
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 12 (2019), 217–229

Research Article

ISSN: 2008-1898

Journal Homepage: www.isr-publications.com/jnsa

The transmuted transmuted-G family: properties and appli-
cations

M. M. Mansoura,b, Enayat M. Abd Elrazika,b, Ahmed Z. Afifyb, Mohammad Ahsanullahc, Emrah Altund,∗

aDepartment of MIS, Yanbu, Taibah University, Saudi Arabia.
bDepartment of Statistics, Mathematics and Insurance, Benha University, Egypt.
cDepartment of Management Sciences, Rider University NJ, USA.
dDepartment of Statistics, Bartin University, Bartin 74100, Turkey.

Abstract
This paper introduces a new family of continuous distributions called the transmuted transmuted-G family which extends

the quadratic rank transmutation map pioneered by Shaw and Buckley [W. T. Shaw, I. R. Buckley, arXiv preprint, 2007 (2007),
28 pages]. We provide two special models of the new family which can be used effectively to model survival data since they
accommodate increasing, decreasing, unimodal, bathtub-shaped and increasing-decreasing-increasing hazard functions. We also
provide two new characterization theorems of the proposed family. The estimation of the model parameters is performed by the
maximum likelihood method. The flexibility of the proposed family is illustrated by means of two applications to real data.
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1. Introduction

Shaw and Buckley [24] proposed the quadratic rank transmutation map, also known as transmuted-
G (TG) class. This class of generalized distributions has been receiving considerable attention over the
last years, in particular after the recent works of transmuted generalized extreme value due to Aryal
and Tsokos [9], transmuted Weibull due to Aryal and Tsokos [10], transmuted additive Weibull due
to Elbatal and Aryal [12], transmuted Lindley-geometric due to Merovci and Elbatal [21], transmuted
complementary Weibull geometric due to Afify et al. [3], new transmuted Lindley due to Mansour and
Mohamed [17], transmuted Marshall-Olkin Fréchet due to Afify et al. [2] and transmuted Weibull-Pareto
due to Afify et al. [4] distributions, among others.

Furthermore, there are some extensions for the TG family in the literature. For example, the comple-
mentary generalized transmuted Poisson-G due to Alizadeh et al. [7], another generalized transmuted
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due to Merovci et al. [19], the exponentiated transmuted-G due to Merovci et al. [20] and the beta
transmuted-H due to Afify et al. [5], among others.

The cumulative distribution function (cdf) and probability density function (pdf) of the TG family are
given by

H(x; λ,ϕ) = (1 + λ)G(x;ϕ) − λ [G(x;ϕ)]2 (1.1)

and
h(x; λ,ϕ) = g(x;ϕ) [1 + λ− 2λG(x;ϕ)] , (1.2)

respectively, where G(x;ϕ) is the baseline cdf with a parameter vector ϕ, where ϕ = ϕk = (ϕ1,ϕ2, . . .)
and |λ| 6 1. Further details were explored by Shaw and Buckley [24].

In this paper, we propose the transmuted transmuted-G (TT-G) family of distributions, which extends
the TG family by incorporating an additional transmuted parameter to generate more flexible distribu-
tions. The proposed distribution gives better fits over a large number of well-known lifetime distribu-
tions, including those with three and four parameters. We provide a comprehensive account of some of
its mathematical properties. In fact, the TT-G family has a good physical interpretation (see Section 2).

The rest of the paper is organized as follows. In Section 2, we define the TT-G family, provide its
special cases and give a very useful representation for its density function. In Section 3, we provide two
special models corresponding to the baseline Weibull and Lindley distributions. We derive, in Section
4, some mathematical properties of the TT-G family. We give two important characterization theorems
in Section 5. Maximum likelihood estimation of the model parameters is addressed in Section 6. In
Section 7, we illustrate the flexibility of the new family by means of two applications to real data. A small
simulation study is carried out in Section 8. Finally, some concluding remarks are provided in Section 9.

2. The TT-G family

Let p(t) be the pdf of a random variable T ∈ [b, c] for −∞ < b < c <∞ and let W[H(x)] be a function
of the cdf of a random variable X such that W[H(x)] satisfies the following conditions:

(i) W[H(x)] ∈ [b, c];
(ii) W[H(x)] is diferentiable and monotonically non-decreasing, and;

(iii) W[H(x)]→ b as x→ −∞ and W[|H(x)]→ c as x→∞.

Recently, Alzaatreh et al. [8] defined the T-X family of distributions by

F(x) =

W[H(x)]∫
b

p(t)dt, (2.1)

where W[H(x)] satisfies conditions (i)-(iii). The pdf corresponding to (2.1) is given by

f(x) =

{
d

dx
W[H(x)]

}
p {W[H(x)]} .

