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Abstract
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1. Introduction

EVP was first studied in 1972. Many equivalents have been found by scholars over the years for
primitive EVP[10, 11], see [2–7, 17, 18, 20, 22]. Interesting applications in various fields of applied math-
ematics are found. A number of generalized of these results have been reviewed by other researchers
[1–4, 8, 12–16, 23–30].

2. Ekeland’s variational principle

In this paper, θ : (−∞,∞) −→ (0,∞) is a nondecreasing function, a function g : U −→ (−∞,∞) is said
to be lower semicontinuous from above (shortly Lsca) at r0, when for each sequence {rn} in U such that
rn −→ r0 and g(r1) > g(r2) > · · · > g(rn) > · · · , we have g(r0) 6 lim

n→∞g(rn). The function g is said to be
Lsca on U, when g is Lsca at every point of U, g is proper when h 6≡∞.

Theorem 2.1 ([9, Ekeland theorem]). Let U be a complete metric space with meter d, g : U −→ R ∪ {+∞} be a
proper, semicontinuous, and bounded below function. Then there exists v ∈ U such that g(v) 6 g(u), d(u, v) 6 1,
and g(w) > g(v) − εd(v,w) for all v 6= w.
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Definition 2.2 ([19]). Assume that U is a nonempty set and mapping

G : U×U×U −→ [0,∞)

is satisfying the following conditions:

(i) G(r, s, t) = 0 if r = s = t;
(ii) G(r, r, s) > 0 for all r, s ∈ U, where r 6= s;

(iii) G(r, r, t) 6 G(r, s, t) for all r, s, t ∈ U with r 6= t;
(iv) G(r, s, t) = G(p{r, s, t}) such that p is a permutation of r, s, t;
(v) G(r, s, t) 6 G(r,α,α) +G(α, s, t) for all r, s, t,α in U.

Then G is said to be G-metric and pair (U,G) is said to be G-metric space.

Definition 2.3 ([19]). Let (U,G) be a G-metric space. A sequence {rn} in U is said to be

(a) G-Cauchy sequence if for all ε > 0, there exists q0 ∈N such that for every p,q, l ∈N and p,q, l > q0
then G(rq, rm, rl) < ε;

(b) G-convergent to r ∈ U if for all ε > 0, there exists natural number q0 such that for all p,q > q0, then
G(rq, rp, r) < ε.

Proposition 2.4 ([19]). Assume that (U,G) is a G-metric space, then the following statements are equivalent:

(a) {rn} is a G-caushy sequence;
(b) for each ε > 0, there exists natural number q0 such that for all p,q > q0, then G(rq, rp, rp) < ε.

Definition 2.5. A function σ : R+ −→ R+ is subaddtive when σ(r+ s) 6 σ(r) + σ(s), and σ(εr) = εσ(r)
for every ε > 0.

Definition 2.6. Let U be a nonempty set. A function

G : U×U×U −→ [0,∞)

is said to be quasi-G-metric (q-G-m) if the following conditions be satisfied

1. G(r, s, t) = 0 if r = s = t;
2. G(r, r, s) > 0 for all r, s ∈ U, r 6= s;
3. G(r, r, t) 6 G(r, s, t) for all r, s, t ∈ U, t 6= s;
4. G(r, s, t) 6 G(r, ε, ε) +G(ε, s, t) for all r, s, t, ε ∈ U.

(U,G) is said to be q-G-m space when U is a nonempty set and G is a q-G-m. The concept of Cauchy
sequence, convergence, and complete space are defined as G-metric space.

Definition 2.7. Let (U,G) be a q-G-m space. A function Γ : U×U×U −→ [0,∞) is said to be Γ -function
when

(1) Γ(r, s, t) 6 Γ(r, ε, ε) + Γ(ε, s, t) for all r, s, t, ε ∈ U;
(2) if r ∈ U, {sn}n∈N be a sequence in U which is convergent to s in U and Γ(r, sn, sn) 6 M, then

Γ(r, s, s) 6M;
(3) for every ε > 0, there exists δ > 0 such that Γ(r, ε, ε) 6 δ and Γ(ε, s, t) 6 δ imply G(r, s, t) 6 ε.

