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Abstract
This paper introduces the new concept of pseudo-dual-quaternions and some of their basic properties based on matrices.

We extend the concept of differentiability to pseudo-dual-quaternionic functions. Also, we propose a corresponding Cauchy-
Riemann formulas induced the properties of a holomorphic function of pseudo-dual-quaternionic variables.
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1. Introduction

Dual numbers are based on the non-zero and non-real term ε satisfying ε2 = 0, instead of i which con-
stitutes complex numbers and satisfies i2 = −1. Dual numbers are in the two-dimensional form of x+ εy
with base 1 and ε associative-commutative algebras over the field of real numbers. In 1873, dual numbers
introduced by William Clifford [2] are a type of generalized complex numbers. Unlike the field of complex
numbers, The algebra of dual numbers comprises zero divisors and is considered over an arbitrary field
or commutative ring. By using the structure of dual numbers and the properties of ε, it has been studied
in a variety of fields including non-Euclidean geometry. Study [13] defined dual angles having the form
of dual numbers to represent the relation between two skew lines in the Euclidean space. Messelmi [10]
generalized holomorphicity to dual-complex functions simplifying manipulation of dual-complex num-
bers, based on matrices. Since then, dual numbers have been applied to study the kinematics, dynamics
and open-chain robot manipulators. Dual numbers are useful for geometrical treatments with analytical
methods in kinematics and dynamics of spatial mechanisms. Thus, the application of dual numbers in
the study of problems in science and engineering is being studied (see [1, 3, 12, 15]).

The theory of functions over the complex field has induced the theory for the non-trivial real asso-
ciative and invertible algebra. In 1843, Hamilton [6] discovered a 4-dimensional division algebra called
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the quaternions with 3 imaginary values which are multiplication provided proper inverses. The quater-
nionic derivatives of the functions of a quaternion variable can be represented by quaternionic power
series similar to power series in four real variables. In 1935, Fueter [4] proposed a definition of regu-
lar for quaternionic functions by using the analogue Cauchy-Riemann equations. Also, Fueter [5] led to
analogues of Cauchys theorem and Cauchys integral formula. Sudbery [14] gave simple proofs of the
main theorems of quaternionic analysis and made clear the relationship between quaternionic analysis
and complex analysis by means of the exterior differential calculus. Since then, quaternionic analysis has
been investigated by various approaches and calculation processes (see [7, 9, 11]).

In this paper, we combine the unit ε of dual numbers with the structure of quaternions. From this, we
obtain the modified quaternions which is called a pseudo-dual-quaternion (PDQ). Quaternions possess
the noncommutative rule of the product and preserve each part of their units after computing operators
defined on quaternions. However, PDQs preserve the noncommutative rule of the product and can
express the projection of an arbitrary PDQ onto a plane due to the property of the product for PDQs.
We have investigated the properties of the unit of dual numbers (see [8]) and we deal with quaternions
by means of the unit of dual numbers. This paper introduces PDQs and some of their basic properties.
Also, we give an expression of PDQs based on matrices. We extend the concept of holomorphicity and a
corresponding Cauchy-Riemann formulas for pseudo-dual-quaternionic functions.

2. Preliminaries

The ordinary quaternion is a four-parameter of complex number systems which has two components.
Let DP denote the set of PDQs, which has elements of the form

p = x0 + ix1 + jx2 + kx3,

where xr (r = 0, 1, 2, 3) are real, i is the imaginary unit, and j is the unit element such that

i2 = −1, j2 = 0

and let k := ij, then
ij = −ji = k, jk = kj = 0, ki = −ik = j, (2.1)

which is isomorphic to R4. By the properties (2.1) of i and j, we have the following rules for an addition
and a product that are

p+ q = (x0 + y0) + i(x1 + y1) + j(x2 + y2) + k(x3 + y3)

and

pq = (x0y0 − x1y1) + i(x1y0 + x0y1) + j(x2y0 + x3y1 + x0y2 − x1y3) + k(x3y0 − x2y1 + x1y2 + x0y3),

respectively. From the definition of the product for PDQs, we give a conjugation of that numbers. The
conjugation of each complex number is important to play a role for algebraic and geometric properties of
C. For PDQs, we can also extend this notion. Let p = x0 + ix1 + jx2 + kx3 be a PDQ. Then we define the
conjugate of p by the formula

p∗ = x0 − ix1 − jx2 − kx3,

where p has the following relation
pp∗ = p∗p ∈ R.

Thus, we have the modulus, denoted by N(p), and the inverse element, denoted by 1
p of p ∈ Dp:

N(p) := pp∗ = x2
0 + x

2
1
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and
1
p
=

p∗

N(p)
=

x0

x2
0 + x

2
1
− i

x1

x2
0 + x

2
1
− j

x2

x2
0 + x

2
1
− k

x3

x2
0 + x

2
1

, (x0, x1 6= 0),

respectively. Furthermore,
√
N(p) is expressed by Figure 1.

