ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.isr-publications.com/jnsa

Ekeland's variational principle in complete quasi-G-metric spaces

E. Hashemi^a, M. B. Ghaemi^{b,*}

^aDepartment of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran. ^bDepartment of Mathematics, Iran University of Science and Technology, Tehran, Iran.

Abstract

In this paper, by concept of Γ -function which is define on q-G-m (quasi-G-metric) space, we establish a generalized Ekeland's variational principle in the setting of lower semicontinuous from above. As application we prove generalized flower petal theorem in q-G-m.

Keywords: Γ-Function, q-G-m space, generalized EVP, lower semicontinuous from above function, generalized Caristi's (common) fixed point theorem, nonconvex minimax theorem, generalized flower petal theorem.

2010 MSC: 54H25, 54C60.

©2019 All rights reserved.

1. Introduction

EVP was first studied in 1972. Many equivalents have been found by scholars over the years for primitive EVP[10, 11], see [2–7, 17, 18, 20, 22]. Interesting applications in various fields of applied mathematics are found. A number of generalized of these results have been reviewed by other researchers [1–4, 8, 12–16, 23–30].

2. Ekeland's variational principle

In this paper, $\theta : (-\infty, \infty) \longrightarrow (0, \infty)$ is a nondecreasing function, a function $g : U \longrightarrow (-\infty, \infty)$ is said to be lower semicontinuous from above (shortly Lsca) at r_0 , when for each sequence $\{r_n\}$ in U such that $r_n \longrightarrow r_0$ and $g(r_1) \ge g(r_2) \ge \cdots \ge g(r_n) \ge \cdots$, we have $g(r_0) \le \lim_{n \to \infty} g(r_n)$. The function g is said to be Lsca on U, when g is Lsca at every point of U, g is proper when $h \not\equiv \infty$.

Theorem 2.1 ([9, Ekeland theorem]). *Let* U *be a complete metric space with meter* d, $g : U \longrightarrow \mathbb{R} \cup \{+\infty\}$ *be a proper, semicontinuous, and bounded below function. Then there exists* $v \in U$ *such that* $g(v) \leq g(u)$, $d(u,v) \leq 1$, *and* $g(w) > g(v) - \varepsilon d(v, w)$ *for all* $v \neq w$.

*Corresponding author

Email addresses: eshagh_hashemi@yahoo.com (E. Hashemi), mghaemi@iust.ac.ir (M. B. Ghaemi)

doi: 10.22436/jnsa.012.03.06

Received: 2018-01-19 Revised: 2018-09-28 Accepted: 2018-10-25

Definition 2.2 ([19]). Assume that U is a nonempty set and mapping

 $\mathsf{G}:\mathsf{U}\times\mathsf{U}\times\mathsf{U}\longrightarrow[0,\infty)$

is satisfying the following conditions:

- (i) G(r, s, t) = 0 if r = s = t;
- (ii) G(r, r, s) > 0 for all $r, s \in U$, where $r \neq s$;
- (iii) $G(r, r, t) \leq G(r, s, t)$ for all $r, s, t \in U$ with $r \neq t$;
- (iv) $G(r, s, t) = G(p\{r, s, t\})$ such that p is a permutation of r, s, t;
- (v) $G(r, s, t) \leq G(r, \alpha, \alpha) + G(\alpha, s, t)$ for all r, s, t, α in U.

Then G is said to be G-metric and pair (U, G) is said to be G-metric space.

Definition 2.3 ([19]). Let (U, G) be a G-metric space. A sequence $\{r_n\}$ in U is said to be

- (a) G-Cauchy sequence if for all $\epsilon > 0$, there exists $q_0 \in \mathbb{N}$ such that for every $p, q, l \in \mathbb{N}$ and $p, q, l \ge q_0$ then $G(r_q, r_m, r_l) < \epsilon$;
- (b) G-convergent to $r \in U$ if for all $\epsilon > 0$, there exists natural number q_0 such that for all $p, q \ge q_0$, then $G(r_q, r_p, r) < \epsilon$.

Proposition 2.4 ([19]). Assume that (U, G) is a G-metric space, then the following statements are equivalent:

(a) $\{r_n\}$ is a G-caushy sequence;

(b) for each $\varepsilon > 0$, there exists natural number q_0 such that for all $p, q \ge q_0$, then $G(r_q, r_p, r_p) < \varepsilon$.

Definition 2.5. A function $\sigma : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is subaddive when $\sigma(r+s) \leq \sigma(r) + \sigma(s)$, and $\sigma(\epsilon r) = \epsilon \sigma(r)$ for every $\epsilon > 0$.

Definition 2.6. Let U be a nonempty set. A function

$$\mathsf{G}:\mathsf{U}\times\mathsf{U}\times\mathsf{U}\longrightarrow[0,\infty)$$

is said to be quasi-G-metric (q-G-m) if the following conditions be satisfied

- 1. G(r, s, t) = 0 if r = s = t;
- 2. G(r,r,s) > 0 for all $r,s \in U$, $r \neq s$;
- 3. $G(r, r, t) \leq G(r, s, t)$ for all $r, s, t \in U$, $t \neq s$;
- 4. $G(r, s, t) \leq G(r, \varepsilon, \varepsilon) + G(\varepsilon, s, t)$ for all $r, s, t, \varepsilon \in U$.

(U, G) is said to be q-G-m space when U is a nonempty set and G is a q-G-m. The concept of Cauchy sequence, convergence, and complete space are defined as G-metric space.