For W[H(x)] = H(x; λ,ϕ) given in (1.1) and p(t) = 1 + a− a2t, 0 < t < 1, we define the cdf of the new
TT-G family of distributions by

F(x;a, λ,ϕ) =

H(x;λ,ϕ)∫
0

(1 + a− a2t)dt = (1 + a)H(x; λ,ϕ) − a [H(x; λ,ϕ)]2 . (2.2)

The corresponding pdf is given by

f(x;a, λ,ϕ) = h(x; λ,ϕ) [1 + a− 2aH(x; λ,ϕ)] , (2.3)



M. M. Mansour, et al., J. Nonlinear Sci. Appl., 12 (2019), 217–229 219

where H(x; λ,ϕ) is the TG cdf (1.1), h(x; λ,ϕ) is the TG pdf (1.2) and −1 6 a, λ 6 1 are two additional
transmuted parameters. We denote by X ∼TT-G(a, λ,ϕ) a random variable having the density function
(2.3). Further, we will exclude the reliance on the model parameters and write simply F(x) = F(x;a, λ,ϕ),
H(x) = H(x; λ,ϕ) and f(x) = f(x;a, λ,ϕ), etc.. Clearly, for a = 0, the TT-G family reduces to the TG family.
For a = 0 and λ = 0, the TT-G reduces to the base distribution.

The TT-G family reduces to the TG family when a = 0. So, there are more than 50 well-know
distributions in the literature as special models of the TT-G family which are listed in Tahir and Cordeiro
[25].

The hazard rate function (hrf) associated with (2.2), η(x;a, λ,ϕ), is given by

η(x;a, λ,ϕ) =
h(x; λ,ϕ) [1 + a− 2aH(x; λ,ϕ)]

1 −H(x; λ,ϕ) [1 + a− aH(x; λ,ϕ)]
.

We give a valuable representation to (2.3) using the concept of exponentiated-G (EG) distributions. The
TT-G family is a mixture of the TG and exponentiated-TG (ETG) distributions, the last one with power
parameter 2.

Let Yα be a random variable following the ETG class with parameter α = 1, 2, say Y1 ∼TG(λ,ϕ) and
Y2 ∼ETG(2, λ,ϕ), i.e., its cdf and pdf are

H1(x) = H(x; λ,ϕ), H2(x) = [H(x; λ,ϕ)]2, and h1(x) = h(x; λ,ϕ), h2(x) = 2h(x; λ,ϕ)H(x; λ,ϕ),

respectively. The properties of the TG distributions have been studied by many researchers in the last
twenty years as seen from Table 1.

Hence, the TT-G family density in (2.3) can be expressed as

f(x;a, λ,ϕ) = (1 + a)h1(x; λ,ϕ) − ah2(x; λ,ϕ). (2.4)

Equation (2.4) reveals that the TT-G density function is a mixture of two ETG densities. Thus, some math-
ematical properties of the new family can be derived from those properties of the ETG class. For example,
the ordinary and incomplete moments and mgf of X can be obtained directly from those quantities of the
ETG class. Further information about exponentiated distributions can be explored in Al-Hussaini and
Ahsanullah [6].

3. Special TT-G distributions

In this section, we provide two special cases of the TT-G family. The pdf (2.3) will be most tractable
when G(x;ϕ) and g(x;ϕ) have simple analytic expressions. The two special models corresponding to the
Weibull (W) and Lindley (Li) distributions. The pdf and cdf of the W distribution with positive parameters
α and θ model are given (for x > 0) by W: g(x) = αθαxα−1e−(θx)α and G(x) = 1 − e−(θx)α .

The pdf and cdf of the Li distribution with positive parameter θ are given (for x > 0) by Li: g(x) =
θ2

1+θ(1 + x)e−θx and G(x) = 1 − 1+θ+θx
1+θ e−θx.

3.1. The TTW distribution
The TTW pdf follows from (2.3) as

f(x) = αθαxα−1e−(θx)α
[
1 − λ+ 2λe−(θx)α

](
1 + a− 2a

{
(1 + λ)

[
1 − e−(θx)α

]
− λ

[
1 − e−(θx)α

]2
})

.

The TTW distribution includes the TW distribution with a = 0. For α = 2, we obtain the TT-Rayleigh
(TTR) distribution. For α = 1, we obtain the TT-exponential (TTEx) distribution. For a = 0 and α = 2, we
obtain the TR distribution. For a = 0 and α = 1, we obtain the TEx distribution. For a = 0 and λ = 0, we
have the W distribution. For a = 0 , λ = 0, and α = 2, we have the R distribution. For a = 0 , λ = 0, and



M. M. Mansour, et al., J. Nonlinear Sci. Appl., 12 (2019), 217–229 220

α = 1, we have the Ex distribution. Plots of the pdf and hrf of the TTW distribution for some parameter
values are displayed in Figure 1.

The pdf plots reveals that the TTW model can be reversed J-shape, unimodal or left skewed. The TTW
hrf can be decreasing, increasing, increasing then bathtub, upside down bathtub or reversed J-shape.
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Figure 1: Plots of the pdf and hrf of the TTW for some parameter values.

