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Abstract

In this paper, we examine and explore the boundedness, periodicity, and global stability of the positive solutions of the
rational difference equation

XoYn + XYn—p + XYn—q + X3Yn—r + 4Yn—s + X5Yyn—t
Boyn + Blynfp + Bzynfq +B3Yyn—r + Payn—s + E’Synft,

Ynt1 =

where the coefficients «;,3; € (0,00), 1=0,1,2,3,4,5, and p,q,1,s, and t are positive integers. The initial conditions y_¢,
ceirY—s,oo s Y—r,---,Y—q,---,Y—p,-..,Y—_1,Yo are arbitrary positive real numbers such that p < q < r < s < t. Some numerical
examples will be given to illustrate our result.
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1. Introduction

Difference equations occur as mathematical models in various real world applications such as problems
in physiology, engineering, ecology and many more. In this direction, many such problems are non-linear
in nature and thus the research focus is on non-linear difference equations. One such class of equations
which have attracted attentions of researchers is the rational difference equations. To put examples, refer to
[1, 3, 4, 6-9]. Many researchers have investigated periodic solutions of difference equations, and they have
proposed various methods for the existence and qualitative properties of the solutions [11-16, 18-22, 24].

This paper is inspired and extends the work on rational difference equation in [23]. Specifically, the
core of our work here is to study qualitative properties such as the local and global stability, boundedness,
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periodicity of the positive solutions of the rational difference equation

®Yn + X1Yn—p + X2Yn—q + 03Yn—r + X4Yn—s + X5Yn_—t
Boyn + Blyn—p + BZUn—q + B3Yn—r + Payn—s + BSUn—t’

Ynt+1 = (1.1)
where the coefficients i, 31 € (0,00), 1 =0,1,2,3,4,5, and p, q,7, s and t are positive integers. The initial
conditionsy ¢,...,Y—s,---,Y—r,.--,Y—q,---,Y—p,...,Y—1,Yo are arbitrary positive real numbers such that
p < q <71 <s <t Weillustrate our findings by considering numerical examples which represent different
types of solutions of equation (1.1). In the special case when any of the coefficients «;, 3; for i =0,...,5
are allowed to be zero, equation (1.1) reduces to the distinct cases which have been studied by many
authors. In particular, apart from [23], equation (1.1) can be considered as a generalization of that studied
in [2, 10, 17].
We first recall some basic properties and definitions associated with difference equations.

Definition 1.1. A difference equation of order (t +1) is of the form

Un+1 :H(Unzyn—ll---/Unfp/--wynfq/---/Unfr/---/Unfs/---/ynft)/ T12011/2/"' (12)

with p < g < v < s < t where H is a continuous function. An equilibrium point y of this difference
equation is a point that satisfies the condition y = H(y, 9, ..., y). That is the constant sequence {ynJn__;
with yn =y for all n > —t is a solution of that equation.

Definition 1.2. Let y € (0, 00) be an equilibrium point of equation (1.2). Then, we have

1. An equilibrium point y of equation (1.2) is called locally stable if for every ¢ > 0 there exists
6 > 0 such that, if y_+,y—s, Y-, Y—r+1,.--,Y-1,Yo € (0,00) with [y_+ =yl + [y—s —yl+ly—r —yl+
y_ri1—9yl+--+ly_1—yl+lyo—yl < §, then [yn, —y| < ¢ forall n > —t.

2. An equilibrium point y of equation (1.2) is called locally asymptotically stable if it is locally stable and
there exists v > 0 such that, if y_,y_s,Y—r,Y_r41,---,Y_1,Yo € (0,00) with [y_ —y| +ly_s =yl +
Y —Yl+y—ri1 =Y+ +y-1 —Yyl+lyo—yl <, then

Jim yn =1y

3. An equilibrium point y of equation (1.2) is called a global attractor if for every y_,Y—s, Y—vr,Y—r41,.--,

Yy_1,Yo € (0,00) we have
lim yn, =y.

n—oo

4. An equilibrium point y of equation (1.2) is called globally asymptotically stable if it is locally stable
and a global attractor.

5. An equilibrium point y of equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A solution {yn . _ of equation (1.2) is said to be periodic with period v if
Yntv =Yn forall n > —t.

Moreover, if v is the smallest positive integer having this property then this periodic solution is said to
have prime period v.

Theorem 1.4 ([5]). Let H : [a, b]*™! — [a, b] be a continuous function, where t is a positive integer, and where
[a, b] is an interval of real numbers. Consider the difference equation (1.2). Suppose that H satisfies the following
conditions.

1. For each integer i with 1 < i < t+1; the function H(zy,zy, ..., z¢4+1) is weakly monotonic in z; for fixed
Z1,22y -+ s Zi—1,Zid 1y o o o s 24410
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2. If (m, M) is a solution of the system
M = H(Mll MZI“‘IMt+1) and m:H(mllmZI"'/mt—i—])/
then M = m, where for eachi=1,2,...,t+1, we set

M M, if H is non-decreasing in z, and m, if H is non-decreasing in zi,
s = m; =

h m, if H is non-increasing in z;. ' M, if H is non-increasing in z;.
Then there exists exactly one equilibrium y of Eq. (1.2), and every solution of Eq. (1.2) converges to y.