Definition 2.7. Let (U, G) be a q-G-m space. A function $\Gamma : U \times U \times U \longrightarrow [0, \infty)$ is said to be Γ -function when

- (1) $\Gamma(\mathbf{r}, \mathbf{s}, \mathbf{t}) \leq \Gamma(\mathbf{r}, \varepsilon, \varepsilon) + \Gamma(\varepsilon, \mathbf{s}, \mathbf{t})$ for all $\mathbf{r}, \mathbf{s}, \mathbf{t}, \varepsilon \in \mathbf{U}$;
- (2) if $r \in U$, $\{s_n\}_{n \in \mathbb{N}}$ be a sequence in U which is convergent to s in U and $\Gamma(r, s_n, s_n) \leq M$, then $\Gamma(r, s, s) \leq M$;
- (3) for every $\epsilon > 0$, there exists $\delta > 0$ such that $\Gamma(r, \epsilon, \epsilon) \leq \delta$ and $\Gamma(\epsilon, s, t) \leq \delta$ imply $G(r, s, t) \leq \epsilon$.

Example 2.8 ([21]). Let (U, d) be a metric space and $G : U^3 \longrightarrow [0, \infty)$ defined by $G(r, s, t) = \max\{d(r, s), d(r, t), d(s, t)\}$ for all $r, s, t \in U$. Then $\Gamma = G$ is a Γ -function on U.

Example 2.9. Assume that

$$G: U^3 \longrightarrow [0, \infty), \qquad G(r, s, t) = \frac{1}{3}(|t - r| + |r - s|)$$

is a function, then G is a q-G-m but isn't G metric.

Proof. q-G-m is obvious. We show that $G(r, s, t) \neq G\{p(r, s, t)\}$ (p is a permutation of r, s, t). Since

$$G(3,5,2) = \frac{1}{3}(|2-3|+|3-5|) = 1, \qquad G(2,3,5) = \frac{1}{3}(|3-2|+|5-2|) = \frac{4}{3},$$

then G is not a G-metric.

Example 2.10. Let G(r, s, t) be the same as in the previous example. Then $\Gamma = G$ is a Γ -function.

Proof. (a) and (b) are obvious. Let $\epsilon > 0$ be given, put $\delta = \frac{\epsilon}{2}$ if $\Gamma(\mathbf{r}, \epsilon, \epsilon) = \frac{1}{3}(|\mathbf{t} - \epsilon| + |\epsilon - s|) < \frac{\epsilon}{2}$, then

$$G(\mathbf{r},\mathbf{s},\mathbf{t}) = \frac{1}{3}(|\mathbf{t}-\mathbf{s}|+|\mathbf{r}-\mathbf{s}|) \leq \frac{1}{3}(|\mathbf{t}-\varepsilon|+|\varepsilon-\mathbf{r}|+|\mathbf{r}-\varepsilon|+|\varepsilon-\mathbf{s}|) < \varepsilon.$$

So, (c) is established.

Lemma 2.11 ([21]). Assume that (U, G) is a G-metric space and Γ is a Γ -function on U. Let $\{u_n\}$ and $\{v_n\}$ be two sequences in U, $\{\rho_n\}$ and $\{\phi_n\}$ be in $[0, \infty]$, which are convergent to zero. Let $u, v, w, \varepsilon \in U$, then

- (1) *if* $\Gamma(\nu, u_n, u_n) \leq \rho_n$ and $\Gamma(u_n, \nu, w) \leq \phi_n$ for all $n \in \mathbb{N}$, then $G(\nu, \nu, w) < \epsilon$ and hence $w = \nu$;
- (2) *if* $\Gamma(u_n, u_n, u_n) \leq \rho_n$ and $\Gamma(u_n, u_m, w) \leq \phi_n$ for every m > n, then $G(v_n, v_m, w)$ is convergent to zero and hence $v_n \rightarrow w$;
- (3) *if* $\Gamma(u_n, u_m, u_l) \leq \rho_n$ *for all* $m, n, l \in \mathbb{N}$ *with* $n \leq m \leq l$ *, then* $\{u_n\}$ *is a* G-Cauchy sequence;
- (4) *if* $\Gamma(u_n, \varepsilon, \varepsilon) \leq \rho_n$ *for all* $n \in \mathbb{N}$ *, then* $\{u_n\}$ *is a* G-Cauchy sequence.

Lemma 2.12. Let Γ be a Γ -function on $U \times U \times U$. If sequence $\{r_n\}$ be in U that $\limsup_{n \to \infty} \{\Gamma(r_n, r_m, r_l), n \leq m \leq l\} = 0$, then $\{r_n\}$ will be a G-Cauchy sequence in U.

Proof. Assume $\rho_n = \sup\{\Gamma(r_n, r_m, r_l)\}$, then $\lim_{n \to \infty} \rho_n = 0$. By Lemma 2.11 (3), $\{r_n\}$ is a G-Cauchy sequence.

Lemma 2.13. Let $g : U \longrightarrow [-\infty, \infty]$ be a function and Γ be a Γ -function on $U \times U \times U$. The set P(r) is defined by

$$\mathsf{P}(\mathsf{r}) = \{ \mathsf{s} \in \mathsf{U}; \ \mathsf{s} \neq \mathsf{r}, \ \Gamma(\mathsf{r}, \mathsf{s}, \mathsf{s}) \leqslant \theta(\mathsf{g}(\mathsf{r}))(\mathsf{g}(\mathsf{r}) - \mathsf{g}(\mathsf{s})) \} \cdot$$

If P(r) be nonempty, then for every $s \in P(r)$, we will have

$$P(s) \subseteq P(r)$$
 and $g(s) \leqslant g(r)$.