3.2. The TTLi distribution

The TTLi pdf is given by

f(x) =
θ2

1 + θ
(1 + x)e−θx

(
1 − λ+ 2λde−θx

){
1 + a− 2a

[
(1 + λ)

(
1 − de−θx

)
− λ

(
1 − de−θx

)2
]}

,

where d = (1 + θ+ θx) / (1 + θ).
For a = 0, the TTLi distribution reduces to the TLi distribution. For a = 0 and λ = 0, we have the Li

distribution. Plots of the pdf and hrf of the TTLi model for some selected parameter values are displayed
in Figure 2. Figure 2 reveals that the pdf of the TTLi model can be reversed J-shape, unimodal or left
skewed. The TTLi hrf can be decreasing, increasing, upside down bathtub or bathtub failure rate shapes.
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Figure 2: Plots of the pdf and hrf of the TTLi model for some parameter values.

4. Mathematical properties

In this section, we investigate mathematical properties of the TT-G family of distributions. The nu-
merical commutations of the formulae derived in this section and also in other sections of this paper can
easily be derived using Mathlab, Mathematica, and Maple.



M. M. Mansour, et al., J. Nonlinear Sci. Appl., 12 (2019), 217–229 221

4.1. Ordinary and incomplete moments
The rth ordinary moment of X, say µ́r, follows from (2.4) as

µ́r = E(X
r) = (1 + a)E(Yr1 ) − aE(Y

r
2 ), (4.1)

where E(Yr1 ) and E(Yr2 ) can be computed numerically in terms of the baseline quantile function (qf)
QH(u, λ,ϕ) = H−1(x, λ,ϕ) as

E(Yr1 ) =

1∫
0

QH(u; λ,ϕ)rdu, E(Yr2 ) = 2

1∫
0

QH(u; λ,ϕ)rudu.

Setting r = 1 in (4.1) gives mean of X.

The nth incomplete moment of X is defined by mn(y) =
y∫

−∞ xnf(x)dx and we have

mn(y) = (1 + a)m1n(y) − am2n(y),

where

m1n(y) =

H(y,λ,ϕ)∫
0

QH(u; λ,ϕ)du, m2n(y) = 2

H(y,λ,ϕ)∫
0

QH(u; λ,ϕ)udu.

The integrals m1n(y) and m2n(y) can be determined analytically for special models with closed-
form expressions for QH(u, λ,ϕ) or computed at least numerically for most baseline distributions. The
incomplete moments play an important role in measuring inequality, for example, income quantiles and
Lorenz and Bonferroni curves, which depend upon the incomplete moments of a distribution.

5. Characterization

We will use the following assumption in our characterization.

Assumption 5.1. Suppose the random variable X has an absolutely continuous distribution with cdf F(x) and pdf
f(x) for γ < x < δ. We assume further E(X) exists.

Lemma 5.2. Under the assumption A for the random variable X, if

E(X|X 6 x) = g1(x)
f(x)

F(x)
,

where g1(x) is a continuous differentiable function in γ < x < δ, then

f(x) = ce
∫ x−g′1(x)

g1(x)
dx,

where c is determined by the condition
∫δ
γ f(x)dx = 1.

Lemma 5.3. Under the Assumption 5.1 for the random variable X, if

E(X|X > x) = g2(x)
f(x)

1 − F(x)
,

where g2(x) is a continuous differentiable function in γ < x < δ, then

f(x) = ce
−
∫ x+g′2(x)

g2(x)
dx,

where c is determined by the condition
∫δ
γ f(x)dx = 1.
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The proofs of the Lemmas are easy to establish.

Theorem 5.4. Under the Assumption 5.1 for the random variable X, if

E(X|X 6 x) = g1(x)
f(x)

F(x)
,

where

g1(x) =
1
f(x)

[(1 + a)m1(x) − 2am2(x)], m1(x) =

∫x
γ

uh(u, λ,φ)du, m2(x) =

∫x
γ

uh(u, λ,φ)H(u, λ,φ)du,

and where h(x, λ,φ) is a pdf in γ < x < δ and H(u, λ,φ) is the corresponding cdf, then

f(x) = h(x, λ,φ) [1 + a− 2aH(u, λ,φ)] .

Proof. We will write f(x) as

f(x) = (1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ).

Then

g1(x) =

∫x
γ uf(u)du

f(x)
=

1
f(x)

[(1 + a)m1(x) − 2am2(x)] .

Suppose that

g1(x) =
1
f(x)

[(1 + a)m1(x) − 2am2(x)] .

Hence

g′1(x) = x− g1(x)

{
(1 + a)h′(x, λ,φ) − 2a [h′(x, λ,φ)H(u, λ,φ)] + h′(x, λ,φ)2

(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)

}
.

Thus
x− g′1(x)

g(x)
=

(1 + a)h′(x, λ,φ) − 2a [h′(x, λ,φ)H(u, λ,φ)] + h′(x, λ,φ)2

(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)
.

