.819 | 0.07549 | 0.99554

We find that the KWWE distribution with five parameters provides a better fit than their special sub-
models. It has the smallest K-S, AIC, CAIC, BIC, and HQIC values among those considered here. Plots of
the fitted densities and the histogram are given in Figures 3 and 4, respectively.

ECDF of distances EPDF
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Figure 3: Estimated cumulative densities for the data set. Figure 4: Estimated densities of models for the data set.
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7. Conclusion

We have introduced a new five-parameter Kumaraswamy Weibull exponential distribution and study
its different properties in this paper. It is observed that the proposed KWWE distribution has several
desirable properties. The KWWE distribution covers some existing distributions and contains some new
distributions. The practical importance of the new distribution was demonstrated in two applications
where the KWWE distribution provided better fitting in comparison with several other former lifetime
distributions. Application showed that the KWWE model can be used rather than other known distribu-
tions.
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