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Abstract
Let dµ(x1, . . . , xn) = dµ1(x1) · · ·dµn(xn) be a product measure which is not necessarily doubling in Rn (only assuming

dµi is doubling on R for i = 2, . . . ,n), and Mndµ be the strong maximal function defined by

Mndµf(x) = sup
x∈R∈R

1
µ(R)

∫
R
|f(y)|dµ(y),

where R is the collection of rectangles with sides parallel to the coordinate axes in Rn, and ω,ν are two nonnegative functions.
We give a sufficient condition on ω,ν for which the operator Mndµ is bounded from L(1 + (log+)n−1)(νdµ) to L1,∞(ωdµ). By
interpolation, Mndµ is bounded from Lp(νdµ) to Lp(ωdµ), 1 < p <∞.

Keywords: Fefferman-Stein inequality, strong maximal function, nondoubling measure, A∞ weights, reverse Hölder’s
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1. Introduction

Since the classical theory of harmonic analysis may be described as centering around the Hardy-
Littlewood maximal operator and its relationship with certain singular integral operators, the maximal
function have attracted the attention of a lot of researchers, such as [1, 3–5, 8–10, 13, 16, 22, 30].

Let Bx be a collection of bounded sets containing x ∈ Rn, and ν be a positive measure. Given a locally
integrable function f, denote

Mf(x) = sup
R∈Bx

1
ν(R)

∫
R

|f(y)|dν(y).

If Bx is the collection of all the cubes containing x ∈ Rn and whose sides parallel to the coordinate axes,
dν(x) = dx, then we obtain the usual Hardy-Littlewood maximal function Mf(x). When Bx denotes the
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collection of all rectangles R containing x ∈ Rn whose sides parallel to the coordinate axes, M ,Mn
dν is

the strong maximal operator with respect to measure dν. If dν(x) = dx, denote Mn =Mn
dν.

For every non-negative, locally integrable weight ω, Fefferman and Stein in [11] proved the following
well known inequality ∫

Rn
(Mf)p(x)ω(x)dx .

∫
Rn

(|f(x)|pMω(x)dx, 1 < p <∞.

Inequalities of this type are important, for example, they can be used to derive the boundedness of vector-
valued maximal operators. More details can be seen in [11–13]. Similar inequalities were also obtained for
singular integral operators in [5]. In this situation, Mω(x) in the right hand was replaced by M(ωr)1/r.
The above inequality is also true for the strong maximal function Mn if ω ∈ An∞ [19, 21].

For the usual Hardy-Littlewood maximal function Mf(x), the form of the endpoint Fefferman-Stein
inequality is the following

ω({x ∈ Rn :Mf(x) > λ}) .
1
λ

∫
Rn

|f(x)|Mω(x)dx, λ > 0.

For strong maximal function Mnf(x), it is more complicated. When n = 2, Mitsis in [21] has obtained
that

ω({x :M2(f)(x) > λ}) .
∫
|f(x)|

λ

(
1 + log+ |f(x)|

λ

)
M2ω(x)dx, λ > 0,

if ω ∈ A2
p for some 1 < p <∞. Recently, Luque and Parissis in [19] improved this result to any dimension

n > 2 provided only ω ∈ An∞. We want to point out that there is no assumption on the weight to establish
Fefferman-Stein inequality for the Hardy-Littlewood maximal function.

The classical theory of one-parameter harmonic analysis for maximal functions and singular integrals
on (Rn;µ) has been developed under the assumption that the underlying measure µ satisfies the doubling
property, i.e., there exists a constant C > 0 such that µ(B(x; 2r)) 6 Cµ(B(x; r)) for every x ∈ Rn and
r > 0. However, some recent results [20, 23, 25, 31] show that it is possible to dispense with the doubling
condition for most of the classical theory. It is well known that the use of doubling measure has two
main advantages. One is that we can work with nested property. Another one is that the faces of the
cubes have measure zero. As in the paper [20, 25], we will only maintain the last property. If µ is a
nonnegative Radon measure without mass-points, one can choose an orthonormal system in Rn so that
any cube Q with sides parallel to the coordinate axes satisfies the property µ(∂Q) = 0 ([20, Theorem 2]).
The profit of this property is the continuity of the measure µ on cubes which can ensure that there is a
Calderón-Zygmund decomposition [20, 25]. For the development of multi-parameter harmonic analysis,
we refer the readers to the works in [2, 9, 14, 15, 17].