By Lemma 5.2
f′(x)

f(x)
=

(1 + a)h′(x, λ,φ) − 2a [h′(x, λ,φ)H(u, λ,φ)] + h′(x, λ,φ)2

(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)
.

On integrating the above equality with respect to x, we obtain

f(x) = c [(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)] .

Using the boundary condition
∫δ
γ f(x)dx = 1, we obtain c = 1.

Theorem 5.5. Under the Assumption 5.1 for the random variable X, if

E(X|X > x) = g2(x)
f(x)

1 − F(x)
,

where

g2(x) =
1
f(x)

[(1 + a)m3(x) − 2am4(x)] , m3(x) =

∫δ
x

uh(u, λ,φ)du, m4(x) =

∫δ
x

uh(u, λ,φ)H(u, λ,φ)du,

and where h(x, λ,φ) is a pdf in γ < x < δ and H(u, λ,φ) is the corresponding cdf. Then

f(x) = h(x, λ,φ) [1 + a− 2aH(u, λ,φ)] .
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Proof. We will write f(x) as

f(x) = (1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ).

Then

g2(x) =

∫δ
x uf(u)du

f(x)
=

1
f(x)

[(1 + a)m3(x) − 2am4(x)] .

Suppose that

g2(x) =
1
f(x)

[(1 + a)m3(x) − 2am4(x)] .

Then

g′2(x) = −x− g2(x)

{
(1 + a)h′(x, λ,φ) − 2a [h′(x, λ,φ)H(u, λ,φ)] + h′(x, λ,φ)2

(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)

}
.

Thus
x+ g′2(x)

g2(x)
= −

(1 + a)h′(x, λ,φ) − 2a [h′(x, λ,φ)H(u, λ,φ)] + h′(x, λ,φ)2

(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)
.

By Lemma 5.3
f′(x)

f(x)
=

(1 + a)h′(x, λ,φ) − 2a [h′(x, λ,φ)H(u, λ,φ)] + h′(x, λ,φ)2

(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)
.

On integrating the above equality with respect to x, we obtain

f(x) = c [(1 + a)h(x, λ,φ) − 2ah(x, λ,φ)H(u, λ,φ)] .

Using the boundary condition
∫δ
γ f(x)dx = 1, we obtain c = 1,

g′(x) = x− g(x)

[
(1 + a)h′(x) − 2ah′1(x)
(1 + a)h(x) − 2ah1(x)

]
,

d

dx
ln [(1 + a)h(x) − 2ah1(x)] =

(1 + a)h′(x) − 2ah′1(x)
(1 + a)h(x) − 2ah1(x)

.

6. Maximum likelihood estimation

In this section, we obtain the maximum likelihood estimates (MLEs) of the parameters of the TT-G
distribution from complete samples only. Let X1,X2, . . . ,Xn be observed values from the TT-G distribution
with parameters a, λ, and ϕ . Let Θ = (a, λ,ϕ)T be the p× 1 parameter vector. Then, the all log-likelihood
function for Θ is given by

` = `(Θ) =

n∑
i=1

logh(x; λ,ϕ) +
n∑
i=1

log [1 + a− 2aH(x; λ,ϕ)] .

The components of the score function Un(θ) = (∂`n/∂a,∂`n/∂λ,∂`n/∂ϕ) are

∂`n

∂a
=

n∑
i=1

−2H(x; λ,ϕ)
[1 + a− 2aH(x; λ,ϕ)]

,

∂`n

∂λ
=

n∑
i=1

h
′
λ(x; λ,ϕ)
h(x; λ,ϕ)

+

n∑
i=1

−2aH
′
λ(x; λ,ϕ)

[1 + a− 2aH(x; λ,ϕ)]
,

and

∂`n

∂ϕ
=

n∑
i=1

h
′
ϕ(x; λ,ϕ)
h(x; λ,ϕ)

+

n∑
i=1

−2aH
′
ϕ(x; λ,ϕ)

[1 + a− 2aH(x; λ,ϕ)]
,

where h
′
ϕ(.) means the derivative of the function h with respect to ϕ.



M. M. Mansour, et al., J. Nonlinear Sci. Appl., 12 (2019), 217–229 224

The maximum likelihood estimator Θ̂ is obtained by solving the nonlinear system of equations ∂`n∂a =
∂`n
∂λ = 0 and ∂`n

∂ϕk
= 0. It is usually more convenient to use nonlinear optimization algorithms such as

quasi-Newton algorithm to numerically maximize the log-likelihood function.

7. Applications

In this section, we illustrate the importance and potentiality of the TTW and TTLi models, presented
in Section 3, by means of two real data sets. The fitted models are compared using goodness-of-fit criteria
namely: the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), Hannan-
Quinn information criterion (HQIC), Bayesian information criterion (BIC), −2̂`, where ̂̀ is the maximized
log-likelihood, Anderson-Darling (A∗), and Cramér-von Mises (W∗). The smaller these statistics are, the
better the fits.