This paper is structured as follows. The local stability of the solutions of the difference equation (1.1) is
introduced in Section 2. The boundedness character of the positive solution of equation (1.1) is addressed
in Section 3. The periodicity of the positive solutions of equation (1.1) is investigated in Section 4. In
Section 5 the global stability of the positive solution of equation (1.1) is studied. Section 6 deals with
numerical experiments on the main results. Finally, we end with the conclusion in Section 7.

2. Local stability of the equilibrium solution

The local stability of the solutions of equation (1.1) is examined in this section. Assume that oc = 3 7_ o;
and 3 = Z?:o Bi. Then, one can easily check that

N
Y78

is the positive equilibrium point y of equation (1.1). Now, let
H: (0,00)° — (0, 00)

be a continuous function defined by

Y g

Z?:()Biui.

By taking partial derivatives of H, then the linearized equation about the positive equilibrium point y takes
the form

H(u, ..., us) =

Yn+1+ a5Yn + Q4Yn—p + a3Yn—q + Q2Yn—r + A1Yn—s + QoYn—t = 0,

where
as = _(0‘061*“1|30)+(0‘062*0‘260)+(“0|330:B“3[50)+(0‘064*0‘4[30)+((X0f55*0‘5f30),
a; = — (06150—06061)+(0€1f32—0¢2f31)+(061[31‘—[5063[31)#%“1f34—06451)+(06155—0€5f31),
az = — (0‘2[30*060[32)+(0€2(31*0¢1[32)+(0<2[33;[3063Bz)+(062[34*064[32)+(062I35*0¢5f32), 21
a = _(“3[50—06063)+(0¢3f31—0<1f33)+(063Bic—ﬁaz133)+(“3[54—06453]+(0¢3f35—0¢5f53), )
a = _(06450*060[54)+(0¢4(51*061ﬁ4)+(0<4[32“*|30€254)+(W453*0€3f34)+(0€4f35*0€5(34)’
ap = _ (x5Bo—xoBs)+(oxsB1—ox1B5)+ (s Ba—ocxaPBs)+ (s Bs—ox3B5)+ (s Ba—oxaPBs)

o3 .

Theorem 2.1 ([5]). Assume that e; € R,1=1,2,...,k. Then,

k
Z leil <1
i=1
is a sufficient condition for the asymptotic stability of the difference equation

Yntk +€1Yntk—1+---+exyn =0, n=0,1,2,....
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Theorem 2.2. Assume that

I(xoB1— o1B0) + (ctoB2 — x2B0) + (B3 — o3Bo) + (xoBs — xaPo) + (coBs5 — x5 B0)|
+ (1o — xoP1) + (x1 B2 — o2B1) + (o1 B3 — x3P1) + (1P — xaf1) + (x1B5 — x531)]

+ (20 — ooB2) + (21 — 01 B2) + (23 — o3B2) + (X2 B4 — otaP2) + (25 — ot5B2)]
+[(o3Bo — xoB3) + (o3B1 — o1 B3) + (o3B2 — 02 B3) + (3P4 — aB3) + (x3B5 — 533
+[(oaBo — xoBs) + (0taB1 — 01 Ba) + (a2 — 02Bs) + (0taP3 — 03PBs) + (a5 — otsB4))|

+ (5o — oo Bs) + (51 — o1 Bs) + (s5B2 — 02 Ps) + (s5B3 — o3 B5) + (5B4 — ot Bs)] < .

Therefore the positive equilibrium point y of equation (1.1) is locally asymptotically stable.

Proof. From (2.1) and the assumption of this theorem, it is obvious that

5
D lail<1.
i=0
Thus, by Theorem 2.1, equation (1.1) is asymptotically stable. O

3. Boundedness of the solutions

In this section, the boundedness character of the positive solution of equation (1.1) is being studied.
First recall that a sequence {yn J5__; is bounded if there exists positive constants m and M such that for
allm > —t

m<yn <M

Theorem 3.1. Every solution of equation (1.1) is bounded.

Proof. Let
myg=min «;, 1=0,...,5,
My =max «;, 1=0,...,5,
L = min Bj, 1=0,...,5,
L=max B;, 1=0,...,5
We have
mo (Un +Un—p +yn—q +Yn—r +Yn—s +Un—t)
L(yn +Yn—p TYn—q T Yn—r +Yn—s +Yn—t)
<Ynat < Mo (Un +Yn—p tYn—q tYn—+ +Yn—s +Unft) mo < Ynat < %,
L(yn +yn7‘p +ynfq +Yn—r+Yn—s +yn7t) L 1
which implies that every solution of equation (1.1) is bounded. O

4. The periodicity of the solutions
In this section, we analyze the periodic character of the positive solution of equation (1.1).