Therefore, there is a nature question: can the Fefferman-Stein inequality be established with a general
measure ν for the strong maximal operator Mn

dν?
Let µ = µ1 × µ2 × · · · × µn be a product measure, where µi, i = 1, . . . ,n are all nonnegative Radon

measures without mass-points and complete. The assumption that µi are complete is just a technical
requirement to allow exchange integral order. For a rectangle R ⊆ Rn, we mean a rectangle whose sides
parallel to the coordinate axes. Under this kind of product measure, in [7], we investigated the Lp(ωdµ)
boundedness of strong maximal functions Mn

ωdµ and Mn
dµ when ω ∈ An∞ defined by the following.

Definition 1.1. Let 1 < p <∞ and p ′ = p/(p− 1). We say that a weight ω satisfies the Anp(µ) condition if

[ω]Anp(µ) = sup
R∈R

(
1
µ(R)

∫
R

ωdµ)(
1
µ(R)

∫
R

ω1−p ′dµ)p−1 <∞,

where R is a collection of all rectangles R whose sides parallel to the coordinate axes.
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We say ω ∈ An1 (µ) if there exists a constant C > 0 such that

Mn
dµω(x) 6 Cω(x)

for almost every x ∈ Rn.
Define An∞(µ) by

An∞(µ) =
⋃

16p<∞A
n
p(µ).

Notice that Anr (µ) ⊆ Anq(µ) when r > q, and if ω ∈ An∞(µ), then ω ∈ Anp(µ) for some 1 < p < ∞. It
is easy to see that if ω ∈ Anp(µ) for some 1 < p < ∞, ωi(xi) = ω(x1, . . . , xi−1, ·, xi+1, . . . , xn) ∈ A1

p(µi)
uniformly with respect to x1, . . . , xi−1, xi+1, . . . , xn. It has been proved in [7] that the behavior of An∞(µ)
and the relationship between Anp(µ) weights and the strong maximal function Mn

dµ are very similar to
the classical case when we add some conditions to the product measure µ.

There are also some interesting results about two weights. We refer the reader to the work in [6, 24, 26–
28]. In [26, 27], Pérez provided a sufficient condition on weights ω,ν to ensure the boundedness of the
general maximal functions M℘ including the boundedness of Mn

dx from Lp(ω) to Lq(ν). More precisely,
if the couple of weights (ω,ν) satisfies the following condition: there are constants 0 < λ < 1, 0 < c =
c(λ) <∞ such that for all measurable sets E

ω({x :M℘(x) > λ}) 6 cω(E),

which is weaker than the An∞ condition, and

sup
B

1
|B|

∫
B

ω(y)dy(sup
B

1
|B|

∫
B

ν(y)(1−p ′)rdy)(p−1)/r <∞
for some 1 < r <∞, then M℘ is bounded from Lp(ω) to Lq(ν).

This idea can be used to our strong maximal function Mn
dµ. A couple of weights (ω,ν) is said to be

satisfied condition (A), if

(
1
µ(R)

∫
R

ωdµ) · sup
x∈R

ν−1(x) 6 c

for all rectangles R in Rn. Then the main result of the current paper is the following.

Theorem 1.2. Assume that µ(x) = µ1(x1) · µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R without mass-points and complete. Assume also that each µi for 2 6 i 6 n is
doubling on R. If (ω,ν) is a couple of weights such that ω ∈ An∞ = An∞(µ) and that the condition (A) holds, then

ω({x :Mn
dµ(f)(x) > λ}) .