Proof. Let $s \in P(r)$. So $s \neq r$ and $\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s))$. Since $\Gamma(r, s, s) \geq 0$ and θ is nondecreasing and positive function, then $g(r) \geq g(s)$. If $P(s) = \emptyset$ then $P(s) \subseteq P(r)$. Therefore $t \neq s$ and $\Gamma(s, t, t) \leq \theta(g(s))(g(s) - g(t))$ as above $g(s) \geq g(t)$. Since Γ be a Γ -function, then

$$\Gamma(\mathbf{r},\mathbf{t},\mathbf{t}) \leqslant \Gamma(\mathbf{r},\mathbf{s},\mathbf{s}) + \Gamma(\mathbf{s},\mathbf{t},\mathbf{t}) \leqslant \Theta(\mathbf{g}(\mathbf{r}))(\mathbf{g}(\mathbf{r}) - \mathbf{g}(\mathbf{t})).$$

We claim that $t \neq r$. Assume that t = r so $\Gamma(r, t, t) = 0$. On the other hand

$$\Gamma(\mathbf{r},\mathbf{s},\mathbf{s}) \leqslant \theta(\mathbf{g}(\mathbf{r}))(\mathbf{g}(\mathbf{r}) - \mathbf{g}(\mathbf{s})) \leqslant \theta(\mathbf{g}(\mathbf{r}))(\mathbf{g}(\mathbf{r}) - \mathbf{g}(\mathbf{t})) = 0 \Longrightarrow \Gamma(\mathbf{r},\mathbf{s},\mathbf{s}) = 0,$$

then $\Gamma(r, s, s) = 0$. For every $\varepsilon > 0$, we have $\Gamma(r, t, t) = 0 < \varepsilon$ and $\Gamma(t, s, s) = 0 < \varepsilon$ then by definition Γ -function, we have $G(t, s, s) < \varepsilon$, so G(t, s, s) = 0 and t = s. This is a contradiction, therefore $t \in P(r)$ and $P(s) \subseteq P(r)$.

Proposition 2.14. Assume that (U, G) is a complete q-G-m space and $g : U \longrightarrow [-\infty, \infty]$ is a proper and bounded below function, Γ is a Γ -function on $U \times U \times U$. Let

$$\mathsf{P}(\mathsf{r}) = \{ \mathsf{s} \in \mathsf{U}; \mathsf{s} \neq \mathsf{r}, \Gamma(\mathsf{r}, \mathsf{s}, \mathsf{s}) \leqslant \theta(\mathsf{g}(\mathsf{r}))(\mathsf{g}(\mathsf{r}) - \mathsf{g}(\mathsf{s})) \}.$$

Let $\{r_n\}$ *be a sequence in* U *such that* $P(r_n)$ *be nonempty and for all* $n \in \mathbb{N}$, $r_{n+1} \in P(r_n)$. *Then, there exists*

$$\begin{split} r_0 &\in U \text{ such that } r_n \longrightarrow r_0 \text{ and } r_0 \in \bigcap_{n=1}^\infty P(r_n). \text{ Also if for every } n \in \mathbb{N}, \text{ we have } g(r_{n+1}) \leqslant \inf_{t \in P(r_n)} g(t) + \frac{1}{n}, \\ \text{ then } \bigcap_{n=1}^\infty P(r_n) \text{ will only has one member.} \end{split}$$

Proof. At first we prove that $\{r_n\}$ is a Cauchy sequence by Lemma 2.13, $g(r_n) \ge g(r_{n+1})$ for all $n \in \mathbb{N}$. Therefore $\{g(r_n)\}$ is nonincreasing. On the other hand g is bounded below then $\lim_{n\to\infty} g(r_n) = u$, and $g(r_n) \ge u$ for all $n \in \mathbb{N}$. We claim that

$$\limsup_{n\to\infty} \{\Gamma(\mathbf{r}_n,\mathbf{r}_m,\mathbf{r}_m):m>n\}=0$$

We have

$$\begin{split} \Gamma(\mathbf{r}_{n},\mathbf{r}_{m},\mathbf{r}_{m}) &\leqslant \Gamma(\mathbf{r}_{n},\mathbf{r}_{n+1},\mathbf{r}_{n+1}) + \Gamma(\mathbf{r}_{n+1},\mathbf{r}_{m},\mathbf{r}_{m}) \\ &\leqslant \Gamma(\mathbf{r}_{n},\mathbf{r}_{n+1},\mathbf{r}_{n+1}) + \Gamma(\mathbf{r}_{n+1},\mathbf{r}_{n+2},\mathbf{r}_{n+2}) + \dots + \Gamma(\mathbf{r}_{m-1},\mathbf{r}_{m},\mathbf{r}_{m}), \end{split}$$

then

$$\Gamma(\mathbf{r}_{n},\mathbf{r}_{m},\mathbf{r}_{m}) \leq \sum_{j=n}^{m-1} \Gamma(\mathbf{r}_{n},\mathbf{r}_{m},\mathbf{r}_{m}) \leq \theta(g(\mathbf{r}))(g(\mathbf{r}_{n})-\mathbf{u})$$

for all $m, n \in \mathbb{N}$ with m > n.