7.1. Data set 1: failure times of 84 aircraft windshields

We consider the data on failure and service times for a particular model windshield given in Murthy
et al. [22]. These data were recently studied by Ramos et al. [23]. The data consist of 153 observations,
of which 88 are classified as failed windshields, and the remaining 65 are service times of windshields
that had not failed at the time of observation. The unit for measurement is 1000 h. For this data set,
we shall compare the fits of the TTW model with other models namely: the Kumaraswamy transmuted
exponential (Kw-TE) by Afify et al. [1], McDonald Weibull (McW) by Cordeiro et al. [11], beta Weibull
(BW) by Lee et al. [15], modified beta Weibull (MBW) by Khan [14], and transmuted exponentiated
generalized Weibull (TExGW) by Yousof et al. [26] distributions, whose pdfs (for x > 0) are given by

Kw-TE: f(x) = αabe−αx
{

1 − λ+ 2λe−αx
}{(

1 − e−αx
) [

1 + λe−αx
]}a−1

×
[
1 −
{(

1 − e−αx
) [

1 + λe−αx
]}a]b−1

,

McW: f(x) =
βcαβ

B (a/c,b)
xβ−1 e−(αx)

β
[

1 − e−(αx)
β
]a−1{

1 −

[
1 − e−(αx)

β
]c}b−1

,

BW: f (x) =
βαβ

B (a,b)
xβ−1e−b(αx)

β
[

1 − e−(αx)
β
]a−1

,

MBW: f (x) =
βγaα−β

B (a,b)
xβ−1e−b(

x
α)
β
[

1 − e−(
x
α)
β
]a−1{

1 − (1 − γ)

[
1 − e−b(

x
α)
β
]}−a−b

,

TExGW: f (x) = abβαβxβ−1e−a(αx)
β
[

1 − e−a(αx)
β
]b−1

{
1 + λ− 2λ

[
1 − e−a(αx)

β
]b}

.

The parameters of the above densities are all positive real numbers except for the TExGW distributions
for which |λ| 6 1.

7.2. Data set 2: cancer patients data

The second data set on the remission times (in months) of a random sample of 128 bladder cancer pa-
tients, reported by Lee and Wang [16]. For this data set, we compare the fits of the TTLi distribution with
some other competitive models namely: the new transmuted Lindley (NTLi) by Mansour and Mohamed
[17], transmuted Lindley (TLi) by Merovci [18], power Lindley (PLi) by Ghitany et al. [13], Lindley (Li),
and exponential (Ex) distributions. The pdfs of the NTLi, TLi, PLi, Li, and Ex distributions are give (for
x > 0) by

NTLi: f (x) =
θ2

1 + θ
(1 + x) e−θx

[
δ (1 + λ)

(
1 −

1 + θ+ θx

1 + θ
e−θx

)δ−1

−αλ

(
1 −

1 + θ+ θx

1 + θ
e−θx

)α−1
]

,
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TLi: f (x) =
θ2

1 + θ
(1 + x) e−θx

[
1 − λ+ 2λ

1 + θ+ θx

1 + θ
e−θx

]
,

PLi: f (x) =
αθ2

1 + θ
xα−1 (1 + xα) e−θx

α

,

Li: f (x) =
θ2

1 + θ
(1 + x) e−θx,

Ex: f (x) = θe−θx.

The parameters of the above densities are all positive real numbers except for the NTLi and TLi
distributions for which |λ| 6 1.

Tables 1 and 3 list the values of −2̂`, AIC, CAIC, BIC, HQIC, A∗, and W ∗ whereas the MLEs and
their corresponding standard errors (in parentheses) of the model parameters are given in Tables 2 and 4.
These numerical results are obtained using the R package.

The fitted pdf, cdf, sf, and Q-Q plots of the TTW and TTLi distributions are shown in Figures 3 and 4,
respectively.

Table 1: Goodness-of-fit statistics for failure times data.
Model −2̂` AIC CAIC BIC HQIC A∗ W∗

TTW 257.485 265.485 265.991 275.208 269.394 0.4755 0.0479
Kw-TE 257.596 265.596 266.103 275.32 269.505 0.5485 0.0578
McW 273.899 283.899 284.669 296.053 288.785 1.5906 0.1986
BW 297.028 305.028 305.534 314.751 308.937 3.2197 0.4652
MBW 299.573 309.573 310.342 321.727 314.459 3.2656 0.4717
TExGW 352.594 362.594 363.363 374.748 367.48 6.2332 1.0079

