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Abstract
In this paper, a three-parameter lifetime model motivated by alpha power transformation is considered. We call the

proposed distribution as; the alpha power transformed extended exponential (APTEE). The APTEE model contains new recent models
as; alpha power transformed exponential and alpha power transformed Lindley distributions. At the same time, it contains
classical models as exponential, gamma, and Lindley distributions. The properties of the APTEE distribution are derived.
Parameter estimation is accomplished using maximum likelihood, percentiles, and Cramer-von Mises methods. Simulation
issues and applications to real data are emphasized.
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1. Introduction

Modeling lifetime data is important and crucial in many fields such as medicine, engineering, demog-
raphy, etc.. So, diverse lifetime distributions have been introduced, in the probability theory, to model
specific real life data. In recent statistical researches, diverse useful processes of extending and developing
new continuous distributions were established to yield new models.

Recently, the modified and extended forms of the exponential distribution were proposed by several
authors. For example, the generalized exponential (GE) distribution was suggested by Gupta and Kundu [8,
9] as a generalized form of the exponential distribution. Further, Nadarajah and Haghighi [17] introduced
another extension of the exponential model. The probability density function (pdf) of a random variable X
having the Nadarajah and Haghighi’s exponential (NHE) distribution is given by

hNHE(x;β,γ) = γβ (1 + γx) e1−(1+γx)β , x,γ,β > 0.
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The Kumaraswamy exponential, based on Kumaraswamy generated family, has been suggested by
Cordeiro and de Castro [2]. Ristic and Balakrishnan [21] proposed the gamma exponentiated exponential
distribution. Merovci [16] introduced transmuted exponentiated exponential distribution. An extended
exponential (EE) distribution has been suggested by Gómez et al. [7], depending on the extension of
Nadarajah and Haghighi [17], with the following cumulative distribution function (cdf) and pdf

HEE(x;γ,β) =
γ+β− (γ+β+ γβx)e−γx

γ+β
, x,γ,β > 0, (1.1)

and

hEE(x;γ,β) =
γ2 (1 +βx) e−γx

γ+β
, x,γ,β > 0.

The exponentiated generalized EE and the modified exponential distributions have been proposed, re-
spectively, by de Andrade et al. [5] and Rasekhi et al. [19].

Recently, alpha power transformation (APT) has been proposed by Mahdavi and Kundu [15] in order
to get more flexibility to a family of distributions. The cdf of a continuous random variable X has APT
family is defined as follows:

HAPT (x;α) =

{
αH(x)−1
α−1 , α > 0,α 6= 1,

H (x) , α > 0, α = 1.
(1.2)

In view of the APT, we explore the APTEE model from the EE distribution. The APTEE distribution
contains special recent models, namely; APT exponential (Mahdavi and Kundu [15]) and APT Lindley
(Dey et al. [6]). At the same time, it contains special classical distributions which are exponential, Lindley
and gamma. Statistical properties are implemented. Estimation of the parameters and applications with
real data are given. This paper is constructed as follows. In Sections 2 and 3, we study the APTEE, and
explore its properties. In Section 4, we obtain the maximum likelihood (ML), percentiles and Cramer- von-
Mises estimators and their effectiveness are examined via a numerical study. The analyses of two real
data sets are employed in Section 5. The paper ends with concluding remarks.

2. The APTEE model

The distribution function of APTEE distribution with set of parameters $ = (α,β,γ) is obtained by
substituting the cdf (1.1) in (1.2) as follows

HAPTEE(x;$) =

 α
γ+β−(γ+β+γβx)e−γx

γ+β −1
α−1 , x,β,γ,α > 0,α 6= 1,

γ+β−(γ+β+γβx)e−γx

γ+β , x,β,γ,α > 0,α = 1.
(2.1)

The pdf of APTEE distribution is given by

hAPTEE(x;$) =

 logα
α−1

γ2(1+βx)e−γxα
γ+β−(γ+β+γβx)e−γx

γ+β

γ+β , x,α,β,γ > 0,α 6= 1,
γ2(1+βx)e−γx

γ+β , x,α,β,γ > 0,α = 1.
(2.2)

Also, the reliability function, say H̄APTEE(x;$), and hazard rate function (hrf), say ΞAPTEE(x;$) of X are
given, respectively, as follows:

H̄APTEE(x;$) =

 α−α
γ+β−(γ+β+γβx)e−γx

γ+β

α−1 , x,β,γ,α > 0,α 6= 1,
(γ+β+γβx)e−γx

γ+β , x,β,γ,α > 0,α = 1,
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and

ΞAPTEE(x;$) =


log(α)γ2α

γ+β−(γ+β+γβx)e−γx

γ+β (1+βx)e−γx

(γ+β)

{
α−α

γ+β−(γ+β+γβx)e−γx

γ+β

} , x,β,γ,α > 0,α 6= 1,

γ2(1+βx)
γ+β+γβx , x,β,γ,α > 0, α = 1.