Figure 1:
√
N(p) is the green vector which is the orthographic projection of the blue line onto the plane consisting of the red line

and the line containing i.

PDQs form a non-commutative ring give the structure of the four dimensional real Algebra. The
algebra Dp is not a division algebra since if it has the elements satisfying x2

0 +x
2
1 = 0, that is, if x0 = x1 = 0,

the element is not invertible. All elements with the above property are zero divisors. Then, we introduce
the set D0 of zero divisors of Dp which can be called the null part of Dp as

D0 = {p ∈ Dp | p = x0 + ix1 + jx2 + kx3, x2
0 + x

2
1 = 0} = {p ∈ Dp | p = jx2 + kx3, x2, x3 ∈ R}.

There can be also the representation such as

i =

(
i 0
0 −i

)
, j =

(
0 1
0 0

)
, k =

(
0 i

0 0

)
.

So, PDQs can be also written by using matrices with the above units:

p =

(
z1 z2
0 z1

)
,

where z1 = x0 + ix1, z2 = x2 + ix3 and z1 = x0 − ix1.
We let the set of PDQs expressed by matrices, which is denoted by Mδ,

Mδ =
{
A ∈M2(C) | A =

(
z1 z2
0 z1

)}
.

Thus, the set Mδ is a subring of M2(C) which forms a four dimensional real associative and non-
commutative Algebra. Let us now define the map

Tδ : Dp → Mδ, Tδ(p) =

(
z1 z2
0 z1

)
.

From the definition of the map Tδ, we can give a correspondence between the two algebras Dp and Mδ

via the map Tδ. Furthermore, the map Tδ is an isomorphism of algebras.
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Proposition 2.1. We also note that p ∈ D0 if and only if det(Tδ(p)) = 0.

Proof. Suppose that p ∈ D0. Then p = jx2 +kx3, x2, x3 ∈ R, that is, for p = x0 + ix1 + jx2 +kx3, x0 = x1 = 0.
Hence, we have

det(Tδ(p)) =
∣∣∣∣ z1 z2

0 z1

∣∣∣∣ = x2
0 + x

2
1 = 0.

Conversely, by the definition of D0 and Tδ, if det(Tδ(p)) = 0, then x0 = x1 = 0. Thus, p has the form
p = jx2 + kx3 ∈ D0.

Now, we give the map, denoted by |.|δ:

|.|δ : Dp → R+, |p|δ = |z1z1|
1/2 =

√
x2

0 + x
2
1,

where R+ is the set of positive real numbers.

Proposition 2.2. The map |.|δ has the following properties:

(i) |p|δ = |det(Tδ(p))|1/2 for p ∈ Dp;
(ii) |p+ q|δ 6 |p|δ + |q|δ for p,q ∈ Dp;

(iii) |pq|δ = |p|δ|q|δ for p,q ∈ Dp;
(iv) |αp|δ = |α||p|δ for p ∈ Dp;
(v) |p|δ = 0 if and only if p ∈ D0,

where |.| is the usual norm in complex analysis.

The proofs of the above properties are an immediate consequence of the definition of |.|δ and their
calculations. Thus, we can induce a structure of a corresponding topology over the algebra Dp. So, we
construct a pseudo-dual disk and pseudo-dual sphere of center p0 = xo0 + ixo1 + jxo2 + kxo3 and radius
r > 0, in Dp, by

Dδ(p0, r) := {p = x0 + ix1 + jx2 + kx3 ∈ Dp | |p− p0|δ < r}

and

Sδ(p0, r) := {p = x0 + ix1 + jx2 + kx3 ∈ Dp | |p− p0|δ = r},

respectively.

3. Hyperholomorphicity of pseudo-dual-quaternionic functions

We consider some properties of functions of pseudo-dual-quaternionic variable. We investigate the
continuity of pseudo-dual-quaternionic functions and the holomorphicity in those functions.

Definition 3.1. Let Ω be an open subset of Dp. Then for p=x0 + ix1 + jx2 + kx3, a function f : Ω → Dp,

f(p) = u0 + iu1 + ju2 + ku3,

where ut=ut(x0, x1, x2, x3) (t=0, 1, 2, 3) are real-valued functions, is said to be a pseudo-dual-quaternionic
function (PDQ-function) if it is a mapping from a subset Ω of Dp to Dp.

Definition 3.2. Let Ω be an open subset of Dp. Then for p ∈ Ω, a PDQ-function f : Ω → Dp is said to
be continuous at p0 = xo0 + ixo1 + jxo2 + kxo3 if there exists the limit satisfying

lim
p→p0

f(p) = f(p0),

where the limit is calculated for each component,
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lim
p→p0

f(p) = lim
xt→xot

(t=0,1,2,3)

f(p) = f(p0).