∫
|f(x)|

λ

(
1 + (log+ |f(x)|

λ
)n−1

)
ν(x)dµ(x), (1.1)

where ω(E) denotes
∫
Eω(x)dµ(x) for every µ-measurable set E.

By interpolation, the above endpoint two weights Fefferman-Stein inequality implies the strong two
weights Fefferman-Stein inequality.

Theorem 1.3. Assume that µ(x) = µ1(x1) · µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R without mass-points and complete. Assume also that each µi for 2 6 i 6 n is
doubling on R. If (ω,ν) is a couple of weights such that ω ∈ An∞ and that the condition (A) holds, then

‖Mn
dµ(f)‖Lp(ωdµ) . ‖Mn

dµ(f)‖Lp(νdµ), 1 < p <∞.

It is easy to check that (ω,Mn
dµω) satisfies condition (A), and then we have.
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Corollary 1.4. Assume that µ(x) = µ1(x1) · µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R without mass-points and complete. Assume also that each µi for 2 6 i 6 n is
doubling on R, and ω ∈ An∞, then

ω({x :Mn
dµ(f)(x) > λ}) .

∫
|f(x)|

λ

(
1 + (log+ |f(x)|

λ
)n−1

)
Mn
dµω(x)dµ(x),

and
‖Mn

dµ(f)‖Lp(ωdµ) . ‖Mn
dµ(f)‖Lp(Mn

dµωdµ)
, 1 < p <∞.

Let dµ = dx, then the above corollary is the main theorem of [19]. By changing variables, in the above
results, the product measure µ can be assumed that µi, i = 1, . . . ,n are all nonnegative Radon measures
in R without mass-points and complete, permitted only one direction with non-doubling condition.

The organization of the paper is as follows. Section 2 gives some auxiliary lemmas, such as reverse
Hölder’s inequality of weights An∞(µ) , and the asymptotic estimate of the Lp(dµ) norm of Mn

ωdµ as
p→ 1+. In last section, we give the proof of Theorem 1.2.

Finally, we make some conventions. Throughout the paper, c denotes a positive constant that is
independent of the main parameters involved, but whose value may vary from line to line. Constants
with subscript, such as c1, do not change in different occurrences. We denote f 6 cg by f . g. If f . g . f,
we write f ≈ g. In order to indicate the dependence of the constant on some parameter n (say), we write
A .n B.

2. Auxiliary lemmas

In this section, firstly we give some lemmas about weights An∞(µ) obtained in [7].

Lemma 2.1. Let µ be a nonnegative Radon measure. If ω ∈ An∞(µ), then for ∀ 0 < α < 1, there is a positive
constant β < 1 such that whenever F is a measurable set of a rectangle R, we have

µ(F)

µ(R)
6 α implies

ω(F)

ω(R)
6 β,

which is equivalent to say that for ∀ 0 < α ′ < 1, there is a positive constant β ′ < 1 such that whenever F is a
measurable set of a rectangle R,

µ(F)

µ(R)
> α ′ implies

ω(F)

ω(R)
> β ′.

Lemma 2.2. Assume that µ = µ1×µ2× · · · ×µn is a product measure, where µi, i = 1, . . . ,n are all nonnegative
Radon measures without mass-points and complete. If ω ∈ An∞(µ), then ω satisfies a reverse Hölder’s inequality,
that is, there exist two positive constants c and δ such that for every rectangle R

(
1
µ(R)

∫
R

ω1+δdµ)1/(1+δ) 6
c

µ(R)

∫
R

ωdµ,

and c may be taken as close to 1 as δ→ 0+.

All the proofs of above lemmas can be seen in [7], and we omit it. If ω ∈ Anp(µ), p > 1, then
ω1−p ′ ∈ Anp ′(µ), where 1/p+ 1/p ′ = 1. Consequently, by Lemma 2.2, it is easy to deduce the following
result.