Theorem 4.1. If one of the following conditions holds, then equation (1.1) has no positive solutions of prime period
two.

1. The positive integers p, q, 1, s and t are even.
2. The positive integers p, q are even and the positive integers r, s and t are odd provided Z%:o oy > 2523 o
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3. The positive integers p, q are odd and the positive integers v, s and t are even provided o1 + xa > o + &3 +

0y + 5.

4. The positive integers p,r are even and the positive integers q,s and t are odd provided xp + 1 + &3 >

o) + X4 + 5.

5. The positive integers q,v are even and the positive integers p,s and t are odd provided g+ ox + &3 >

o] + g4 + 5.

6. The positive integer q,r are odd and the the positive integers p, s and t are even provided oy + 1 + x4 + ot5 >

0 + &3.

7. The positive integer p, v are odd and the positive integers q, s and t are even provided oo + 0t + 0tg + 0t5 >

o1 + og.
8. The positive integer p, q, T, s and t are odd, (Zizl o) > o and Zle Bi > Bo-

Proof. Suppose that there exist positive distinctive solutions of prime period two ...,A,B,A,B,... of

equation (1.1). Then the following cases are discussed.

Case 1. The positive integers p, q, 1, s and t are even positive integers. In this case yn = Yn—p =Yn—q =

Un—r = UYn—s = Yn—t. Then there exist a positive period two solution {yn } such that
Yra=A, a=-1,0,1,..., Yoat+1 =B, a=-1,0,1,...,

where A # B. But from equation (1.1) we have

x
A=B=—.
§

Thus, there is an inconsistency.

Case 2. The positive integers p, q are even and the positive integers 1,5 and t are odd. In this case

Yn =Yn—p =Yn—q and Yn41 = Yn—r = Yn—s = Yn_t. From equation (1.1) we have

(Z%:o ‘Xi> B+ (Z?:a ‘Xi> A, B (Z%:o “i) A+ (Z?:a in) B.
(Z%:o Bi) B+ (Z?:g Bi) A (Z%:o Bi) A+ (Z?:3 ﬁi) B

As a result, it is obtained that

(£ (E) () ()

i=3 i=0 i=3
and
2 5 2 5
(Z oq) A+ <Z O(i> B = (Z f51> AB + (Z [51> Bz.
i=0 i=3 i=0 i=3

By subtracting, we acquire
(Xipo) — (X7 50)]
Y 3B

since Y 7_o o > Y ;5 a4, we have A + B < 0. Thus leads to a contradiction.

A+B=-—

7

Case 3. p, q are positive odd and the positive integers , s and t are even. In this case yn11 =yn—p =Yn_gq

and Yyn =Y n—r = Yn—s = Yn—t. From equation (1.1) we have

(o1 + o) A+ (og+ o3+ oq + x5) B (1 + o) B+ (oo + o3+ ag +oxs) A

~ (B1+B2) A+ (Bo+ B3+ Ps+Bs)B’ ~ (B1+B2)B+(Bo+ B3+ PBatBs)A
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Thus, we realize

(01 + o) A+ (oo + o3 + aa + o5) B = (B1 + B2) A% + (Bo + B3 + Pa + Bs) AB
and

(01 + o) B+ (0o + o3 + og + 5) A = (B1 + B2) B + (Bo + B3 + Pa + Bs) AB.

By subtracting we have
[(x1 4 xa) — (ot0 + o3 + ot + 5]

B1+ B2 ’

since o1 + &y > & + o3 + x4 + &5, we have A 4+ B < 0. Thus we again have a contradiction.

A+B=—

Case 4. p, 1 are positive even integers and the positive integer ¢, s and t are odd. In this case yn =yn_p =
Yn-—rand Yn41 =Yn_q = Yn—s = Yn_t. From equation (1.1) we have

A— (og+ o1+ a3) B+ (02 + s+ x5) A B— (g + 01 +a3) A+ (g + o + 5) B
~ (Bo+B1+PB3)B+(B2+ Pa+PBs)A ~ (Bo+B1+B3)A+ (B4 Pa+Bs)B’

Therefore, it is found that

(0t + 0+ 03) B+ (00 + oa + o5) A = (Bo + B1 + B3) AB + (B2 + Ba + B5) A

and
(o + o1 + &3) A+ (2 + oty + &5) B = (Bo + B1 + B3) AB+ (B2 + Ba + Bs) B
By subtracting we sustain
(o + 01 + a3) — (o0 + g + ats5)]
B2+ Ba+Bs
since g + 1 + &g > o + o4 + 5, we have A + B < 0. Thus we have a contradiction.