Example 2.8 ([21]). Let (U,d) be a metric space and G : U3 −→ [0,∞) defined by G(r, s, t) = max{d(r, s),
d(r, t),d(s, t)} for all r, s, t ∈ U. Then Γ = G is a Γ -function on U.

Example 2.9. Assume that

G : U3 −→ [0,∞), G(r, s, t) =
1
3
(| t− r | + | r− s |)

is a function, then G is a q-G-m but isn’t G metric.
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Proof. q-G-m is obvious. We show that G(r, s, t) 6= G{p(r, s, t)} (p is a permutation of r, s, t). Since

G(3, 5, 2) =
1
3
(| 2 − 3 | + | 3 − 5 |) = 1, G(2, 3, 5) =

1
3
(| 3 − 2 | + | 5 − 2 |) =

4
3

,

then G is not a G-metric.

Example 2.10. Let G(r, s, t) be the same as in the previous example. Then Γ = G is a Γ -function.

Proof. (a) and (b) are obvious. Let ε > 0 be given, put δ = ε
2 if Γ(r, ε, ε) = 1

3(| t− ε | + | ε− s |) < ε
2 , then

G(r, s, t) =
1
3
(| t− s | + | r− s |) 6

1
3
(| t− ε | + | ε− r | + | r− ε | + | ε− s |) < ε.

So, (c) is established.

Lemma 2.11 ([21]). Assume that (U,G) is a G-metric space and Γ is a Γ -function on U. Let {un} and {vn} be two
sequences in U, {ρn} and {φn} be in [0,∞], which are convergent to zero. Let u, v,w, ε ∈ U, then

(1) if Γ(v,un,un) 6 ρn and Γ(un, v,w) 6 φn for all n ∈N, then G(v, v,w) < ε and hence w = v;
(2) if Γ(un,un,un) 6 ρn and Γ(un,um,w) 6 φn for every m > n, then G(vn, vm,w) is convergent to zero

and hence vn → w;
(3) if Γ(un,um,ul) 6 ρn for all m,n, l ∈N with n 6 m 6 l, then {un} is a G-Cauchy sequence;
(4) if Γ(un, ε, ε) 6 ρn for all n ∈N, then {un} is a G-Cauchy sequence.

Lemma 2.12. Let Γ be a Γ -function on U×U×U. If sequence {rn} be in U that lim sup
n−→∞ {Γ(rn, rm, rl),n 6 m 6

l} = 0, then {rn} will be a G-Cauchy sequence in U.

Proof. Assume ρn = sup{Γ(rn, rm, rl)}, then lim
n→∞ ρn = 0. By Lemma 2.11 (3), {rn} is aG-Cauchy sequence.

Lemma 2.13. Let g : U −→ [−∞,∞] be a function and Γ be a Γ -function on U×U×U. The set P(r) is defined
by

P(r) = {s ∈ U; s 6= r, Γ(r, s, s) 6 θ(g(r))(g(r) − g(s))}·

If P(r) be nonempty, then for every s ∈ P(r), we will have

P(s) ⊆ P(r) and g(s) 6 g(r).

Proof. Let s ∈ P(r). So s 6= r and Γ(r, s, s) 6 θ(g(r))(g(r)−g(s)). Since Γ(r, s, s) > 0 and θ is nondecreasing
and positive function, then g(r) > g(s). If P(s) = ∅ then P(s) ⊆ P(r). Therefore t 6= s and Γ(s, t, t) 6
θ(g(s))(g(s) − g(t)) as above g(s) > g(t). Since Γ be a Γ -function, then

Γ(r, t, t) 6 Γ(r, s, s) + Γ(s, t, t) 6 θ(g(r))(g(r) − g(t)).

We claim that t 6= r. Assume that t = r so Γ(r, t, t) = 0. On the other hand

Γ(r, s, s) 6 θ(g(r))(g(r) − g(s)) 6 θ(g(r))(g(r) − g(t)) = 0 =⇒ Γ(r, s, s) = 0,

then Γ(r, s, s) = 0. For every ε > 0, we have Γ(r, t, t) = 0 < ε and Γ(t, s, s) = 0 < ε then by definition
Γ -function, we have G(t, s, s) < ε, so G(t, s, s) = 0 and t = s. This is a contradiction, therefore t ∈ P(r)
and P(s) ⊆ P(r).