Lemma 2.3. Let p > 1, and ω ∈ Anp(µ), then there is an ε > 0 such that ω ∈ Anp−ε(µ).
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Let x = (x1, . . . , xn) and µ = µ1 × µ2 × · · · × µn. For convenience, fixed xn ∈ R, denote dω ′ =
ω(x ′, xn)dµ ′, x ′ = (x1, . . . , xn−1) and dµ ′ = dµ1 · · ·dµn−1. For some 0 < ε < 1, let {Rk} be a sequence of
rectangles in Rn. {Rk} is said to have property P1: if

µ(Rk ∩
⋃
i<k

Ri) 6 εµ(Rk).

{Rk} is said to satisfy property P2: if its side lengths in the xn direction are decreasing and

µ(Rk ∩
⋃
i<k

R̂i) 6 εµ(Rk),

where R̂ is the rectangle with the same center as R and whose sides parallel to the first n− 1 coordinate
axes have the same lengths as the corresponding sides of R, and the side of R̂ which is parallel to the n-th
coordinate axis has length equal to three times the length of the corresponding side of R.

Lemma 2.4. Assume that µ(x) = µ1(x1)µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R. Let {Rk} be a sequence of rectangles in Rn satisfying property P2, and Sxnk be
the slice of Rk at xn. Then {Sxnk } satisfies property P1 for any xn, that is

µ ′(Sxnk ∩
⋃
i<k

Sxni ) 6 εµ ′(Sxnk ).

Proof. Since Rk is a rectangle in Rn, we may assume Rk = Ik × Jk where Jk is the one-dimensional
projection to the xn axes and Ik is a rectangle in Rn−1. The conclusion is obvious if xn /∈ Jk. When
xn ∈ Jk, setting J = {i < k,Sxnk ∩ S

xn
i 6= ∅}, one has

Rk ∩
⋃
i∈J
Ri ⊆ Rk ∩

⋃
i<k

Ri.

By the assumption that the side lengths of the xn direction are decreasing in {Rk}, one has

Rk ∩
⋃
i∈J
R̂i = (

⋃
i∈J
Sxnk ∩ S

xn
i )× Jk.

Hence by the property P2, one has

µ ′(
⋃
i∈J
Sxnk ∩ S

xn
i )µn(Jk) = µ(Rk ∩

⋃
i∈J
R̂i) 6 µ(Rk ∩

⋃
i<k

R̂i) 6 εµ(Rk),

which yields our desired result immediately.

Lemma 2.5. Assume that µ(x) = µ1(x1)µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R without mass-points and complete. Assume also that each µi for 2 6 i 6 n is
doubling on R and ω ∈ An∞. Let {Rk} be a sequence of rectangles in Rn satisfying property P1. Then if Mn

ωdµ is
Lp(ωdµ) bounded with norm at most O((p− 1)−r), 1 < p 6 2, for some r > 0, one has

‖
∑

χRk‖Lp ′(ωdµ) 6 C(p
′)r+1ω(∪Rk)1/p ′ , 1 < p 6 2.

Proof. Setting Ek = Rk\
⋃
i<k Ri, one has µ(Ek) > (1 − ε)µ(Rk) by property P1 and the fact that the sets

{Ek} are pairwise disjoint. Since ω ∈ An∞(µ), one has ω(Ek) > βω(Rk) for some 0 < β < 1. Arguing by
duality we assume that ϕ is a function satisfying ‖ϕ‖Lp(ωdµ) = 1, 1

p + 1
p ′ = 1, then one has∫ ∑

χRkϕωdµ =
∑∫

Rk

ϕωdµ =
∑

(
1

ω(Rk)

∫
Rk

ϕωdµ)ω(Rk)
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.
∑

ω(Ek) inf
x∈Rk

Mn
ωdµ(ϕ)(x)

6
∫
∪Ek

Mn
ωdµ(ϕ)(x)ω(x)dµ(x)

6 ‖Mn
ωdµ(ϕ)‖Lp(ωdµ)ω(∪Rk)1/p ′

6 O((p ′ − 1)r)ω(∪Rk)1/p ′ 6 O((p ′)r+1)ω(∪Rk)1/p ′

by the assumption of the Lp(ωdµ) norm of Mn
ωdµ.