Put $\rho_n = \theta(g(r))(g(r_n) - u)$, then $\sup\{\Gamma(r_n, r_m, r_m) : m > n\} \leq \rho_n \cdot \text{ for all } n \in \mathbb{N}$. Since $\lim_{n \to \infty} g(r_n) = u$, we result

$$\limsup_{n \to \infty} \{ \Gamma(r_n, r_m, r_m) : m > n \} = 0$$

and $\lim_{n\to\infty} \rho_n = 0$. By Lemma 2.12, $\{u_n\}$ is a G-Cauchy sequence. Then, there exists $r_0 \in U$ such that $r_n \to u_0$. We show that $r_0 \in \bigcap_{n=1}^{\infty} P(r_n)$. Since g is Lsca, then $g(r_0) \leqslant \lim_{n\to\infty} g(r_n) = u \leqslant g(r_k)$.

Let $n \in \mathbb{N}$, we have

$$\Gamma(\mathbf{r}_n,\mathbf{r}_m,\mathbf{r}_m) \leqslant \sum_{j=n}^{m-1} \Gamma(\mathbf{r}_j,\mathbf{r}_{j+1},\mathbf{r}_{j+1}) \leqslant \theta(g(\mathbf{r}_n))(g(\mathbf{r}_n)-g(\mathbf{r}_0))$$

for all $m \in \mathbb{N}$ with m > n. By Definition 2.7 (2), we have

$$\Gamma(\mathbf{r}_n,\mathbf{r}_0,\mathbf{r}_0) \leqslant \theta(g(\mathbf{r}_n)(g(\mathbf{r}_n)-g(\mathbf{r}_0)))$$

for all $n \in \mathbb{N}$. Also $r_0 \neq r$ for all $n \in \mathbb{N}$, suppose it is not, then there exists $j \in \mathbb{N}$ such that $r_0 = r_j$. Since

$$\Gamma(\mathbf{r}_j, \mathbf{r}_{j+1}, \mathbf{r}_{j+1}) \leqslant \theta(g(\mathbf{r}_j))(g(\mathbf{r}_j) - g(\mathbf{r}_{j+1})) \leqslant \theta(g(\mathbf{r}_j))(g(\mathbf{r}_j) - g(\mathbf{r}_0)) = 0$$

then we have $\Gamma(r_j, r_{j+1}, r_{j+1}) = 0$ and in the same way

$$\Gamma(r_{j+1}, r_{j+2}, r_{j+2}) = 0$$

Now assume $\epsilon > 0$, $\Gamma(r_j, r_{j+1}, r_{j+1}) = 0 < \delta$, and $\Gamma(r_{j+1}, r_{j+2}, r_{j+2}) = 0 < \delta$. Therefor by Definition 2.7 (3) we get it $G(r_j, r_{j+2}, r_{j+2}) < \epsilon$. Then $r_j = r_{j+2}$ that is a contradiction because of $r_j \neq r_{j+2}$. Since $r_{j+1} \in P(r_j)$, then $P(r_{j+1}) \subseteq P(r_j)$ and $r_{j+2} \in P(r_{j+1})$. So $r_{j+2} \in P(r_j)$. We suppose $r_{j+2} \neq r_j$ for all $n \in \mathbb{N}$. We have $r_0 \in \bigcap_{n=1}^{\infty} P(r_n)$, then $\bigcap_{n=1}^{\infty} P(r_n) \neq \emptyset$. Let $g(r_{n+1}) \leq \inf_{t \in P(r_n)} g(t) + \frac{1}{n}$ for all $r_0 \neq r_n$. We show that $\bigcap_{n=1}^{\infty} P(r_n) = \{r_0\}$. Assume that $w \in \bigcap_{n=1}^{\infty} P(r_n)$, then

$$\Gamma(\mathbf{r}_n, w, w) \leq \theta(g(\mathbf{r}_n))(g(\mathbf{r}_n) - g(w)) \leq \theta(g(\mathbf{r}_1))(g(\mathbf{r}_n) - \inf_{\mathbf{t} \in \mathsf{P}(\mathbf{r}_n)} g(\mathbf{t})) \leq \theta(g(\mathbf{r}_1))(g(\mathbf{r}_n) - g(\mathbf{r}_{n+1}) + \frac{1}{n}).$$

Let

$$\varphi_n = \theta(g(r_1))(g(r_n) - g(r_{n+1}) + \frac{1}{n})$$

for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} \varphi_n = 0$, we get it $\lim_{n \to \infty} \Gamma(r_n, w, w) = 0$. On the other hand $\{r_m\}$ is a G-Cauchy sequence. Then $\lim_{n \to \infty} \Gamma(r_m, r_m, r_n) = 0$ and we get it $r_n \to \infty$, by uniqueness $w = r_0$. Then $\bigcap_{n \to \infty}^{\infty} P(r_n) = \{r_0\}$.

Theorem 2.15 (Generalized Ekeland's variational principle). Assume that (U, G) is a complete q-G-m space and $g: U \longrightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function. Γ is a Γ -function on $U \times U \times U$, then there exists $r \in U$ such that

$$\Gamma(\mathbf{v},\mathbf{r},\mathbf{r}) > \theta(\mathbf{q}(\mathbf{r}))(\mathbf{q}(\mathbf{r}) - \mathbf{q}(\mathbf{v}))$$

for all $r \in U$ with $v \neq r$.