Table 2: MLEs and their standard errors (in parentheses) for failure times data.
Model Estimates
TTW 1.7205 0.4806 -0.5230 -0.6047
(α, θ, λ,a ) (0.2899) (0.0739) (0.4106) (0.3554)
Kw-TE 0.0965 -0.8971 1.6346 65.0082
(α, λ,a,b ) (0.053) (0.129) (0.35) (76.536)
McW 1.9401 0.306 17.686 33.6388 16.7211
(α,β,a,b, c ) (1.011) (0.045) (6.222) (19.994) (9.622)
MBW 10.1502 0.1632 57.4167 19.3859 2.0043
(α,β,a,b, c ) (18.697) (0.019) (14.063) (10.019) (0.662)
TExGW 4.2567 0.1532 0.0978 5.2313 1173.33
(α,β, λ,a,b ) (33.401) (0.017) (0.609) (9.792) (129.165)
BW 1.36 0.2981 34.1802 11.4956
(α,β,a,b ) (1.002) (0.06) (14.838) (6.73)

Table 3: Goodness-of-fit statistics for cancer data.
Model −2̂` AIC CAIC BIC HQIC A∗ W ∗

TTLi 825.603 831.603 831.796 840.159 835.079 0.4016 0.0684
NTLi 831.160 839.160 839.480 850.570 843.790 0.9330 0.1530
TLi 830.310 834.310 834.400 840.014 836.620 0.9530 0.1590
PLi 826.700 830.700 830.800 836.411 833.020 0.7000 0.1700
Li 839.050 841.050 841.090 843.910 842.210 1.0250 0.1710
Ex 828.680 830.680 830.710 833.530 831.840 0.7150 0.1190
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Table 4: MLEs and their standard errors (in parentheses) for cancer data.
Model Estimates
TTLi 0.5382 0.5372 0.1298
(a, λ, θ ) (0.2108) (0.2278) (0.0172)
NTLi -0.0317 0.1766 0.7548 23.5316
(λ, δ,α, θ ) (0.0352) (0.0233) (0.1000) (18.5785)
PLi 0.294 0.8302
(θ,α ) (0.0370) (0.047)
TLi 0.6180 0.1550
(λ, θ ) (0.168) (0.0149)
Li 0.1960
(θ ) (0.0123)
Ex 0.1060
(θ ) (0.009)

The figures in Tables 1 and 3 reveal that the TTW and TTLi models have the lowest values for goodness-
of-fit statistics among all fitted models. So, They could be chosen to model the two data sets.

In Table 3, we compare the fits of the TTLi model with the NTLi, TLi, PLi, Li, and Ex models. It is
noted that the TTLi model has the lowest values among the fitted models for goodness-of-fit statistics.
We prove that the special models of new family can provide better fits than other competitive lifetime
models. Figures 3 and 4 display the fitted pdf, cdf, sf, and Q-Q plots of TTW and TTLi distributions.
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Figure 3: Fitted pdf, cdf, sf and Q-Q plots of the TTW distribution for failure times data.
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Figure 4: Fitted pdf, cdf, sf and Q-Q plots of the TTLi distribution for cancer data.

Moreover, the Kolmogorov-Smirnov (KS) statistic and its p-value for the TTW and TTLi distributions
are obtained for both data sets. The KS statistic of TTW distribution is 0.06416 and its p-value is 0.8796.
The KS statistic of TTLi distribution is 0.0724 and the p-value is 0.5129.

8. Simulation study

The following simulation procedure is implemented.

1. Set the sample size n and the vector of parameters τ = (a, λ,α, θ).
2. Generate random observations of size n from the TTW(a, λ,α, θ) distribution.
3. Using the generated random observations in Step 2, estimate τ̂ by means of MLE method.
4. Repeat steps 2 and 3, N times.
5. Using τ̂ and τ compute the averages of estimates (AEs), biases, and mean square errors (MSEs) via

the following equations (for i = 1, 2, 3, 4):

AEs =
1
N

N∑
j=1

(τ̂i,j) , Bias =
1
N

N∑
j=1

(τ̂i,j − τi) , and MSE =

N∑
j=1

(τ̂i,j − τi)
2

N
.

The statistical software R is used to obtain simulation results. The chosen parameter values for sim-
ulation study are τ = (−0.9, 0.9, 2, 2), N = 10, 000, and n = (50, 55, 60, . . . , 1000). We expect that AEs are
closer to nominal values for large sample sizes. Figure 5 displays the estimated AEs, biases and MSEs.
Figure 5 reveals that when n is sufficiency large, the estimated MSEs for all parameters tend to zero and
the values of AEs are closer to nominal values. The biases for the parameters a,α and θ are positive
whereas the biases for the parameter λ is negative. The biases for all the parameters tend to zero for large
sample sizes. It is clear that the estimates of parameters are asymptotically unbiased. Therefore, the MLE
is an appropriate method for estimating parameters of the TTW distribution.
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Figure 5: Estimated AEs, biases, and MSEs for the chosen parameter values.