Lemma 2.6. Assume that µ(x) = µ1(x1)µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R without mass-points and complete. Assume also that each µi for 2 6 i 6 n is
doubling on R and ω ∈ An∞. Let {Rk} be a sequence of rectangles in Rn satisfying property P2. Suppose also that
Mn−1
ω ′dµ ′ is bounded on Lp(Rn−1,ω ′dµ ′) with norm at most O((p− 1)−r), 1 < p 6 2, uniformly in a.e. xn for

some r > 0. Then there exists a constant C independent of {Rk} such that

‖
∑

χRk‖Lp ′(ωdµ) 6 C(p
′)r+1ω(∪Rk)1/p ′ , 1 < p 6 2.

Proof. Let Sxnk denote the slice of Rk by a hyperplane perpendicular to the xn-axis, at height xn. Using
Lemma 2.4, we have

µ ′(Sxnk ∩
⋃
i<k

Sxni ) 6
1
2
µ ′(Sxnk ).

Since ω ∈ An∞, one has ω ′ ∈ An−1∞ uniformly in a.e. xn. Then by Lemma 2.5,

‖
∑

χSxnk
‖Lp ′(ω ′dµ ′) 6 C(p

′)r+1ω ′(∪Sxnk )1/p ′ , 1 < p 6 2,

uniformly in a.e. xn, which follows the desired result by taking the p ′-th power on both sides of above
inequality and integrate in xn.

Lemma 2.7. Assume that µ(x) = µ1(x1) · µ2(x2) · · ·µn(xn) is a product measure where µi, i = 1, . . . ,n are all
nonnegative Radon measures in R without mass-points and complete. Assume also that each µi for 2 6 i 6 n is
doubling on R and ω ∈ An∞. Then Mn

ωdµ is Lp(ωdµ) bounded with norm at most O((p− 1)−n), 1 < p 6 2.

Remark 2.8. The asymptotic estimate of Mn was obtained by Long and Shen in [18].

Proof. The proof is by induction on n. For n = 1, Mn
ωdµ is the classical Hardy-Littlewood maximal

operator Mωdµ with respect to measure ωdµ. Let λ > 0 and Eλ = {x :Mωdµ(f) > λ}, then the main result
of [29] gives

ω(Eλ) 6 5λ−1
∫
|f(x)|ω(x)dµ(x).

By interpolation since Mωdµ is L∞(ωdµ) to L∞(ωdµ) with norm 1, we obtain

‖Mωdµ(f)‖Lp(ωdµ) 6 c(p− 1)−1.

Suppose that n > 1 and the lemma holds for n− 1. Since ω ∈ An∞, one has ω ′ ∈ An−1∞ uniformly in
a.e. xn. By the inductive hypothesis, Mn−1

ω ′dµ ′ is Lp(ω ′dµ ′) bounded with norm at most O((p− 1)1−n),
1 < p 6 2.

Let λ > 0 and and {Rk} be a cover of Eλ = {x :Mn
ωdµ(f) > λ} such that

1
ω(Rk)

∫
Rk

|f(x)|ω(x)dµ(x) > λ.
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With no loss of generality, we may assume that {Rk} is a finite sequence, and that Rk are arranged so that
the side length in xn direction is decreasing. We now follow a well-known selecting procedure argument.
We choose R∗1 = R1, and assume R∗1 , . . . ,R∗k have been selected. We obtain R∗k+1 as the first rectangle on
the list of Ri after R∗k such that

µ(R∩ [
⋃
i6k

R̂∗i ]) <
1
2
µ(R).