Proposition 2.14. Assume that (U,G) is a complete q-G-m space and g : U −→ [−∞,∞] is a proper and bounded
below function, Γ is a Γ -function on U×U×U. Let

P(r) = {s ∈ U; s 6= r, Γ(r, s, s) 6 θ(g(r))(g(r) − g(s))}·

Let {rn} be a sequence in U such that P(rn) be nonempty and for all n ∈ N, rn+1 ∈ P(rn). Then, there exists
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r0 ∈ U such that rn −→ r0 and r0 ∈
∞⋂
n=1

P(rn). Also if for every n ∈ N, we have g(rn+1) 6 inf
t∈P(rn)

g(t) + 1
n ,

then
∞⋂
n=1

P(rn) will only has one member.

Proof. At first we prove that {rn} is a Cauchy sequence by Lemma 2.13, g(rn) > g(rn+1) for all n ∈ N.
Therefore {g(rn)} is nonincreasing. On the other hand g is bounded below then lim

n→∞g(rn) = u, and

g(rn) > u for all n ∈N. We claim that

lim sup
n→∞ {Γ(rn, rm, rm) : m > n} = 0·

We have

Γ(rn, rm, rm) 6 Γ(rn, rn+1, rn+1) + Γ(rn+1, rm, rm)

6 Γ(rn, rn+1, rn+1) + Γ(rn+1, rn+2, rn+2) + · · ·+ Γ(rm−1, rm, rm),

then

Γ(rn, rm, rm) 6
m−1∑
j=n

Γ(rn, rm, rm) 6 θ(g(r))(g(rn) − u)

for all m,n ∈N with m > n.
Put ρn = θ(g(r))(g(rn) − u), then sup{Γ(rn, rm, rm) : m > n} 6 ρn· for all n ∈ N. Since lim

n→∞g(rn) =
u, we result

lim sup
n−→∞ {Γ(rn, rm, rm) : m > n} = 0

and lim
n→∞ ρn = 0·. By Lemma 2.12, {un} is a G-Cauchy sequence. Then, there exists r0 ∈ U such that

rn → u0. We show that r0 ∈
∞⋂
n=1

P(rn). Since g is Lsca, then g(r0) 6 lim
n→∞g(rn) = u 6 g(rk).

Let n ∈N, we have

Γ(rn, rm, rm) 6
m−1∑
j=n

Γ(rj, rj+1, rj+1) 6 θ(g(rn))(g(rn) − g(r0))

for all m ∈N with m > n. By Definition 2.7 (2), we have

Γ(rn, r0, r0) 6 θ(g(rn)(g(rn) − g(r0))

for all n ∈N. Also r0 6= r for all n ∈N, suppose it is not, then there exists j ∈N such that r0 = rj. Since

Γ(rj, rj+1, rj+1) 6 θ(g(rj))(g(rj) − g(rj+1)) 6 θ(g(rj))(g(rj) − g(r0)) = 0,

then we have Γ(rj, rj+1, rj+1) = 0 and in the same way

Γ(rj+1, rj+2, rj+2) = 0.

Now assume ε > 0, Γ(rj, rj+1, rj+1) = 0 < δ, and Γ(rj+1, rj+2, rj+2) = 0 < δ. Therefor by Definition 2.7
(3) we get it G(rj, rj+2, rj+2) < ε. Then rj = rj+2 that is a contradiction because of rj 6= rj+2. Since
rj+1 ∈ P(rj), then P(rj+1) ⊆ P(rj) and rj+2 ∈ P(rj+1). So rj+2 ∈ P(rj). We suppose rj+2 6= rj for all n ∈N.