Proof. Suppose it isn't true. Then for every $r \in U$, there exists $s \in U$, $s \neq r$ such that $\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s))$. That is $P(r) \neq \emptyset$. We define the sequence $\{r_n\}$ as follows. Put $r_1 = \varepsilon$, we choose $r_2 \in P(r_1)$ such that $g(r_2) \leq \inf_{r \in P(r_1)} g(r) + 1$. In the same way suppose that $r_n \in U$ is given. We choose $r_{n+1} \in P(r_n)$ such that $g(r_{n+1}) \leq \inf_{r \in P(r_n)} g(r) + \frac{1}{n}$. By proposition 2.14, there exists $r_0 \in U$ such that

$$\bigcap_{n=1}^{\infty} \mathsf{P}(r_n) = \{r_0\}.$$

By lemma 2.13, we have $P(r_0) \subseteq \bigcap_{n=1}^{\infty} P(r_n) = \{r_0\}$ then $P(r_0) = \{r_0\}$. This is a contradiction. Therefore there exists $v \in U$ such that

$$\Gamma(\nu,\mathbf{r},\mathbf{r}) > \theta(g(\nu))(g(\nu) - g(\mathbf{r})).$$

Theorem 2.16 (Generalized Caristi's common fixed point theorem for a family of multivalued maps). Assume that (U, G) is a complete q-G-m space and $g : U \longrightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function. Γ is a Γ -function on $U \times U \times U$. Let J be any index set and for each $j \in J$, suppose $T_j : U \rightarrow 2^U$ is multivalued map such that for each $r \in U$, there is $s = s(r, j) \in T_j(r)$ with

$$\Gamma(\mathbf{r}, \mathbf{s}, \mathbf{s}) \leq \theta(\mathbf{g}(\mathbf{r}))(\mathbf{g}(\mathbf{r}) - \mathbf{g}(\mathbf{s})).$$
(2.1)

Then there is $w \in U$ such that $w \in \bigcap_{i \in I} T_i(w)$, and $\Gamma(w, w, w) = o$.

Proof. By Theorem 2.15, there exists $w \in U$ such that $\Gamma(w, r, r) > \theta(g(w))(g(w) - g(r))$ for all $r \in U$ with $r \neq w$. Now we show that $w \in \bigcap_{j \in J} T_j(w)$ and $\Gamma(w, w, w) = 0$. According to the assumption, there exists $r(t, j) \in T_j(w)$ such that $\Gamma(w, t, t) \leq \theta(g(t))(g(w) - g(t(w, j)))$. We show that t(w, j) = w for all $j \in J$. On the contrary, let $t(w, j_0) \neq w$ for some $j_0 \in J$, then

$$\Gamma(w, t, t) \leq \theta(g(w))(g(w) - g(t)) < \Gamma(w, t, t),$$

which is a contradiction. Therefore $w = t(w, j) \in T_i(w)$ for all $j \in T$.

Since $\Gamma(w, w, w) \leq \theta(g(w))(g(w) - g(w)) = 0$, we obtain $\Gamma(w, w, w) = 0$.

Remark 2.17. We conclude that Theorem 2.16 concludes Theorem 2.15.

On the contrary, for each $r \in U$, there exists $s \in U$ with $s \neq r$ such that

$$\Gamma(\mathbf{r}, \mathbf{s}, \mathbf{s}) \leq \theta(\mathbf{g}(\mathbf{r}))(\mathbf{g}(\mathbf{r}) - \mathbf{g}(\mathbf{s})).$$

Put $T: U \longrightarrow 2^U \setminus \{\emptyset\}$ by

$$\mathsf{T}(\mathsf{r}) = \{\mathsf{s} \in \mathsf{U} : \mathsf{s} \neq \mathsf{r}, \Gamma(\mathsf{r}, \mathsf{s}, \mathsf{s}) \leqslant \theta(\mathsf{g}(\mathsf{r}))(\mathsf{g}(\mathsf{r}) - \mathsf{fg}(\mathsf{s}))\}.$$

By Theorem 2.16, T has a fixed point $w \in U$, this means, $w \in T(w)$. This is a contradiction, because $w \notin T(w)$.

Theorem 2.18 (Nonconvex maximal element theorem for a family of multivalued maps). Assume that (U, G) is a complete q-G-m space and $g : U \longrightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function. Γ is a Γ -function on $U \times U \times U$, and J be any index set. For each $j \in J$, let $T_j : U \longrightarrow 2^U$ be a multivalued map. Suppose that for each $(r, j) \in U \times J$ with $T_j(r) \neq \emptyset$, there exists $s = s(r, j) \in U$ with $s \neq r$ such that (2.1) holds. Then there exists $w \in U$ such that $T_j(W) = \emptyset$ for each $j \in J$.

Proof. By Theorem 2.15, there exists $w \in U$, such that $\Gamma(w, r, r) > \theta(g(w))(g(w) - f(r))$ for all $r \in U$ with $r \neq w$. We prove that $T_j(w) = \emptyset$ for each $j \in J$. Indeed, if $T_{j_0}(w) \neq \emptyset$, for some $j_0 \in J$, according to the assumption, there exists $t = t(w, j_0) \in U$ with $t \neq w$ such that $\theta(w, t, t) \leq \theta(g(w))(g(w) - g(t))$. Also $\Gamma(w, t, t) > \theta(g(w))(g(w) - g(t))$, which is a contradiction.