That is, for given ε > 0 there exists δ > 0 such that each |xt − x
o
t | < δ (t = 0, 1, 2, 3) implies |ur − u

o
r | < ε

(r = 0, 1, 2, 3), where uor = ur(x
o
0 , xo1 , xo2 , xo3 ). Moreover, the function f is continuous in Ω if f is continuous

at every point of Ω.

Definition 3.3. Let Ω be an open subset of Dp. Then for p ∈ Ω, a PDQ-function f : Ω → Dp is said to
be left-differentiable at p0 = xo0 + ixo1 + jxo2 + kxo3 if the limit exists

df

dp
(p0)L := lim

p→p0

1
p− p0

{f(p) − f(p0)},

where the limit is also calculated for each component, and f is said to be left-differentiable at p0 if the
limit exists

df

dp
(p0)R := lim

p→p0
{f(p) − f(p0)}

1
p− p0

,

where the limit is also calculated for each component. Here df
dp(p0)L is called the left-derivative and

df
dp(p0)R is called the right-derivative of f at the point p0, respectively. Moreover, if f is left(right)-
differentiable for every point in a neighborhood of the point p0, then f is called left(right)-holomorphic at
p0. The function f is left(right)-holomorphic in Ω if f is left(right)-holomorphic at every point of Ω.

Since PDQs have the non-commutative rule of product, we need to consider the order of multipli-
cation. So we give two definitions of differentiable functions such as the left-differentiability and the
right-differentiability. The right differentiability is similar to the left differentiability with respect to the
property and the process of calculations, so we deal with the left-differentiability. In addition, the deriva-
tive that can be expressed later is the left-differentiable, and for convenience it is expressed as

df

dp
(p0)L :=

df

dp
(p0) and lim

p→p0

1
p− p0

{f(p) − f(p0)} := lim
p→p0

f(p) − f(p0)

p− p0
.

Now, we generalize a corresponding Cauchy-Riemann formulas to PDQ-functions.

Theorem 3.4. Let Ω be an open subset of Dp and f be a PDQ-function in Ω. If the function f is holomorphic at
p0, then f satisfies

df

dp
i =

∂f

∂x1
,
df

dp
j =

∂f

∂x2
,
df

dp
k =

∂f

∂x3
, and

df

dp
=
∂f

∂x0
.

Proof. Suppose f is holomorphic at p0. Then there exists the limit dfdp(p0). So, we can express as follows:

∂f

∂x0
= lim

xt→xo0
(t=0;1;2;3)

f(x0 + ix
o
1 + jxo2 + kxo3 ) − f(x

o
0 + ixo1 + jxo2 + kxo3 )

x0 − x
o
0

= lim
xt→xo0

(t=0;1;2;3)

f(x0 + ix1 + jx2 + kx3) − f(x
o
0 + ixo1 + jxo2 + kxo3 )

x0 − xo0

+ lim
xt→xo0

(t=0;1;2;3)

f(x0 + ix
o
1 + jxo2 + kxo3 ) − f(x0 + ix1 + jx

o
2 + kxo3 )

x0 − x
o
0

+ lim
xt→xo0

(t=0;1;2;3)

f(x0 + ix1 + jx
o
2 + kxo3 ) − f(x0 + ix1 + jx2 + kx

o
3 )

x0 − xo0

+ lim
xt→xo0

(t=0;1;2;3)

f(x0 + ix1 + jx2 + kx
o
3 ) − f(x0 + ix1 + jx2 + kx3)

x0 − x
o
0
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= lim
p→p0

f(p) − f(p0)

p0 − p0

p0 − p0

x0 − x
o
0
− lim

xt→xo0
(t=0;1;2;3)

f(x0 + ix1 + jx
o
2 + kxo3 ) − f(x0 + ix

o
1 + jxo2 + kxo3 )

x1 − x
o
1

x1 − x
o
1

x0 − x
o
0

− lim
xt→xo0

(t=0;1;2;3)

f(x0 + ix1 + jx2 + kx
o
3 ) − f(x0 + ix1 + jx

o
2 + kxo3 )

x2 − x
o
2

x2 − x
o
2

x0 − x
o
0

− lim
xt→xo0

(t=0;1;2;3)

f(x0 + ix1 + jx2 + kx3) − f(x0 + ix1 + jx2 + kx
o
3 )

x3 − xo3

x3 − x
o
3

x0 − xo0
.