That is {R∗k} satisfies the property P2. By Lemma 2.6, we obtain

‖
∑

χRk‖Lp ′(ωdµ) 6 C(p
′)nω(∪Rk)1/p ′ , 1 < p 6 2. (2.1)

Moreover, arguing as in the proof of Theorem 1.2, one has

ω(∪Rk) . ω(∪R∗k), (2.2)

by the assumption that each µi for 2 6 i 6 n is doubling on R and ω ∈ An∞. Finally, by (2.1),

ω(∪R∗k) .
∑

ω(R∗k) 6
∑ 1

λ

∫
R∗k

|f(x)|ω(x)dµ(x)

6
1
λ
‖
∑

χR∗k‖Lp ′(ωdµ)‖f‖Lp(ωdµ) 6 C(p
′)n−1ω(∪R∗k)1/p ′ 1

λ
‖f‖Lp(ωdµ),

from which it follows that
ω(∪R∗k) .

(
C(p ′)n

1
λ
‖f‖Lp(ωdµ)

)p
.

Hence, by (2.2),

ω(Eλ) .
(
C(p ′)n

1
λ
‖f‖Lp(ωdµ)

)p
. (2.3)

From Lemma 2.3, since ω ∈ Anp(µ), there is an ε > 0 such that ω ∈ Anp−ε(µ). Then (2.3) holds for p− ε.
It is also known that ω ∈ Anp+ε(µ). By interpolation, we complete the proof.

As a direct corollary of Lemma 2.6 and Lemma 2.7, we can obtain the following result.

Corollary 2.9. Assume that ω ∈ An∞(µ) and that {Rk} is a sequence of rectangles in Rn satisfying property P2.
Then if p is big enough,

‖
∑

χRk‖Lp(ωdµ) . p
nω(∪Rk)1/p.

3. Endpoint Fefferman-Stein inequality

Proof of Theorem 1.2. It suffices to prove the theorem for λ = 1. Denote E = {x : Mn
dµ(f)(x) > 1}. Let {Rk}

be a cover of E such that

1
µ(Rk)

∫
Rk

|f(x)|dµ(x) > 1. (3.1)

Since we only need to prove (1.1) for any compact subset K of E, without loss of generality, we may
assume {Rk} is a finite sequence, and Rk are arranged so that the side length in xn direction is decreasing.

We now choose a subset {R∗k} of {Rk} such that {R∗k} satisfies property P2 and

ω(∪Rk) . ω(∪R∗k). (3.2)

Let R∗1 = R1, and assume that R∗1 , . . . ,R∗k have been selected. We obtain R∗k+1 as the first rectangle on
the list of Ri after R∗k such that

µ(R∩ [
⋃
i6k

R̂∗i ]) <
1
2
µ(R).
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This selection process will be end after a finite steps. It is obvious that {R∗k} satisfies the property P2. Now
assume that some R ∈ {Rk} was not selected, then we can find some positive integer k such that

µ(R∩ [
⋃
i6k

R̂∗i ]) >
1
2
µ(R),

which implies that for all x ∈ R,

Mn
dµ(χ ⋃

i6k
R̂∗i
)(x) >

1
2

.

Hence
∪Rk ⊆ {x :Mn

dµ(χ∪R̂∗i
)(x) >

1
2
}.

Since ω ∈ An∞, then ω ∈ Anp(µ) for some 1 < p < ∞. By the result of Mn
dµ being bounded on Lp(ωdµ)

([7, Theorem 1.6]), we conclude that

ω(∪Rk) . ω(∪R̂∗i ). (3.3)

Let Sxnk denote the slice of R∗k at xn and then R∗k = Sxnk × Jk, R̂∗k = Sxnk × Ĵk if xn ∈ Jk. Using property
P2 of {R∗k}, and Lemma 2.4 we have

µ ′(Sxnk ∩
⋃
i<k

Sxni ) 6
1
2
µ ′(Sxnk ).