Remark 2.19. We conclude that Theorem 2.18 concludes Theorem 2.15.

On the contrary, thus for each $r \in U$, there exists $s \in U$ with $s \neq r$ such that

$$\Gamma(\mathbf{r}, \mathbf{s}, \mathbf{s}) \leq \theta(\mathbf{g}(\mathbf{r}))(\mathbf{g}(\mathbf{r}) - \mathbf{g}(\mathbf{s})).$$

For each $r \in U$, we define $T(r) = \{s \in U : s \neq r, (r, s, s) \leq \theta(g(r))(g(r) - g(s))\}$. Then $T(r) \neq \emptyset$ for all $r \in U$. But by Theorem 2.18, there exists $w \in U$ such that $T(w) = \emptyset$, which is a contradiction.

3. Nonconvex optimization and minimax theorems

Theorem 3.1 (Generalized Takahashi's nonconvex minimization theorem). Assume that (U, G) is a complete *q*-G-*m* space and $g: U \longrightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function. Γ is a Γ -function on $U \times U \times U$. Suppose that for any $r \in U$ with $g(r) > \inf_{w \in U} fg(w)$ there exists $s \in U$ with $s \neq r$ such that (2.1) holds. Then there exists $w \in U$ such that $g(w) = \inf_{t \in U} g(t)$.

Proof. By Theorem 2.15, there exists $w \in U$ such that $\Gamma(w, r, r) > \theta(g(w))(g(w) - g(r))$ for all $r \in U$, $r \neq w$. Now we prove that $g(w) = \inf_{t \in U} g(t)$.

On the contrary, then $g(w) > \inf_{t \in U} g(t)$. According to the assumption, there exists $s = s(w) \in U$, with $s \neq w$ such that $\Gamma(w, s, s) \leq \theta(g(w))(g(w) - g(s))$. Then we have $\Gamma(w, s, s) \leq \theta(g(w))(g(w) - g(s)) < \Gamma(w, s, s)$, which is a contradiction.

Remark 3.2. Using Theorem 3.1, we can conclude Theorem 2.15.

On the contrary, then for each $r \in U$, there exists $s \in U$ with $s \neq r$ such that $\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s))$. By Theorem 3.1, there exists $w \in U$ such that $g(w) = \inf_{t \in U} g(t)$. According to the assumption, there exists $z \in U$ with $z \neq r$, such that $\Gamma(w, z, z) \leq \theta(g(w))(g(w) - g(z)) \leq 0$. Then $\Gamma(w, z, z) = 0$ and $g(w) = g(z) = \inf_{t \in U} g(t)$. There exists $t \in U$ with $t \neq z$ such that $\Gamma(z, t, t) \leq \theta(g(z))(g(z) - g(t)) \leq 0$. Then we have $\Gamma(z, t, t) = 0$ and $g(w) = g(z) = g(t) = \inf_{r \in U} g(r)$. Since $\Gamma(w, t, t) \leq \Gamma(w, z, z) + \Gamma(z, t, t)$, then $\Gamma(w, t, t) = 0$. For $\epsilon > 0$ we have $\Gamma(w, z, z) = 0 < \delta$, $\Gamma(z, t, t) = 0 < \delta$ then $G(w, t, t) < \epsilon$, that is, w = t. Also for $\epsilon > 0$ we have $\Gamma(z, w, w) = 0 < \delta$, $\Gamma(w, t, t) = 0 < \delta$, then $G(z, t, t) < \epsilon$ that is, z = t, which is a contradiction.

Theorem 3.3 (Nonconvex minimax theorem). Assume that (U, G) is a complete q-G-m space and Γ is a Γ -function on $U \times U \times U$. Let $F : U \times U \rightarrow (-\infty, \infty]$ be a proper lsca and bounded below function in the first argument. Suppose that for each $r \in U$ with $\{x \in U : F(r, x) > \inf_{a \in U} F(a, x)\} \neq \emptyset$, there exists $s = s(r) \in U$ with $s \neq r$ such that

$$\Gamma(\mathbf{r}, \mathbf{s}, \mathbf{s}) \leqslant \theta(F(\mathbf{r}, w)) (F(\mathbf{r}, w) - F(\mathbf{s}, w))$$
(3.1)

for all $w \in \{x \in U : F(r, x) > \inf_{a \in U} F(a, x)\}$. Then $\inf_{r \in U} \sup_{s \in U} F(u, s) = \sup_{s \in U} \inf_{r \in U} F(r, s)$.

Proof. By Theorem 3.1, for every $s \in U$, there exists $r(s) \in U$ such that $F(r(s), s) = \inf_{r \in U} F(r, s)$. Then $\sup_{s \in U} F(r(s), s) = \sup_{s \in U} \inf_{r \in U} F(r, s)$.

By displacement of r(s) with an arbitrary $r \in U$ and then getting inf, we obtain $\inf_{r \in U} \sup_{s \in U} F(r, s) = \sup_{s \in U} \inf_{r \in U} F(r, s)$.

Theorem 3.4 (Nonconvex equilibrium theorem). Assume that (U, G) is a complete q-G-m space and Γ is a Γ -function on $U \times U \times U$. Let Γ and θ be the same as in Theorem 3.3. Let, for each $r \in U$ with $\{x \in U : F(r, x) < 0\} \neq \emptyset$, there exists $s = s(r) \in U$ with $s \neq r$ such that (3.1) holds for all $t \in U$. Then there exists $y \in U$ such that $F(y, s) \ge 0$ for all $s \in U$.