A+B=—

7

Case 5. g, are positive even integers and the positive integer p, s and t are odd. In this case yn =yn_q =
Yn—r and Yn41 =Yn—p = Yn—s = Yn—t. From equation (1.1) we have

Ao (@otoptoas)B (o +oy+as)A g (xotortos) At (o +ay+as)B
(Bo+ B2+ B3) B+ (B1+Ps+Ps) A (Bo-+ B2+ Bs) A+ (B1+Ba+Bs) B’

Consequently, we obtain

(0o + 0+ 03) B+ (01 + au + o5) A = (Bo + B2 + B3) AB + (B1 + Ba + B5) A

and
(o + o2+ o3) A+ (g + g + o5) B = (Bo + B2 + B3) AB+ (B1 + Ba+ Bs) B
By subtracting, we have
([0 + 02 + 3) — (01 + ot + at5)]
P1+PBa+Bs
since og + o + 3 = o1 + g + 5, we have A + B < 0. Thus, there is another contradiction also.

A+B=—

7

Case 6. q,r are positive odd integers and the positive integer p,s and t are even. In this case yn41 =
Yn—q =Yn—r and Yn = Yn—p = Yn—s = Yn—_t. From equation (1.1) we have

(xg+ o1 +og) B+ (oo +03+0a5) A (og+ o1 +og) A+ (g + 3+ ox5) B

~ (Bo+B1+Ba)B+(B2+Ps+Bs)A (Bo+B1+PBa) A+ (B2+ B3+ Ps)B’

As a result, it is found that

(09 + 0 + o) B+ (0 + oz + o5) A = (Bo + B1 + Ba) AB+ (B2 + B3 + Bs) A2
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and
(o + o1 + 0g) A+ (a2 + a3 + &5) B = (Bo + B1 + Bs) AB+ (B2 + B3 + Bs) B
By subtracting, we have
(g + o1 + og) — (2 + 03 + 5]
B2+ B3+ Bs
since g + 1 + x4 > oo + o3 + 5, we have A + B < 0. Thus we have another contradiction.

A+B=—

7

Case 7. p,r are positive odd integers and the positive integer q, s, and t are even. In this case yn4+1 =
Yn—p =Yn—rand Yn =Yn_q = Yn—s = Yn_t. From equation (1.1) we have

(g + oo+ og +a5) B+ (07 +o3) A (g + o+ oy +o5) A+ (0] +x3)B

~ (Bo+ B2+ PBa+Bs)B+(B1+B3)A (Bo+ B2+ PBa+Ps)A+(B1+PB3)B
Accordingly, it is acquired
(0o + 02 + ota + a5) B+ (0 + 03) A = (Bo + B2 + Ba + Bs) AB + (B + B3) A

and
(0o + 02 + ota + as) A+ (0 + o3) B = (Bo + B2 + Pa + Bs) AB + (B1 + B3) B2

By subtracting, we sustain

(ot + o2 + g + 5) — (01 + &3)]
B1+ B3 ’

since og + o + &g + o5 > 1 + 3, we have A + B < 0. Thus we have a contradiction.

A+B=—

Case 8. p, q,1,s and the positive integer t are odd. In this case Yyn41 =Yn—p =Yn—q =Yn-—r =Yn-s =
Yn—t. From equation (1.1) we have

A: B:

Thus, we obtain

5

5 5 5
(o) B+ <Z oci) A = (Bo) AB + (Z rx) A? and (o) A+ (Z oci> B = (Bo) AB + (Z m) BZ.
i=1 )

i=1 i=1

By subtracting, we possess

Asp o [(Ei o) — ol
Z?:1 Bi
By adding we obtain
ap o Col(FF ) — o)

(Z5.0B:) (27 B3) — Bl
since (Z?:l o) > o and (Z?Zl Bi) > Po we have AB < 0. Thus, we have a contradiction. O

Theorem 4.2. Suppose p,q,r,s and t are odd, Z?:l oy > xg and 2?21 i < Bo. Then equation (1.1) shall have
positive solutions of prime period two if and only if

() <[5 ) = (5]
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Proof. Suppose that there exist positive distinctive solutions of prime period two
.,A,B,A,B,...

of equation (1.1). Since p, q,7,s and t are odd, we have yn11 =Yn-p =Yn—q =Yn—r = Yn—s = Yn—t-
From equation (1.1) we have

N (xg) B+ (Zle oci> A . (oo) A+ (Z?Zl oci) B
+(Z3B) A (Bo) A+ (X31B:) B
subsequently, we obtain
5 5
B+<Z:m> BOAB+<Z:m>AA2ami A+<Z:m> BOAB+<z:m>A§.
i=1 i=1
By subtracting, it is sustained
[(Z?:l xi) — 060}
A+B= Y .
2 i1 Bi
By adding up, we acquire
AB — ool(3 4 i) — ol

(Z3084) [Bo— (X34 Bl

where (Zle o) > o and Bo > (Zle B1i). Assume that A and B are two positive distinct real roots of the
quadratic equation

—(A+B)t+AB=0. (4.2)
Then, we deduce that
2
([(2?15 i) — oc01> L el e -] Wy
(Zizl Bi) (21:1 Bi) By — (Zizl Bi)]