We have r0 ∈
∞⋂
n=1

P(rn), then
∞⋂
n=1

P(rn) 6= ∅. Let g(rn+1) 6 inf
t∈P(rn)

g(t) + 1
n for all r0 6= rn. We show that

∞⋂
n=1

P(rn) = {r0}. Assume that w ∈
∞⋂
n=1

P(rn), then

Γ(rn,w,w) 6 θ(g(rn))(g(rn) − g(w)) 6 θ(g(r1))(g(rn) − inf
t∈P(rn)

g(t)) 6 θ(g(r1))(g(rn) − g(rn+1) +
1
n
).
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Let
ϕn = θ(g(r1))(g(rn) − g(rn+1) +

1
n
)

for all n ∈ N, then lim
n→∞ϕn = 0, we get it lim

n→∞ Γ(rn,w,w) = 0. On the other hand {rm} is a G-

Cauchy sequence. Then lim
n→∞ Γ(rm, rm, rn) = 0 and we get it rn → ∞, by uniqueness w = r0. Then∞⋂

n=1
P(rn) = {r0}.

Theorem 2.15 (Generalized Ekeland’s variational principle). Assume that (U,G) is a complete q-G-m space
and g : U −→ (−∞,∞] be a proper, bounded below and Lsca function. Γ is a Γ -function on U×U×U, then there
exists r ∈ U such that

Γ(v, r, r) > θ(g(r))(g(r) − g(v))

for all r ∈ U with v 6= r.

Proof. Suppose it isn’t true. Then for every r ∈ U, there exists s ∈ U, s 6= r such that Γ(r, s, s) 6
θ(g(r))(g(r) − g(s)). That is P(r) 6= ∅. We define the sequence {rn} as follows. Put r1 = ε, we choose
r2 ∈ P(r1) such that g(r2) 6 inf

r∈P(r1)
g(r) + 1. In the same way suppose that rn ∈ U is given. We choose

rn+1 ∈ P(rn) such that g(rn+1) 6 inf
r∈P(rn)

g(r) + 1
n ·. By proposition 2.14, there exists r0 ∈ U such that

∞⋂
n=1

P(rn) = {r0}.

By lemma 2.13, we have P(r0) ⊆
∞⋂
n=1

P(rn) = {r0} then P(r0) = {r0}. This is a contradiction. Therefore there

exists v ∈ U such that
Γ(v, r, r) > θ(g(v))(g(v) − g(r)).

Theorem 2.16 (Generalized Caristi’s common fixed point theorem for a family of multivalued maps).
Assume that (U,G) is a complete q-G-m space and g : U −→ (−∞,∞] be a proper, bounded below and Lsca
function. Γ is a Γ -function on U×U×U. Let J be any index set and for each j ∈ J, suppose Tj : U → 2U is
multivalued map such that for each r ∈ U, there is s = s(r, j) ∈ Tj(r) with

Γ(r, s, s) 6 θ
(
g(r)

)(
g(r) − g(s)

)
. (2.1)

Then there is w ∈ U such that w ∈
⋂
j∈J Tj(w), and Γ(w,w,w) = o.

Proof. By Theorem 2.15, there exists w ∈ U such that Γ(w, r, r) > θ
(
g(w)

)(
g(w) − g(r)) for all r ∈ U with

r 6= w. Now we show that w ∈
⋂
j∈J Tj(w) and Γ(w,w,w) = 0. According to the assumption, there exists

r(t, j) ∈ Tj(w) such that Γ(w, t, t) 6 θ
(
g(t)

)(
g(w) − g(t(w, j))

)
. We show that t(w, j) = w for all j ∈ J. On

the contrary, let t(w, j0) 6= w for some j0 ∈ J, then

Γ(w, t, t) 6 θ
(
g(w)

)(
g(w) − g(t)

)
< Γ(w, t, t),

which is a contradiction. Therefore w = t(w, j) ∈ Tj(w) for all j ∈ T .
Since Γ(w,w,w) 6 θ

(
g(w)

)(
g(w) − g(w)) = 0, we obtain Γ(w,w,w) = 0.

Remark 2.17. We conclude that Theorem 2.16 concludes Theorem 2.15.
On the contrary, for each r ∈ U, there exists s ∈ U with s 6= r such that

Γ(r, s, s) 6 θ
(
g(r)

)(
g(r) − g(s)

)
.
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Put T : U −→ 2U\{∅} by

T(r) = {s ∈ U : s 6= r, Γ(r, s, s) 6 θ
(
g(r)

)(
g(r) − fg(s)

)
}.