Proof. From Theorem 2.15 for each $t \in U$, there exists $y(t) \in U$ such that $\Gamma(y(t), r, r) > \theta(F(y(t), t))(F(y(t), t) - F(r, t))$ for all $r \in U$ with $r \neq y(t)$. We show that there exists $y \in U$ such that $F(y, s) \ge 0$ for all $s \in U$. On the contrary, for each $r \in U$ there exists $s \in U$ such that F(r, s) < 0. Then for each $r \in U$, $\{x \in U : F(r, x) < 0\} \neq \emptyset$. According to the assumption, there exists $s = s(y(t)), y \neq y(t)$ such that $\Gamma(y(t), s, s) \le \theta(F(y(t), t))(F(y(t), t) - F(s, t))$, which is a contradiction.

Example 3.5. Let U = [0,1] and $G(r,s,t) = \max\{|r-s|, |r-t|, |s-t|\}$. Then (X,G) is a complete q-Gm space. Suppose that a, b be positive real numbers with $a \ge b$. Suppose $H : U \times U \longrightarrow R$ with $H(r,s) = \frac{a}{2}r - \frac{b}{3}s$. Therefore, function $r \longrightarrow H(r,s)$ is proper, lower semicontinuous and bounded below, and $H(1,s) \ge 0$ for every $s \in U$. Also $H(r,s) \ge 0$ for every $r \in [\frac{b}{a}, 1]$ and for every $s \in U$. In fact, for every $r \in [0, \frac{b}{a}]$, H(r, s) = ar - bs < 0 when $s \in [\frac{a}{b}r, 1]$. Then set $\{x \in U : H(r, x) < 0\} \ne \emptyset$ for every $r \in [0, \frac{b}{a}]$. Let $r, s \in U, r \ge s$, we have $r - s = \frac{2}{a}\{(\frac{a}{2}r - \frac{b}{3}x) - (\frac{a}{2}s - \frac{b}{3}x)\}$ for every $x \in U$. Let $\theta : [0, \infty) \longrightarrow [0, \infty)$ with $\theta(t) = \frac{2}{a}$ be defined. Therefore $G(r, s, s) \le \theta(H(r, x))(H(r, x) - H(s, x))$ for every $r \ge s$, and $r, s, x \in U$. By Theorem 3.4 there exists $y \in U$ such that $H(y, s) \ge 0$ for every $s \in U$.

4. Applications

Definition 4.1. Let (U, G) be a q-G-m space and $a, b \in U$. Suppose that $\lambda : U \to (0, \infty)$ be a function and Γ be a Γ -function on U. Define

$$\Gamma_{\epsilon}(a, b, \lambda) = \{ r \in U : \epsilon \Gamma(a, r, r) \leq \lambda(a) (\Gamma(b, a, a) - \Gamma(b, r, r)) \}$$

such that $\epsilon \in (0, \infty)$ and $a, b \in U$.

Lemma 4.2. Assume that (U, G) is a complete q-G-m space and $g : U \longrightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function and Γ is a Γ -function on $U \times U \times U$. Let $\varepsilon > 0$. Suppose that there exists $x \in U$ such that $g(x) < \infty$ and $\Gamma(x, x, x) = 0$. Then there exists $t \in U$ such that

- (i) $\epsilon \Gamma(x,t,t) \leq \theta(g(x))(g(x)-g(t));$
- (ii) $\Gamma(t, r, r) > \theta(g(t))(g(t) g(r))$ for all $r \in U$ with $r \neq t$.

Proof. Let $x \in U$, $g(x) < +\infty$ and $\Gamma(x, x, x) = 0$. Put

$$\mathbf{S} = \{\mathbf{r} \in \mathbf{U} : \mathbf{\varepsilon} \Gamma(\mathbf{x}, \mathbf{r}, \mathbf{r}) \leq \theta(\mathbf{g}(\mathbf{x})) (\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{r})).$$

Therefore (S, G) is a nonempty complete q-G-m space. By Theorem 2.15, there exists $t \in S$ such that $\epsilon\Gamma(t, r, r) > \theta(g(t))(g(t) - g(r))$ for all $r \in S$ with $r \neq t$. For any $r \in U \setminus S$, since $\epsilon[\Gamma(x, t, t) + \Gamma(t, r, r)] \ge \epsilon\Gamma(x, r, r) > \theta(g(x))(g(x) - g(r)) \ge \epsilon\Gamma(x, t, t) + \theta(g(t))(g(t) - g(r))$, therefore $\epsilon\Gamma(t, r, r) > \theta(g(t))(g(t) - g(r))$ for all $r \in U \setminus S$. Then $\epsilon\Gamma(t, r, r) > \theta(g(t))(g(t) - g(t))$ for all $r \in U$ with $r \neq t$.

Theorem 4.3 (Generalized flower petal theorem). Suppose that P be a proper complete subset of a q-G-m space U and $a \in P$. Let Γ be a Γ -function on U with $\Gamma(a, a, a) = 0$. Let $b \in U \setminus P$, $\Gamma(b, P, P) = \inf_{r \in P} \Gamma(b, r, r) \ge u$ and $\Gamma(b, a, a) = s > 0$ and there exists a function λ from U into $(0, \infty)$ satisfying $\lambda(r) = \theta(\Gamma(b, r, r))$ for some nondecreasing function θ from $(-\infty, \infty]$ into $(0, \infty)$. Then for each $\varepsilon > 0$, there exists $t \in P \cap \Gamma_{\varepsilon}(a, b, \lambda)$ such that $\Gamma_{\varepsilon}(t, b, \lambda) \cap (P \setminus \{t\}) = \emptyset$ and $(a, t, t) \le \varepsilon^{-1}\lambda(a)(s - r)$.