9. Concluding remarks

We introduce and study a new class of distributions called the transumted transumted-G (TT-G) fam-
ily, which extends the transmuted class (TC) proposed by Shaw and Buckley [24] and includes the TC as
special case. We define two special models of the TT-G family. We provide some mathematical properties
of this family including explicit expansions for the ordinary and incomplete moments. We characterize
the TT-G family by means of two characterization theorems. The maximum likelihood estimation of the
model parameters is investigated. By means of two real data sets, we verify that special case of the TT-G
family can provide better fits than other models generated from well-known families.
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and applications, International Journal of Statistics and Probability, 4 (2015), 132–184. 1

[3] A. Z. Afify, Z. M. Nofal, N. S. Butt, Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Oper. Res.,
10 (2014), 435–454. 1

[4] A. Z. Afify, H. M. Yousof, N. S. Butt, G. G. Hamedani, The transmuted Weibull-Pareto distribution, Pakistan J. Statist.,
32 (2016), 183–206. 1

[5] A. Z. Afify, H. M. Yousof, S. Nadarajah, The beta transmuted-H family for lifetime data, Stat. Interface, 10 (2017),
505–520. 1

[6] E. k. Al-Hussaini, M. Ahsanullah, Exponentiated Distributions, Atlantis Press, Paris, (2015). 2
[7] M. Alizadeh, H. M. Yousof, A. Z. Afify, G. M. Cordeiro, M. Mansoor, The complementary generalized transmuted

Poisson-G family of distributions, Austrian J. Statist., 47 (2018), 51–71. 1
[8] A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013),

63–79. 2
[9] G. R. Aryal, C. P. Tsokos, On the transmuted extreme value distribution with application, Nonlinear Anal., 71 (2009),

1401–1407. 1
[10] G. R. Aryal, C. P. Tsokos, Transmuted Weibull distribution: a generalization of the Weibull probability distribution, Eur.

J. Pure Appl. Math., 4 (2011), 89–102. 1
[11] G. M. Cordeiro, E. M. Hashimoto, E. M. M. Ortega, The McDonald Weibull model, Statistics, 48 (2014), 256–278. 7.1
[12] I. Elbatal, G. Aryal, On the transmuted additive Weibull distribution, Austrian J. Statist., 42 (2013), 117–132. 1
[13] M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power Lindley distribution and associated inference,

Comput. Statist. Data Anal., 64 (2013), 20–33. 7.2
[14] M. N. Khan, The modified beta Weibul distribution, Hacettepe J. Math. Statist., 44 (2015), 1553–1568. 7.1
[15] C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: some properties and applications to censored data, J. Modern

Appl. Statist. Methods, 6 (2007), 173–186. 7.1
[16] E. T. Lee, J. W. Wang, Statistical Methods for Survival Data Analysis, John Wiley & Sons, Hoboken, (2003). 7.2
[17] M. M. Mansour, S. M. Mohamed, A new generalized of transmuted Lindley distribution, Appl. Math. Sci., 9 (2015),

2729–2748. 1, 7.2
[18] F. Merovci, Transmuted lindley distribution, Int. J. Open Problems Comput. Sci. Math., 6 (2013), 63–72. 7.2
[19] F. Merovci, M. Alizadeh, M. G. G. Hamedani, Another generalized transmuted family of distributions: properties and

applications, Austrian J. Statist., 45 (2016), 71–93. 1
[20] F. Merovci, M. Alizadeh, H. M. Yousof, G. G. Hamedani, The exponentiated transmuted-G family of distributions:

theory and applications, Comm. Statist. Theory Methods, 46 (2017), 10800–10822. 1
[21] F. Merovci, I. Elbatal, Transmuted Lindley-geometric distribution and its applications, J. Statist. Appl. Prob., 3 (2014),

77–91. 1
[22] D. N. Prabhakar Murthy, M. Xie, R. Jiang, Weibull Models, John Wiley & Sons, Hoboken, (2004). 7.1
[23] M. W. A. Ramos, P. R. D. Marinho, R. V. da Silva, G. M. Cordeiro, The exponentiated Lomax Poisson distribution with

an application to lifetime data, Adv. Appl. Stat., 34 (2013), 107–135. 7.1
[24] W. T. Shaw, I. R. Buckley, The alchemy of probability distributions: beyond gram-charlier expansions and a skew-kurtotic-

normal distribution from a rank transmutation map, arXiv preprint, 2007 (2007), 28 pages. 1, 1, 9
[25] M. H. Tahir, G. M. Cordeiro, Compounding of distributions: a survey and new generalized classes, J. Statist. Distribut.