By Theorem 2.16, T has a fixed point w ∈ U, this means, w ∈ T(w). This is a contradiction, because
w /∈ T(w).

Theorem 2.18 (Nonconvex maximal element theorem for a family of multivalued maps). Assume that
(U,G) is a complete q-G-m space and g : U −→ (−∞,∞] be a proper, bounded below and Lsca function. Γ is a
Γ -function on U×U×U, and J be any index set. For each j ∈ J, let Tj : U −→ 2U be a multivalued map. Suppose
that for each (r, j) ∈ U× J with Tj(r) 6= ∅, there exists s = s(r, j) ∈ U with s 6= r such that (2.1) holds. Then there
exists w ∈ U such that Tj(W) = ∅ for each j ∈ J.

Proof. By Theorem 2.15, there exists w ∈ U, such that Γ(w, r, r) > θ
(
g(w)

)(
g(w) − f(r)

)
for all r ∈ U with

r 6= w. We prove that Tj(w) = ∅ for each j ∈ J. Indeed, if Tj0(w) 6= ∅, for some j0 ∈ J, according to the
assumption, there exists t = t(w, j0) ∈ U with t 6= w such that θ(w, t, t) 6 θ

(
g(w)

)(
g(w) − g(t)

)
. Also

Γ(w, t, t) > θ
(
g(w)

)(
g(w) − g(t)

)
, which is a contradiction.

Remark 2.19. We conclude that Theorem 2.18 concludes Theorem 2.15.
On the contrary, thus for each r ∈ U, there exists s ∈ U with s 6= r such that

Γ(r, s, s) 6 θ
(
g(r)

)(
g(r) − g(s)

)
.

For each r ∈ U, we define T(r) = {s ∈ U : s 6= r, (r, s, s) 6 θ
(
g(r)

)(
g(r) − g(s)

)
. Then T(r) 6= ∅ for all r ∈ U.

But by Theorem 2.18, there exists w ∈ U such that T(w) = ∅, which is a contradiction.

3. Nonconvex optimization and minimax theorems

Theorem 3.1 (Generalized Takahashi’s nonconvex minimization theorem). Assume that (U,G) is a complete
q-G-m space and g : U −→ (−∞,∞] be a proper, bounded below and Lsca function. Γ is a Γ -function onU×U×U.
Suppose that for any r ∈ U with g(r) > infw∈U fg(w) there exists s ∈ U with s 6= r such that (2.1) holds. Then
there exists w ∈ U such that g(w) = inft∈U g(t).

Proof. By Theorem 2.15, there exists w ∈ U such that Γ(w, r, r) > θ
(
g(w)

)(
g(w) − g(r)

)
for all r ∈ U,

r 6= w. Now we prove that g(w) = inft∈U g(t).
On the contrary, then g(w) > inft∈U g(t). According to the assumption, there exists s = s(w) ∈ U,

with s 6= w such that Γ(w, s, s) 6 θ
(
g(w)

)(
g(w)−g(s)

)
. Then we have Γ(w, s, s) 6 θ

(
g(w)

)(
g(w)−g(s)

)
<

Γ(w, s, s), which is a contradiction.

Remark 3.2. Using Theorem 3.1, we can conclude Theorem 2.15.
On the contrary, then for each r ∈ U, there exists s ∈ U with s 6= r such that Γ(r, s, s) 6 θ

(
g(r)

)(
g(r) −

g(s)
)
. By Theorem 3.1, there exists w ∈ U such that g(w) = inft∈U g(t). According to the assumption,

there exists z ∈ U with z 6= r, such that Γ(w, z, z) 6 θ
(
g(w)

)(
g(w) − g(z)

)
6 0. Then Γ(w, z, z) = 0 and

g(w) = g(z) = inft∈U g(t). There exists t ∈ U with t 6= z such that Γ(z, t, t) 6 θ
(
g(z)

)(
g(z) − g(t)

)
6 0.