Proof. (P, G) is a complete q-G-m space. Consider $g : P \longrightarrow (-\infty, \infty], g(r) = \Gamma(b, r, r)$. Since $g(a) = \Gamma(b, r, r)$.

 $\Gamma(b, a, a) = s < \infty$ and $\Gamma(b, P, P) = \inf_{r \in P} \Gamma(b, r, r) \ge u$ then g is a proper lower semicontinuous and bounded below function. By Lemma 4.2, there exists $t \in P$ such that

(i)
$$\epsilon\Gamma(a,t,t) \leq \lambda(a)(g(a)-g(t));$$

(ii)
$$\epsilon \Gamma(t, r, r) > \lambda(t) (g(t) - g(t))$$
 for all $r \in P$ with $r \neq t$.

Applying (i), we have $t \in P \bigcap \Gamma_{\varepsilon}(a, b, \lambda)$. Also, applying (i) again, we have $\Gamma(a, t, t) \leq \varepsilon^{-1}\lambda(a)(\Gamma(b, a, a) - \Gamma(b, t, t)) \leq \varepsilon^{-1}\lambda(a)(s-r)$. By (ii), we obtain $\varepsilon(t, r, r) > \lambda(t)(\Gamma(b, t, t) - \Gamma(b, r, r))$ for all $r \in P$ with $r \neq t$. Therefore $u \notin \Gamma_{\varepsilon}(t, b, \lambda)$ for all $r \in P \setminus \{t\}$ or $\Gamma_{\varepsilon}(t, b, \lambda) \bigcap (P \setminus \{t\}) = \emptyset$.

References

- M. Amemiya, W. Takahashi, Fixed point theorems for fuzzy mappings in complete metric spaces, Fuzzy Sets and system, 125 (2002), 253–260. 1
- [2] J.-P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc., 78 (1980), 391–398.
- [3] J. S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284 (2003), 690–697.
- [4] J. S. Bae, E. W. Cho, S. H. Yeom, A generalization of the Caristi-Kirk fixed point theorem and its application to mapping theorems, J. Korean Math. Soc., 31 (1994), 29–48. 1
- [5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251.
- [6] Y. Chen, Y. J. Cho, L. Yang, Note on the results with lower semi-continuity, Bull Korean Math. Soc., 39 (2002), 535–541.
- [7] P. Z. Daffer, H. Kaneko, W. Li, Variational principle and fixed points, in: Set Valued Mappings With Applications in Nonlinear Analysis, 2002 (2002), 129–136. 1
- [8] S. Dancs, M. Hegedüs, P. Medvegyev, A general ordering and fixed point principle in complete metric spaces, Acta. Sci. Math. (Szeged), 46 (1983), 381–388. 1
- [9] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443–474. 2.1
- [10] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. 1
- [11] I. Ekeland, Remarques sur les problémes variationnels, C. R. Acad. Sci. Paris Sér. A–B, 275 (1972), 1057–1059. 1
- [12] L. Gajek, D. Zagrodny, Geometric variational principle, Dissertationes Math. (Rozprawy Mat.), 340 (1995), 55–71. 1
- [13] A. Hamel, Remarks to an equivalent formulation of Ekelands variational principle, Optimization, 31 (1994), 233–238.
- [14] A. Hamel, A. Löhne, *A minimal point theorem in uniform spaces*, in: Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, **1**, **2** (2003), 557–593.
- [15] D. H. Hyers, G. Isac, T. M. Rassias, *Topics in Nonlinear Analysis and Applications*, World Scientific Publishing Co., River Edge, (1997).
- [16] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381–391.
- [17] Y. Kijima, *On a minimization theorem*, in: Nonlinear Analysis and Convex Analysis (Japanese), **1995** (1995), 59–62.
- [18] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. 1
- [19] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006) 289–392. 2.2, 2.3, 2.4
- [20] J.-P. Penot, *The drop theorem, the petal theorem and Ekelands variational principle*, Nonlinear Anal., **10** (1986), 813–822.
- [21] R. Saadati, S. M. Vaezpoura, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling, 52 (2010), 797–801. 2.8, 2.11
- [22] N. Shioji, T. Suzuki, W. Takahashi, *Contractive mappings, Kannan mappings and metric completeness*, Proc. Amer. Math. Soc., **126** (1998), 3117–3124. 1
- [23] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440–458. 1
- [24] T. Suzuki, On DowningKirks theorem, J. Math. Anal. Appl., 286 (2003), 453-458.
- [25] T. Suzuki, Generalized Caristis fixed point theorems by Bae and others, J. Math. Anal. Appl., 302 (2005), 502–508.
- [26] T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8 (1996), 371–382.
- [27] W. Takahashi, *Existence theorems generalizing fixed point theorems for multivalued mappings*, in: Fixed Point Theory and Applications, **1991** (1991), 397–406.
- [28] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, (2000).
- [29] D. Tataru, Viscosity solutions of HamiltonJacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 345–392.
- [30] C.-K. Zhong, On Ekelands variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997), 239–250. 1