From equation (5.7), it is obtained

() <[] (50

Hence, the condition (4.1) is valid. Contrariwise, presume that the condition (4.1) is valid where
(2?21 i) > ap and By > (Zizl Bi). Then, it is immediately deduced from (4.1) that the inequality
(4.3) holds. There exist two positive distinctive real numbers A and B demonstrating two positive roots of
equation (4.2) such that

5
A— (D51 0‘;)*060]+6/ (4.4)
202 721 B4)
and 5
B— (i 0‘51)—060]—5, (4.5)
2(3 11 Bi)
where

5
oY1 BT o) — ]
_[ ) — ]2_ i=1 i=1 .
2 o) [Bo— (251 Bo)
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A and B are to be proven as positive solutions of prime period two of equation (1.1). To this end, it can be
assumed thaty ¢ =8B,...,y s=B,...,y +=B,...,y ¢q=8B,...,y p, =B,...,y 1 =Band yo = A. Now,
we are going to show that y; = B and y, = A. From equation (1.1) we deduce that
coA + (X3 1) B
1 = %Yo + 1Yy—p + X2Y—q + X3Y—r + X4Y—s + XYt _ i=1""1
Boyo +B1Yy—p +B2y—q +B3Y—r + Pay—s +PsYy—t A + (2?21 Bi) B

(4.6)

Substituting (4.4) and (4.5) into (4.6) we deduce that

b A (TLim) poB (Tip)B e .
BoA + (Zle (31) B PBoA+ <Z§:1 Bi) B G

where
oo (I o) — ol +8) (i o) (27 o) — ol = 5)
20550 257 Bo)

Fo (Bl i) ol ) <i rx) ([(zi_l ) —ao —6)2,
(Z3B0) Bo— (T 8) \S 2(X51BY)
5 5 5
o Pt o) ool ¢ ) (2t ([(2;1 o) — o0l -3)
2L -1 B) 2L -1 B)

Multiplying the denominator and numerator of (4.7) by 4(2‘:’:1 Bi)? we get

200(X 51 o) (T ] o) — ool +8) 2Ty ) (23 80) (T o) — ] =)
y1—B= +

7

G1 Gl
dooBo( X3 1 B1) (X5 1 i) —oxo) 2
< [Bo—(L1-1 B0 ) (32080 (231 ) — 0] =)
B G1 B Gy ’
5 5 5
20(0(25:1 ﬁi)[(z5:1 o) — o) 2 (21:1 0‘1) (Zi:l Bi)[(zi:1 o) — o
yl_‘B:: i i i
G1 Gl
dooBo( X3 1 B1) (X5 1 i) —oxo)
(Z50Be) (0 o) — ool 4+ (X3 ) &2 ( 6020111 )
B G: B Gy
20033y Bu)S —200 (T3 Be) 8 255y o) (54 Be) 82 (Z7 s ou) (X34 B
+ + =0,
G1 Gl
where

5 5 5 2 5
G1=2Bo()_Bi) ([(Z ) — o] + 5) +2 <Z Bi) ([(Z xi) — o] — 5) :

i=1 i=1

Similarly, we can show that

5 .
Y1t X Y_p41 + Y _q41 + XBY_ri1 T X4Y 541+ X5Y_t41 B + (Zi:l o‘l> A

= = =A.
2 Boy1 + [31y_p+1 + Bzy—q+1 +B3Y—r1+ PaYy—s4+1+ B5Y_—t41 BoB + (Z?:l Bi) A

By using the mathematical induction, we have yn, =B and yny1 =A, n> -t O
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5. Global stability
In this section, the global asymptotic stability of the positive solutions of equation (1.1) is analyzed.

Theorem 5.1. For o, € (0,00), 1=0,...,5, the positive equilibrium point y of equation (1.1) is a global
attractor if the conditions

2P0, xoP3 =
o, ofs >

10, o2
o331, 0t1 PB4

o1

o3P0, xof
o1B3 &)

4 = 4o, x5 = x5B0, x1P2 = x2f1,
5031, xof3 =

> > >
> 032, 2Py = P2, xfs > xsPB2,

2
2

4
aaBs > uPs, oaPs > asPs, ouPs > asPa, and o5 > ) o
=0

hold.

Proof. Let {yn}n__ be a positive solution of equation (1.1) and let H : (0, )% — (0, 00) be a continuous
function defined by

5
2 il

= .
Zizo Biug
By differentiating the function H (uy, ..., us), it can be realized that

H(ug, ..., us) =

(oxoB1 — o1 Bo) wy + (P2 — o2 Bo) Uz + (B3 — o3Bo) Uz + Lyug + T-zus
(Bouo + B1us + Batta + P3us + Patts + Psus)?