Special sub-models of the APTEE distribution are recorded in Table 1.

Table 1: Sub-models of the APTEE distribution.
B α Reduced model Authors
0 - APT exponential (APTE) Mahdavi and Kundu [15]
1 - APT Lindley (APTL) Dey et al. [6]
0 1 Exponential
1 1 Lindley Lindley [11]
1 1 Gamma (2, γ)

Hereafter, a random variable X that follows the distribution in (2.1) is denoted by X ∼ APTEE ($).
Some descriptive pdf and hrf plots of X ∼ APTEE ($) are illustrated below for specific parameter choices
of $ (see Figure 1).

Figure 1: Plots of the pdf of the APTEE distribution. Figure 2: Plots of the hrf the APTEE distribution.

From Figure 1, we conclude that pdf of APTEE distribution can be reversed J-shaped, uni-model and
right skewed. Also, the hrf of APTEE distribution can be increasing and decreasing as seen from Figure
2.

3. Statistical properties

3.1. Quntile function
The APTEE distribution can be easily simulated by inverting cdf (2.1) as follows: if p follows uniform

distribution on (0, 1), then

Q (p) = −
1
β
−

1
γ
−

1
γ
W−1

[
−

1
β
(γ+β)

{
1 − log [p (α− 1) + 1]

logα

}
e−(

γ+β
β )
]

, (3.1)
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where W(.) is the Lambert W-function and 0 <p<1. According to Corless et al. [3] and Jodra [10]) the
Lambert W function has been applied to solve several problems in mathematics, physics and engineering.
Using the Lagrange inversion theorem, the power series for the W-function can be holed (see de Andrade
et al. [5]) as follows

W(t) =

∞∑
m=1

(−m)m−1tm

m!
. (3.2)

From (3.1) and (3.2), we have

Q(p) = −
1
β
−

1
γ
−

1
γ

∞∑
m=1

(−1)m(−m)m−1

m!
(γ+β)m

βm

{
1 − log [p (α− 1) + 1]

logα

}m
e−m(γ+ββ ).

Table 2 displays the percentage points of some specific choices of the parameters. It contains the first
quartile, median and the third quartile.

Table 2: Percentage points for γ,α, and β.

γ α
β = 0.5 β = 1 β = 1.5

25% 50% 75% 25% 50% 75% 25% 50% 75%

0.8

0.5 0.419 1.008 2.021 0.533 1.207 2.296 0.616 1.328 2.444
2 0.743 1.600 2.845 0.910 1.849 3.154 1.018 1.989 3.313
5 1.056 2.045 3.357 1.260 2.320 3.681 1.383 2.469 3.846

10 1.324 2.370 3.702 1.552 2.661 4.035 1.685 2.815 4.202

1.2

0.5 0.248 0.609 1.249 0.308 0.724 1.423 0.356 0.805 1.531
2 0.445 0.980 1.778 0.538 1.134 1.983 0.607 1.233 2.103
5 0.639 1.264 2.110 0.758 1.439 2.330 0.840 1.547 2.454

10 0.806 1.472 2.335 0.944 1.661 2.563 1.035 1.774 2.690

We detect from Table 1 that as the value of α increases, for fixed values of β and γ, the value of
percentage points increases. As the value of γ increases, for fixed values of α and β, the percentage value
points decreases. Also, as the value of β increases, for fixed values of α and γ, the percentage value points
decreases.

3.2. Moments
In this subsection, the rth moment and moment generating function (mgf) of APTEE distribution are

derived. Using the following series representation in pdf (2.2)

αw =

∞∑
i=0

(logα)i

i!
wi, (3.3)

hence, the rth moment of APTEE distribution can be formed as follows

µ ′r =
γ2

γ+β

∞∑
i=0

(logα)i+1

(α− 1) i!

∫∞
0
xr (1 +βx) e−γx

[
γ+β− (γ+β+ γβx)e−γx

γ+β

]i
dx.