Then we have Γ(z, t, t) = 0 and g(w) = g(z) = g(t) = infr∈U g(r). Since Γ(w, t, t) 6 Γ(w, z, z) + Γ(z, t, t),
then Γ(w, t, t) = 0. For ε > 0 we have Γ(w, z, z) = 0 < δ, Γ(z, t, t) = 0 < δ then G(w, t, t) < ε, that is, w = t.
Also for ε > 0 we have Γ(z,w,w) = 0 < δ, Γ(w, t, t) = 0 < δ, then G(z, t, t) < ε that is, z = t, which is a
contradiction.

Theorem 3.3 (Nonconvex minimax theorem). Assume that (U,G) is a complete q-G-m space and Γ is a Γ -
function on U×U×U. Let F : U×U → (−∞,∞] be a proper lsca and bounded below function in the first
argument. Suppose that for each r ∈ U with {x ∈ U : F(r, x) > infa∈U F(a, x)} 6= ∅, there exists s = s(r) ∈ U with
s 6= r such that

Γ(r, s, s) 6 θ
(
F(r,w)

)(
F(r,w) − F(s,w)

)
(3.1)

for all w ∈ {x ∈ U : F(r, x) > infa∈U F(a, x)}. Then infr∈U sups∈U F(u, s) = sups∈U infr∈U F(r, s).
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Proof. By Theorem 3.1, for every s ∈ U, there exists r(s) ∈ U such that F
(
r(s), s

)
= infr∈U F(r, s). Then

sups∈U F
(
r(s), s

)
= sups∈U infr∈U F(r, s).

By displacement of r(s) with an arbitrary r ∈ U and then getting inf, we obtain infr∈U sups∈U F(r, s) =
sups∈U infr∈U F(r, s).

Theorem 3.4 (Nonconvex equilibrium theorem). Assume that (U,G) is a complete q-G-m space and Γ is a
Γ -function on U×U×U. Let F and θ be the same as in Theorem 3.3. Let, for each r ∈ U with {x ∈ U : F(r, x) <
0} 6= ∅, there exists s = s(r) ∈ U with s 6= r such that (3.1) holds for all t ∈ U. Then there exists y ∈ U such that
F(y, s) > 0 for all s ∈ U.

Proof. From Theorem 2.15 for each t ∈ U, there exists y(t) ∈ U such that Γ(y(t), r, r) > θ
(
F(y(t), t)

)(
F(y(t),

t) − F(r, t)
)

for all r ∈ U with r 6= y(t). We show that there exists y ∈ U such that F(y, s) > 0 for all
s ∈ U. On the contrary, for each r ∈ U there exists s ∈ U such that F(r, s) < 0. Then for each r ∈ U,
{x ∈ U : F(r, x) < 0} 6= ∅. According to the assumption, there exists s = s(y(t)), y 6= y(t) such that
Γ(y(t), s, s) 6 θ

(
F(y(t), t)

)(
F(y(t), t) − F(s, t)

)
, which is a contradiction.

Example 3.5. Let U = [0, 1] and G(r, s, t) = max{|r − s|, |r − t|, |s − t|}. Then (X,G) is a complete q-G-
m space. Suppose that a,b be positive real numbers with a > b. Suppose H : U × U −→ R with
H(r, s) = a

2 r−
b
3 s. Therefore, function r −→ H(r, s) is proper, lower semicontinuous and bounded below,

and H(1, s) > 0 for every s ∈ U. Also H(r, s) > 0 for every r ∈ [ba , 1] and for every s ∈ U. In fact, for every
r ∈ [0, ba ], H(r, s) = ar− bs < 0 when s ∈ [abr, 1]. Then set {x ∈ U : H(r, x) < 0} 6= ∅ for every r ∈ [0, ba ]. Let
r, s ∈ U, r > s, we have r− s = 2

a {(
a
2 r−

b
3 x) − (a2 s−

b
3 x)} for every x ∈ U. Let θ : [0,∞) −→ [0,∞) with

θ(t) = 2
a be defined. Therefore G(r, s, s) 6 θ

(
H(r, x)

)(
H(r, x) −H(s, x)

)
for every r > s, and r, s, x ∈ U. By

Theorem 3.4 there exists y ∈ U such that H(y, s) > 0 for every s ∈ U.