Hy, =

where L; = (xgP4 — ouBo) and Lo = (x5 — ot5B0)-

o - — (opB1 — 1 Bo) wo + (o1 B2 — c2B1) uz + (01 B3 — x3PB1) uz + Lawy + Lyus
w, — 7

(Bouo + B1us + Bauz + P3us + Patts + Psus)”

where L3 = (134 — o431) and Ly = (o135 — ox531).

H ~ —(aoB2 — x2Bo) up — (0 B2 — o2 B1) ug + (23 — x3B2) uz + Lsug + Leus
Uy — 7

(Bouo + B1uy + Baus + Baus + Paity + Psus)

where L5 = (234 — o432) and Lg = (235 — x532).

H _ —(aoB3 — asBo) o — (01B3 — o3P1) w1 — (23 — a3 B2) up + Lyuy + Lgus
uz — s

(Bouo + Brus + Pauz + Baus + Pauy)?

where L7 = (34 — a4f33) and Lg = (335 — &533).

. = — (otoBs — g Po) wo — (1 B4 — oty B1) W — (02 Bg — aaB2) up — Louy + Lypus
WUy 7

(Bouo + B1uy + Bouz + Baus + Paity + Psus)

where Ly = (x3B4 — a4P3) and Lip = (o5 — x54).

Hy = (xoBs — x5B0) wo — (15 — x5B1) Wy — (25 — x5B2) Uz — Loy — Ligus

(Bouo + B1us + Bauz + P3us + Patty + Psus)”

where Lo = (35 — o5B3) and Lig = (oiaB5 — x5B4).
It is observed that the function H(uy, ..., us) is non-decreasing in uy and non-increasing in us. Now,
we consider four cases.
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Case (1). Let the function H(uy, ..., us) is non-decreasing in uy, uj, up, uz, us and non-increasing in us.
Suppose that (m, M) is a solution of the system

M=HM MMM M,m) and m=H(mm,mm,m M).
Then from equation (1.1), we get that

oM + oM + coM + agM + oyM + oism xpm+ xym+ com+ ozm + ogm + oasM

= BoM A BiM+ BaM+ BaM 1 BaM+ om0 ™ Bum ot Brm ot Bamt Bom & Bam + BsM
Thus
(Z%:O O‘i) M + osm (Z%:o oci) m+ oasM
M = 1 and m= i )
(Zi:o 6l) M+ Bsm <Zi:0 Bl) m+ BsM

From which we have

4 4
(Z oci> M + oism — (Z Bi> M2 = BsMm (5.1)
1=0

i=0

and

4
(Z ocl> m-+ oasM — <Z Bl> m? = BsMm. (5.2)

i=0
By subtracting (5.1) and (5.2), we obtain

R o R

Since a5 > Z%:o a;, we deduce from (5.3) that
M=m.

It follows by Theorem 1.4, that y is a global attractor of equation (1.1).

Case (2). Let the function H(uy, ..., us) is non-decreasing in uy,u; and non-increasing in up, uz, ug, us.
Suppose that (M, m) is a solution of the system

M=HM,M,m,mmm) and wm=H(mm M, M, M,M).
Then from equation (1.1), we get that

oM+ oqgM + oom + azm + oyym + asm and  m— xom+ ocym+ oM 4 oM + aeuM 4 asM

BoM + BIM + Bom + Bzm + Bym + Bsm Bom+ Bym+ f2M + BsM 4 BsM + BsM”

Thus

(oco+oc1)M+<Z zocl)m (oco+oq)m+(zizzoq)M
and m= .
(Bo+ M+ (X7, 8:)m (Bo+Brm+ (T3, B¢) M

From which we have

M =

5

(o0 + )M + (Z oq> m— (Bo + B )M? = ( m) Mm (5.4)
i=2

i=2

and

5
(o0 + o) m + (Z “i) — (Bo+ B1)m* = (Z Bi | Mm. (5.5)

i=2 i=2
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From (5.4) and (5.5), we obtain

- {

Since Z?:z o > (g + o), we deduce from (5.6) that

(o + o) — (Zm)] Bo+f51)(M+m)}=0- (5.6)

M=m.

It follows by Theorem 1.4, that y is a global attractor of equation (1.1).

Case (3). Let the function H(uy, ..., us) is non-decreasing in uy, uj, up and non-increasing in us, u4, us.
Suppose that (M, m) is a solution of the system

M=HM,M,M,m,m,m) and m=H(m m m M, M, M).
Then from equation (1.1), we get that

_ oM + oM + cuoM + azm + agm + xsm and L — xom+ ocym+ ocom+ ozM + oM + asM

BoM + BIM + oM + Bam + Bym + Bsm Bom + B1m+ Bom + BsM + sM + BsM’

Thus
(ZZ_ 0 “1)M + (Zl =3 0(1) m (Z%:O oci)m+ (Z?:?, (Xi) M
and m= .