Since ω ∈ An∞, one has ω ′ ∈ An−1∞ uniformly in a.e. xn. Then

ω ′(Sxnk ∩
⋃
i<k

Sxni ) 6 βω ′(Sxnk ),

uniformly in a.e. xn, for some 0 < β < 1. Denote Fk = Sxnk \
⋃
i<k S

xn
i . It is obvious that ω ′(Fk) >

(1 − β)ω ′(Sxnk ). By classical result, when µn is doubling, ω(x ′, xn)dµn is also doubling uniformly for
x ′ ∈ Rn−1. Therefore using (3.3)

ω(∪Rk) .
∑

ω(R̂∗i ) =
∑
k

∫
Sxnk

(

∫
Ĵk

ω(x ′, xn)dµn(xn))dµ ′(x ′)

.
∑
k

∫
Jk

(

∫
Fk

ω(x1, x2)dµ
′(x ′))dµn =

∫
∪Jk×Fk

ω(x)dµ 6 ω(∪kR∗k),

which gives (3.2).
Observe that property P2 of {R∗k} also implies that

µ(R∗k ∩ [
⋃
i<k

R∗i ]) <
1
2
µ(R∗k).

It follows that ω(R∗k ∩ [
⋃
i<k

R∗i ]) 6 βω(R∗k) for some 0 < β < 1, since ω ∈ An∞. Then setting Ek =

R∗k\[
⋃
i<k

R∗i ], we have

ω(R∗k) > ω(Ek) > (1 −β)ω(R∗k), µ(R∗k) > µ(Ek) >
1
2
ω(R∗k).

Using (3.1) and (3.2), we obtain

ω(E) . ω(∪R∗k) 6
∑

ω(R∗k) 6
∑ ω(R∗k)

µ(R∗k)

∫
R∗k

|f(y)|dµ(y) =

∫
|f(y)|

∑
k

ω(R∗k)

µ(R∗k)
χR∗k(y)dµ(y).
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For locally integrable functions f and g, define the linear operators

Tf(x) =
∑
k

1
µ(R∗k)

∫
R∗k

f(y)dµ(y)χEk(x), T
∗f(x) =

∑
k

1
µ(R∗k)

∫
Ek

f(y)dµ(y)χR∗k(x).

It is easy to check that∫
Tf(x)g(x)dµ(x) =

∫
T∗g(x)f(x)dµ(x),

T1(x) =
∑
k

χEk(x), T∗1(x) =
∑
k

µ(Ek)

µ(R∗k)
χR∗k(x) ≈

∑
k

χR∗k(x),

and

T∗ω(x) =
∑
k

ω(Ek)

µ(R∗k)
χR∗k(x) ≈

∑
k

ω(Rk)

µ(R∗k)
χR∗k(x).

Hence

ω(∪R∗k) .
∫
|f(y)|T∗ω(y)dµ(y) = (

∫
{y:T∗ω(y)6ν(y)}

+

∫
{y:T∗ω(y)>ν(y)}

)|f(y)|T∗ω(y)dµ(y)

6
∫
f(y)ν(y)dµ(y) +

∫
{y:T∗ω(y)>ν(y)}

|f(y)|
T∗ω(y)

ν(y)
ν(y)dµ(y).

Recall a known result from[1]: For any θ > 0, there exists a constant cθ > 0 such that for all s, t > 0 we
have

st 6 cθs[1 + (log+ s)n−1] + exp(θt1/(n−1)) − 1, n > 2.

Applying the pointwise estimate above we get for any θ > 0,∫
{y:T∗ω(y)>ν(y)}

|f(y)|
T∗ω(y)

ν(y)
ν(y)dµ(y) 6 cθ

∫
{y:T∗ω(y)>ν(y)}

|f(y)|[1 + (log+ |f(y)|)n−1]ν(y)dµ(y)

+

∫
{y:T∗ω(y)>ν(y)}

(
exp

(
θ(
T∗ω(y)

ν(y)
)1/(n−1)

)
− 1
)
ν(y)dµ(y).