Appl., 3 (2016), 1–35. 2
[26] H. M. Yousof, A. Z. Afify, M. Alizadeh, N. S. Butt, G. G. Hamedani, M. M. Ali, The transmuted exponentiated

generalized-G family of distributions, Pak. J. Stat. Oper. Res., 11 (2015), 441–464. 7.1

http://www.jds-online.com/file_download/548/%E7%AC%AC%E5%9B%9B%E7%AF%87.pdf
http://www.jds-online.com/file_download/548/%E7%AC%AC%E5%9B%9B%E7%AF%87.pdf
http://doi.org/10.5539/ijsp.v4n4p132
http://doi.org/10.5539/ijsp.v4n4p132
http://dx.doi.org/10.18187/pjsor.v10i4.836
http://dx.doi.org/10.18187/pjsor.v10i4.836
https://epublications.marquette.edu/mscs_fac/518/
https://epublications.marquette.edu/mscs_fac/518/
http://dx.doi.org/10.4310/SII.2017.v10.n3.a13
http://dx.doi.org/10.4310/SII.2017.v10.n3.a13
https://doi.org/10.2991/978-94-6239-079-9
https://www.researchgate.net/profile/Haitham_M_Yousof/publication/311714502_The_Complementary_Generalized_Transmuted_Poisson-G_Family_of_Distributions/links/58571b7708ae77ec37094408/The-Complementary-Generalized-Transmuted-Poisson-G-Family-of-Distributions.pdf
https://www.researchgate.net/profile/Haitham_M_Yousof/publication/311714502_The_Complementary_Generalized_Transmuted_Poisson-G_Family_of_Distributions/links/58571b7708ae77ec37094408/The-Complementary-Generalized-Transmuted-Poisson-G-Family-of-Distributions.pdf
https://doi.org/10.1007/s40300-013-0007-y
https://doi.org/10.1007/s40300-013-0007-y
https://doi.org/10.1016/j.na.2009.01.168
https://doi.org/10.1016/j.na.2009.01.168
https://www.ejpam.com/index.php/ejpam/article/view/1170
https://www.ejpam.com/index.php/ejpam/article/view/1170
https://doi.org/10.1080/02331888.2012.748769
https://doi.org/10.17713/ajs.v42i2.160
https://doi.org/10.1016/j.csda.2013.02.026
https://doi.org/10.1016/j.csda.2013.02.026
https://www.researchgate.net/profile/Muhammad_Nauman_Khan3/publication/274138080_The_Modified_Beta_Weibull_distribution/links/5683d8bf08aebccc4e0fd3dd.pdf
http://doi.org/10.22237/jmasm/1177992960
http://doi.org/10.22237/jmasm/1177992960
https://doi.org/10.1002/0471458546
https://www.researchgate.net/profile/Mahmoud_Mansour6/publication/279773162_A_New_Generalized_of_Transmuted_Lindley_Distribution/links/55dcc2f608ae83e420ee511f.pdf
https://www.researchgate.net/profile/Mahmoud_Mansour6/publication/279773162_A_New_Generalized_of_Transmuted_Lindley_Distribution/links/55dcc2f608ae83e420ee511f.pdf
https://www.researchgate.net/profile/Faton_Merovci/publication/255908822_Transmuted_Lindley_Distribution/links/00b7d520d6f587e093000000.pdf
https://doi.org/10.17713/ajs.v45i3.109
https://doi.org/10.17713/ajs.v45i3.109
https://doi.org/10.1080/03610926.2016.1248782
https://doi.org/10.1080/03610926.2016.1248782
https://pdfs.semanticscholar.org/1779/278d59b84dbd79b4893bfce4e55867b98b8b.pdf
https://pdfs.semanticscholar.org/1779/278d59b84dbd79b4893bfce4e55867b98b8b.pdf
https://books.google.com/books?hl=en&lr=&id=1c5B6w9RZHYC&oi=fnd&pg=PR7&dq=Weibull+Models&ots=XBTew-xDbg&sig=QZZhaor29CXSBW4a8C5bfPCe4Lg
https://www.researchgate.net/profile/Pedro_Rafael_Marinho/publication/267467380_The_exponentiated_Lomax_Poisson_distribution_with_an_application_to_lifetime_data/links/5498ab5b0cf2eeefc30f9bed/The-exponentiated-Lomax-Poisson-distribution-with-an-application-to-lifetime-data.pdf
https://www.researchgate.net/profile/Pedro_Rafael_Marinho/publication/267467380_The_exponentiated_Lomax_Poisson_distribution_with_an_application_to_lifetime_data/links/5498ab5b0cf2eeefc30f9bed/The-exponentiated-Lomax-Poisson-distribution-with-an-application-to-lifetime-data.pdf
http://140.177.205.65/infocenter/Articles/6670/alchemy.pdf
http://140.177.205.65/infocenter/Articles/6670/alchemy.pdf
https://doi.org/10.1186/s40488-016-0052-1
https://doi.org/10.1186/s40488-016-0052-1
http://dx.doi.org/10.18187/pjsor.v11i4.1164
http://dx.doi.org/10.18187/pjsor.v11i4.1164

	Introduction
	The TT-G family
	Special TT-G distributions
	The TTW distribution
	The TTLi distribution

	Mathematical properties
	Ordinary and incomplete moments

	Characterization
	Maximum likelihood estimation
	Applications
	Data set 1: failure times of 84 aircraft windshields
	Data set 2: cancer patients data

	Simulation study
	Concluding remarks