Since we have

lim
p→p0

f(p) − f(p0)

p0 − p0

p0 − p0

x0 − x
o
0
= lim
p→p0

f(p) − f(p0)

p0 − p0

(x0 − x
o
0 ) + (x1 − x

o
1 )i+ (x2 − x

o
2 )j+ (x3 − x

o
3 )k

x0 − x
o
0

,

we obtain

∂f

∂x0
=
df

dp
+
( df
dp
i−

∂f

∂x1

) x1 − x
o
1

x0 − x
o
0
+
( df
dp
j−

∂f

∂x2

) x2 − x
o
2

x0 − x
o
0
+
( df
dp
k−

∂f

∂x3

) x3 − x
o
3

x0 − x
o
0

.

Since f is holomorphic at p0, in order to determine the existence of the limit dfdp , the limits( df
dp
i−

∂f

∂x1

)
,
( df
dp
j−

∂f

∂x2

)
, and

( df
dp
k−

∂f

∂x3

)
should be independent to ratios

x1 − x
o
1

x0 − x
o
0

,
x2 − x

o
2

x0 − x
o
0

, and
x3 − x

o
3

x0 − x
o
0

,

respectively, and then
∂f

∂x0
=
df

dp
.

Thus, the equations

df

dp
i =

∂f

∂x1
,
df

dp
j =

∂f

∂x2
,
df

dp
k =

∂f

∂x3
, and

∂f

∂x0
=
df

dp

are obtained.

Theorem 3.5. Let Ω be an open subset of Dp and f be a PDQ-function in Ω. A function f is holomorphic on Ω if
and only if the function f satisfies

D∗f = 0,

where the differential operator D∗ is

D∗ = ~v
∂

∂x0
−

∂

∂x1
−

∂

∂x2
−

∂

∂x3

with ~v = i+ j+ k satisfying ~v2 = −1.

Proof. Since the function f is holomorphic on Ω, the following equations is derived from Theorem 3.4.

∂f

∂x0
i =

∂f

∂x1
,

∂f

∂x0
j =

∂f

∂x2
,

∂f

∂x0
k =

∂f

∂x3
.

If the above equations are detailed, then we have

∂u0

∂x0
=
∂ur

∂xr
(r = 1, 2, 3),
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∂ur

∂xt
= 0 (r = 0, 1; t = 2, 3),

∂u0

∂x1
+
∂u1

∂x0
= 0,

∂u2

∂x0
+
∂u3

∂x1
= 0,

∂u1

∂x0
+
∂u2

∂x3
= 0,

∂u3

∂x2
−
∂u1

∂x0
= 0,

∂u3

∂x0
−
∂u2

∂x1
= 0.

That is, we have 

∂u0

∂x0
=
∂ur

∂xr
, (r = 1, 2, 3),

∂ur

∂xt
= 0, (r = 0, 1; t = 2, 3),

∂u0

∂x1
=
∂u2

∂x3
= −

∂u3

∂x2
= −

∂u1

∂x0
,

∂u2

∂x0
= −

∂u3

∂x1
,

∂u3

∂x0
=
∂u2

∂x1
.

(3.1)

Comparing the result of the calculation of

D∗f = ~v
∂f

∂x0
−
∂f

∂x1
−
∂f

∂x2
−
∂f

∂x3
,

with the equations (3.1), we can obtain that the holomorphic function f satisfies D∗f = 0.

Corollary 3.6. Let Ω be an open subset of Dp. Suppose that f is holomorphic and continuously differentiable in a
domain Ω with differentiable boundary. Then the function f satisfies∫

∂Ω

D∗f = 0.

Proof. Cauchys theorem holds for any contour of integration. The integral theorems, for holomorphic
PDQ-functions with the values of the interior of a region in terms of its values on the boundary, holds for
a general rectifiable boundary. From this, applying the Stokes theorem, it follows that if f is holomorphic
and continuously differentiable in a domain Ω with differentiable boundary, then the function f satisfies
D∗f = 0 and thus, we obtain ∫

∂Ω

D∗f = 0.

4. Conclusion

In this paper, the algebraic and analytic properties of the modified quaternions, called a pseudo-dual-
quaternion, is obtained. Like the rule of the product for quaternions, and PDQs preserve the noncommu-
tative rule of the product. However, since PDQs can express the projection of an arbitrary PDQ onto a
plane due to the property of the product for PDQs, the function of PDQ variables can be extended to the
new concept of holomorphicity of PDQ functions. Thus, we have defined derivatives to be applied to the
PDQ system. A calculation method using a formula called a corresponding Cauchy-Riemann formulas
can be also substituted for the definition of derivative. And, the theorem related to this definition of
derivative can be proved using the corresponding Cauchy-Riemann formulas. Therefore, the mathemati-
cal approach based on the function over the PDQ system and its application to the rate of change such as
the velocity of objects and the slope of the tangent line can be induced.
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