Therefore

ω(∪R∗k) . (1 + cθ)

∫
|f(y)|[1 + (log+ |f(y)|)n−1]ν(y)dµ(y) + I,

where

I =

∫
{y:T∗ω(y)>ν(y)}

(
exp

(
θ(
T∗ω(y)

ν(y)
)1/(n−1)

)
− 1
)
ν(y)dµ(y).

Using the Taylor expansion of et we can write

I =

∞∑
j=1

θj

j!

∫
{y:T∗ω(y)>ν(y)}

(
T∗ω(y)

ν(y)
)j/(n−1)ν(y)dµ(y) =

∑
16j6n−1

+
∑
j>n−1

= I1 + I2.

For I1, one can easily get

(
T∗ω(y)

ν(y)
)j/(n−1) = (

T∗ω(y)

ν(y)
)
j
n−1−1 T

∗ω(y)

ν(y)
6
T∗ω(y)

ν(y)
,
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since j
n−1 6 1 and T∗ω(y)

ν(y) > 1. Hence

I1 6
∑

16j6n−1

θj

j!

∫
θT∗ω(y)dµ(y) .n θ

∫
T1(x)ω(y)dµ(y) = θ

∑
k

∫
Ek

ω(y)dµ = θω(∪R∗k)

from the definition of T and Ek provided θ < 1.
For item I2, since weights ω,ν satisfy condition (A), one has

1
µ(R∗k)

ω(R∗k) 6 c inf
x∈R∗k

ν(x),

then

T∗ω(x) ≈
∑
k

ω(Rk)

µ(R∗k)
χR∗k(x) 6

∑
k

ν(x)χR∗k(x) ≈ ν(x)T
∗1(x).

Therefore

I2 =
∑
j>n−1

θj

j!

∫
(
T∗ω(y)

ν(y)
)j/(n−1)−1 T

∗ω(y)

ν(y)
ν(y)dµ(y)

.
∑
j>n−1

θj

j!

∫
(T∗1(y))j/(n−1)−1T∗ω(y)dµ(y)

.
∑
j>n−1

θj

j!

∫
(T∗1(y))j/(n−1)T∗ω(y)dµ(y)

=
∑
j>n−1

θj

j!

∫
∪R∗k

T(T∗1(y))j/(n−1)ω(y)dµ(y).

Observing that Tf(x) 6
∑
k χEk(x) infy∈R∗kM

n
dµ(f)(y) 6M

n
dµ(f)(x), so we have

‖Tf‖Lp0(ωdµ) . ‖f‖Lp0(ωdµ)

for some 1 < p0 <∞, since ω ∈ An∞. This together with Corollary 2.9 and Hölder’s inequality yield∫
∪R∗k

T(T∗1(y))j/(n−1)ω(y)dµ(y) . ω(∪R∗k)
1
p ′0 ‖(T∗1)j/(n−1)‖Lp0(ωdµ)

= ω(∪R∗k)
1
p ′0

( ∫
(T∗1)jp0/(n−1)ω(y)dµ(y)

) 1
p0 . (

jp0

n− 1
)jω(∪R∗k),

which follows that

I2 .
∑
j>n−1

θj

j!
(
jp0

n− 1
)jω(∪R∗k) .n

∑
j>n−1

(eθp0/(n− 1))j√
j

ω(∪R∗k) .n
(eθp0/(n− 1))n√

n
ω(∪R∗k),

by choosing θ small enough such that eθp0/(n− 1) < 1.
At last, we obtain that

ω(∪R∗k) .ω,n(1 + cθ)

∫
|f(y)|[1 + (log+ |f(y)|)n−1]ν(y)dµ(y) + (θ+

(eθp0/(n− 1))n√
n

)ω(∪R∗k),

which yields that

ω(∪R∗k) .
∫
|f(y)|[1 + (log+ |f(y)|)n−1]ν(y)dµ(y),

by letting θ sufficiently small.
Thus we complete the proof using (3.2).
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