(ZioBIM+ (Zi:3 Bi) m (Y3 oBi)m+ (Z?:3 Bi) M

From which we have

M =

2 5 2 5
() )M+ (Z oq> m— () BiIM? = <Z m) Mm (5.7)
i=0 i=3 i=0

i=3

and

2 5 2 5
() a)m+ <Z oci> M— () Bym? = (Z Bi> Mm. (5.8)
i=0 i=3 i=0

i=3
From (5.7) and (5.8), we obtain

2 5 2
(M—m){[(z o) — <Z ai)] - Bi)(M+m)} =0. (5.9)
i=0 i=3 i=0
Since 2?23 o > Z%:o «i, we deduce from (5.9) that
M =m.

It follows by Theorem 1.4, that y is a global attractor of equation (1.1).

Case (4). Let the function H(uy, ..., us) is non-decreasing in 1y, u;, uz and non-increasing in uy, u4, us.
Suppose that (M, m) is a solution of the system

M=HMM, mM, mm) and m=H(mm M, m,M, M).
Then from equation (1.1), we get that

oM+ oM + com + azM + oym + s and  m — xom+ oxym+ oM 4+ agm + oM + asM
BoM + B1M + Bom + BsM + Bym + Bsm Bom + Brm+ PaM 4+ Bam 4+ sM + psM’
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Thus
(oot o+ a3)M + (0 + og + os) M and m— (g + o1 + ax3)m+ (o2 + x4 + x5) M
(Bo+PB1+B3)M+(B2+Ps+Ps)m (Bo+B1+B3)m~+ (B2+ Pa+ps) M’
From which we have
(0o + 0 + a3)M + (0 + g + as) m— (Bo + B1 + B3)M? = (B2 + B+ Bs) Mm. (5.10)
and
(oo + ot + o) m + (0 + o) M — (Bo + B1 + B3)m? = (B2 + Ba) M. (5.11)
From (5.10) and (5.11), we obtain
(M —m){[(oo + 1 + 3) — (2 + &g + &5)] — (Bo + B1 + B3) (M +m)} =0. (5.12)

Since (o + og + x5) = (g + 1 + o3), we deduce from (5.12) that

M=m.

It follows by Theorem 1.4, that y is a global attractor of equation (1.1) and then the proof is completed. [

6. Numerical examples on the main results

Several interesting numerical examples shall be considered in an attempt to exhibit the results of the
previous sections and to support the theoretical discussions in this section. Various types of qualitative

behavior of solutions to the nonlinear difference equation (1.1) are represented in these examples.

Example 6.1 (Theorem 4.1 Case 1). Figure 1 shows that equation (1.1) has no prime period two solution
if p,q,1,s are even. Choosep =2, q=4, r=6,s=8,t=10, y-10=1, yo9=2, yg=3 yy=
4Y6=5Ys5=6ys=7ys3=8y2=9y1=10,yo =11, x =2, &1 =10, g =20, &5 =

15, o4 =25, &5 =30, o =30, 1 =3, Pp2=4, f3=5 Ps=6, P5=7.

plot of y(n+1)

solution of y(n+1)

i A

0 5 10 15 20
n-iteration

Figure 1

Example 6.2 (Theorem 4.1 Case 2). Figure 2 shows that equation (1.1) has no prime period two solution if
p,q are even and 1,s,t are odd. Choose p =2, q=4, r=5,5s=7,5s=9, yo=1, yg=2, yy=
3/ Y6 = 4/ Y5 = 5/ Y4 = 6/ Yy—3 = 7/ Y2 = 8/ Yy-1 = 9/ Yo = 10/ Xp = 2/ X1 = 10/ Xy = 20/ X3 =

5/ “4:4/ “5:1/ [30:30/ [31:3/ [32:41 B3:5/ [34:6/ 65:7
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plot of y(n+1)

solution of y(n+1)

o

0 20 40 60 80 100
n-iteration

Figure 2

Example 6.3 (Theorem 4.1 Case 3). Figure 3 shows that equation (1.1) has no prime period two solution
if p,q are odd and 1, s,t are even. Choosep =1, q=3, r=4,s=6,t=8, ys=1, y7=2,y_¢=
3, ys5=4,yYy4=5yYyi3=6yY2=7yY1=8 yYyo=9, o =2, oy =100, p =200, x3 =5, o4 =
401 (XSZ]'OI 60:301 Bl :3/ [32:4/ [53:51 64:61 [35:7

plot of y(n+1)

solution of y(n+1)

i i i
0 5 10 15 20
n-iteration

Figure 3

Example 6.4 (Theorem 4.1 Case 4). Figure 4 shows that equation (1.1) has no prime period two solution
if p,r are even and ¢, s,t are odd. Choosep =2, q=3, r=4,s=5,t=7,y7=1,y =2, ys5=
3, y,4:4, Y-3 :5, y_2:6, Y- :7, Yo :8, 24} :500, 04] :100, X2 :20, X3 :2, X4 :4, X5 =
6, 60:30/ Bl =3, [32:4/ 63:5/ [34:6/ [35:7

plot of y(n+1)
90 T T

80

70

60

50

40+

solution of y(n+1)