Using the binomial expansion, then

µ ′r =
γ2

γ+β

∞∑
i=0

i∑
l=0

(−1)l
(logα)i+1

(α− 1) i!

(
i

l

) ∫∞
0
xr (1 +βx) e−γx(l+1)

(
γ+β+ γβx

γ+β

)l
dx.

Using the binomial another time, then the rth moment of APTEE distribution is

µr
′
=

∞∑
i=0

i∑
l=0

l∑
s=0

(−1)l
γ2+sβs

(γ+β)s+1
(logα)i+1

(α− 1) i!

(
i

l

)(
l

s

)[
Γ (r+ s+ 1)

{γ (l+ 1)}r+s+1 +
βΓ (r+ s+ 2)

{γ (l+ 1)}r+s+2

]
(3.4)

for r = 1, 2, . . . .



A. S. Hassan, R. E. Mohamd, M. Elgarhy, A. Fayomi, J. Nonlinear Sci. Appl., 12 (2019), 239–251 243

Individually, the first four moments are obtained by setting r = 1, 2, 3, and 4 in (3.4). Also, the rth

central moment (µr) of X is given by

µr = E(X− µ ′1)
r =

r∑
i=0

(−1)i
(
r

i

)
(µ ′1)

iµ ′r−i.

The skewness (SK) and kurtosis (Ku) are defined by

SK =
µ3

µ
3/2
2

, Ku =
µ4

µ2
2

.

Table 3 contains values of mean (µ ′1), variance(σ2), SK, and Ku of APTEE distribution for some certain
values of parameters.

Table 3: µ ′1, σ2, Sk, and Ku of APTEE distribution.

γ α
β = 0.5 β = 1 β = 1.5

µ ′1 σ2 SK Ku µ ′1 σ2 SK Ku µ ′1 σ2 SK Ku

0.8

0.5 0.633 1.445 2.894 14.231 0.718 1.708 2.67 12.387 0.766 1.852 2.551 11.489
2 0.878 2.265 2.292 9.483 0.979 2.637 2.128 8.406 1.035 2.835 2.043 7.888
5 1.05 2.859 1.99 7.578 1.161 3.304 1.851 6.773 1.221 3.539 1.779 6.39
10 1.176 3.307 1.805 6.559 1.294 3.806 1.681 5.893 1.356 4.067 1.617 5.578

1.2

0.5 0.393 0.579 3.015 15.332 0.445 0.69 2.801 13.436 0.478 0.759 2.67 12.387
2 0.549 0.914 2.383 10.137 0.613 1.076 2.224 9.016 0.653 1.172 2.128 8.406
5 0.659 1.158 2.067 8.071 0.731 1.354 1.931 7.228 0.774 1.469 1.851 6.773
10 0.739 1.343 1.876 6.97 0.817 1.563 1.753 6.269 0.863 1.692 1.681 5.893

From Table 3, we conclude that, as the values of α and β increase then the values of µ ′1 and σ2 are
increasing, whereas, the values of SK and Ku are decreasing. As the values of α and γ increase then the
values of µ ′1 and σ2 are decreasing, whereas, the values of SK and Ku are increasing. Also, we conclude
that the distribution is skewed to right and leptokurtic.

Furthermore, the mgf of APTEE distribution is given by

MX(t) =

∞∑
r,i=0

i∑
l=0

l∑
s=0

(−1)l
tr

r!
γ2+sβs

(γ+β)s+1
(logα)i+1

(α− 1) i!

(
i

l

)(
l

s

)[
Γ (r+ s+ 1)

{γ (l+ 1)}r+s+1 +
βΓ (r+ s+ 2)

{γ (l+ 1)}r+s+2

]
.

3.3. Moments of residual life
The mth moment of the residual life of APTEE distribution is obtained by using expansion (3.3)

as follows

πm(t)=
1

H̄APTEE(x;$)

γ2

γ+β

∞∑
i=0

(logα)i+1

(α− 1) i!

∫∞
t

(x− t)m (1 +βx) e−γx
[
γ+β− (γ+β+ γβx)e−γx

γ+β

]i
dx.

Then by using the binomial expansions, several times, we obtain

πm(t) =
1

H̄APTEE(x;$)

∞∑
i=0

i∑
l=0

m∑
s=0

l∑
k=0

(−1)l+m−s tm−s γ2+kβk

(γ+β)k+1
(logα)i+1

(α− 1) i!