4. Applications

Definition 4.1. Let (U,G) be a q-G-m space and a,b ∈ U. Suppose that λ : U→ (0,∞) be a function and
Γ be a Γ -function on U. Define

Γε(a,b, λ) = {r ∈ U : εΓ(a, r, r) 6 λ(a)
(
Γ(b,a,a) − Γ(b, r, r)

)
}

such that ε ∈ (0,∞) and a,b ∈ U.

Lemma 4.2. Assume that (U,G) is a complete q-G-m space and g : U −→ (−∞,∞] be a proper, bounded below
and Lsca function and Γ is a Γ -function on U×U×U. Let ε > 0. Suppose that there exists x ∈ U such that
g(x) <∞ and Γ(x, x, x) = 0. Then there exists t ∈ U such that

(i) εΓ(x, t, t) 6 θ
(
g(x)

)(
g(x) − g(t)

)
;

(ii) Γ(t, r, r) > θ
(
g(t)

)(
g(t) − g(r)

)
for all r ∈ U with r 6= t.

Proof. Let x ∈ U, g(x) < +∞ and Γ(x, x, x) = 0. Put

S = {r ∈ U : εΓ(x, r, r) 6 θ
(
g(x)

)(
g(x) − g(r)

)
.

Therefore (S,G) is a nonempty complete q-G-m space. By Theorem 2.15, there exists t ∈ S such that
εΓ(t, , r, r) > θ

(
g(t)

)(
g(t) − g(r)

)
for all r ∈ S with r 6= t. For any r ∈ U\S, since ε[Γ(x, t, t) + Γ(t, r, r)] >

εΓ(x, r, r) > θ
(
g(x)

)(
g(x) − g(r)

)
> εΓ(x, t, t) + θ

(
g(t)

)(
g(t) − g(r)

)
, therefore εΓ(t, r, r) > θ

(
g(t)

)(
g(t) −

g(r)
)

for all r ∈ U\S. Then εΓ(t, r, r) > θ
(
g(t)

)(
g(t) − g(t)

)
for all r ∈ U with r 6= t.

Theorem 4.3 (Generalized flower petal theorem). Suppose that P be a proper complete subset of a q-G-m space
U and a ∈ P. Let Γ be a Γ -function on U with Γ(a,a,a) = 0. Let b ∈ U\P, Γ(b,P,P) = infr∈P Γ(b, r, r) > u

and Γ(b,a,a) = s > 0 and there exists a function λ from U into (0,∞) satisfying λ(r) = θ
(
Γ(b, r, r)

)
for some

nondecreasing function θ from (−∞,∞] into (0,∞). Then for each ε > 0, there exists t ∈ P
⋂
Γε(a,b, λ)such that

Γε(t,b, λ)
⋂
(P\{t}) = ∅ and (a, t, t) 6 ε−1λ(a)(s− r).

Proof. (P,G) is a complete q-G-m space. Consider g : P −→ (−∞,∞],g(r) = Γ(b, r, r). Since g(a) =
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Γ(b,a,a) = s < ∞ and Γ(b,P,P) = infr∈P Γ(b, r, r) > u then g is a proper lower semicontinuous and
bounded below function. By Lemma 4.2, there exists t ∈ P such that

(i) εΓ(a, t, t) 6 λ(a)
(
g(a) − g(t)

)
;

(ii) εΓ(t, r, r) > λ(t)
(
g(t) − g(t)

)
for all r ∈ P with r 6= t.

Applying (i), we have t ∈ P
⋂
Γε(a,b, λ). Also, applying (i) again, we have Γ(a, t, t) 6 ε−1λ(a)

(
Γ(b,a,a) −

Γ(b, t, t)
)
6 ε−1λ(a)(s− r). By (ii), we obtain ε(t, r, r) > λ(t)

(
Γ(b, t, t) − Γ(b, r, r)

)
for all r ∈ P with r 6= t.

Therefore u /∈ Γε(t,b, λ) for all r ∈ P\{t} or Γε(t,b, λ)
⋂
(P\{t}) = ∅.
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