30

20

0 20 40 60 80 100
n-iteration

Figure 4

Example 6.5 (Theorem 4.1 Case 5). Figure 5 shows that equation (1.1) has no prime period two solution
if q, v are even and p, s, t are odd. Choosep =1, q=2, r=4,s=5,t=7,y7=1,y =2, ys=
3, ya4=4yY3=5yYy2=6,y1=7,y=8, o =100, oy =10, ag =20, a3 =15, oty =4, o5 =
6/ 60:30/ ﬁl :31 [?’2:41 [33:5/ [54:61 [‘)’5:7
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plot of y(n+1)
6 T T
55
5l
45
a
T o4t
=
© 35r
c
2
2 3t
&
25
2l
15F
1 i i i
0 20 40 60 80 100
n-iteration
Figure 5

Example 6.6 (Theorem 4.1 Case 6). Figure 6 shows that equation (1.1) has no prime period two solution
if ¢, v are odd and p, s, t are even. Choosep =2, q =3, r=5,s=6,t=8, yg=1, y7=2, y_4=
3 y5=4Y4=5y3=6y2=7yY1=8y =9 & =2 =10, ap =20, a3 =5, o4 =
400, o5 =600, Bg =30, B1 =3, B2 =4, B3 =5, Ba=6, B5=7.

plot of y(n+1)

60 T

50

40
I
+
3
=
© 30
<
8
5
°
&

20

101

0 | |
0 50 100 150 200
n-iteration
Figure 6

Example 6.7 (Theorem 4.1 Case 7). Figure 7 shows that equation (1.1) has no prime period two solution
if p,r are odd and q,s,t are even. Choosep =1, q=2, r=3,s=4,t=6, y =1,y s5=2, y 4=
3, ys3=4,y2=5 y-1=6,y=7 o9 =100, 3 =10, xp =200, o3 =5, ag =400, &5 = 600, ¢ =
30, B1=3, B2=4, P3=05, P+=6, B5=7.

plot of y(n+1)
16 T

JAM“'{MAM‘MMMHMA
A

14}

12

10

solution of y(n+1)
©

0 50 100 150 200
n-iteration

Figure 7
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Example 6.8 (Theorem 4.1 Case 8). Figure 8 shows that equation (1.1) has no prime period two solution
if p,q,7,s,t are odd. Choose p =1, q=3, r=5,5s=7,t=9, yo=1, ys=2, y7=3, y¢=
4, Yys5=5yY4=6,y3=7,4y2=8yY-1=9, yo=10, a9 =2, 1 =10, op =20, g =15, ots =
251 “5:30/ 60:2/ Bl :3/ [52:41 63:51 64:6/ [55:7

plot of y(n+1)

solution of y(n+1)

[¢] 5 10 15 20
n-iteration

Figure 8
Example 6.9. Figure 9 shows that equation (1.1) has prime period two solutionand p < q <1 <s < t.
Choosep=1,q=3,r=5s5s=71t=9, p=max{p,q,7,s5t}=9, yo9=y 7=y 5=y 3=yYy_1 =Y
0.46, Yys=Y6 =Y 4=Y-2 =Y =Y ™ 0.031, Xp = 10, X1 = 3, Xy = 30, X3 = 8, xXg4 = 4.5, X5 =
50, Bo =500, B1 =5, B2 =40, B3 =9, B4 =100, B5 = 10.

plot of y(n+1)

o
w

solution of y(n+1)
o
i
&

o
b S
@

o
e

o
N

o
=1
a

o

i i i
50 100 150 200
n-iteration

Figure 9

o

Example 6.10. Figure 10 shows that the solution of equation (1.1) has global stabilityand p < g <r <s < t.
Choose p=2,q=4,1=6,s=8,t=8ys=1,y7=2, y=3,ys5=4 ys4=5y3=6 y o=
7, Yy-1=8,yo=9, g =05, oy =025, p =0.01, a3 =2, oy = 0.1, x5 =0.01, o =3, p1 =2, B2 =
10, B3 =25, B4 =3, B5 =8.

plot of y(n+1)

solution of y(n+1)

0 50 100 150 200
n-iteration

Figure 10
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7. Conclusion

It has been discussed that certain properties of the nonlinear rational deference equation (1.1), particu-
larly the periodicity, the boundedness and the global stability of the positive solutions for this equation.
Some figures were given to illustrate the behavior of these solutions. The result shown can be considered as
a more generalization than the results retrieved in Refs. [2, 10, 17, 23]. As indicated, Examples 6.1-6.8 verify
Theorem 4.1 that illustrated equation (1.1) has no prime period two solution, while example 9 verifies
Theorem 4.2 which shows that equation (1.1) has prime period two solution. Whereas Example 6.10 verifies
Theorems 2.2 and 5.1, which shows that the solution of equation (1.1) has globally asymptotic stable.
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