(
i

l

)(
m

s

)(
l

k

)

×

[
Π (s+ k+ 1,γ(`+ 1))

{γ (`+ 1)}m+1 +
βΠ (s+ k+ 2,γ(`+ 1)

{γ (`+ 1)}m+2

]
,

where, Π(., .) is the upper incomplete gamma function. Also, the mean residual life of APTEE distribution
can be derived by subsituting m = 1 in the previous equation.
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3.4. The probability weighted moments
For a random variable X, the class of probability-weighted moments (PWMs), denoted by ηr,q, is defined

as follows
ηr,q = E[XrF(x)q] =

∫∞
−∞ xrf(x)(F(x))qdx. (3.5)

The PWM of APTEE distribution is derived by inserting (2.1) and (2.2) into (3.5), as follows

ηr,q =

∫∞
0
xr

logα
α− 1

γ2 (1 +βx) e−γxα
γ+β−(γ+β+γβx)e−γx

γ+β

γ+β

αγ+β−(γ+β+γβx)e−γx

γ+β − 1
α− 1

q dx.

Using the binomial expansion, then

ηr,q =
γ2 logα

(γ+β) (α− 1)q+1

q∑
k=0

(−1)q−k
(
q

k

) ∫∞
0
xrα

(q+1)
(
γ+β−(γ+β+γβx)e−γx

γ+β

)
(1 +βx) e−γxdx. (3.6)

Using (3.3) and binomial expansion, then (3.6) will be

ηr,q =

q∑
k=0

∞∑
i=0

i∑
l=0

l∑
s=0

(−1)l+q−k
(logα)i+1 γ2+sβs

(α− 1)q+1 i! (γ+β)s+1 (q+ 1)i
(
i

l

)(
q

k

)(
l

s

)

×

[
Γ (r+ s+ 1)

{γ (l+ 1)}r+s+1 +
βΓ (r+ s+ 2)

{γ (l+ 1)}r+s+2

]
.

3.5. Rényi Entropy
The entropy of a random variable provides an excellent gadget to quantify the amount of information

(or uncertainty) contained in a random observation regarding its parent distribution (population). A large
value of entropy implies the greater uncertainty in the data (Rényi [20]). The concept of entropy is crucial
in various situations in science, engineering and economics. The Rényi entropy of a random variable X,
for υ > 0, and υ 6= 1, is defined by

IR(x) = (1 − υ)−1 log
(∫∞

0
(f(x))υ dx

)
. (3.7)

The Rényi entropy of the APTEE distribution is obtained by inserting the pdf (2.2) in (3.7) as follows

IR(x) = (1 − υ)−1
(

γ2 logα
(α− 1) (γ+β)

)υ
log
∫∞

0
(1 +βx)υ e−γυxα

υ
[
γ+β−(γ+β+γβx)e−γx

γ+β

]
dx.

From (3.3), then IR(x)will be reduced to

IR(x)=(1 − υ)−1
(

γ2 logα
(α− 1) (γ+β)

)υ ∞∑
i=0

(υ logα)i

i!
log

{∫∞
0

(1 +βx)υ e−γxυ
[

1 − (1 +
γβx

γ+β
)e−γx

]i
dx

}
.

Using the binomial expansion, more than one time, then the Rényi entropy of APTEE distribution is

IR(x) = (1 − υ)−1 log

{ ∞∑
i=0

i∑
l=0

l∑
s=0

υ∑
m=0

(−1)l
(

logα
(α− 1)

)υ (β)s+υ γs+2υ (υ logα)i

(γ+β)s+υ i!

(
i

l

)(
l

s

)(
υ

m

)

× log

[
Γ (s+ υ+ 1)

(γ (υ+ l))s+υ+1

]}
.
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3.6. Stochastic ordering
Stochastic ordering has been recognized as a useful tool in reliability theory and other fields to as-

sess comparative behavior. Let X1 and X2 be two random variables having cdfs, reliability functions
and pdfs HAPTEE1 (x;$1) and HAPTEE2 (x;$2), H̄APTEE1 (x;$1) and H̄APTEE2 (x;$2) and hAPTEE1 (x;$1) and
hAPTEE2 (x;$2), respectively, where $1 = (α1,β1,γ1) and $2 = (α2,β2,γ2). The random variable X1 is
said to be smaller than X2 in the following ordering, if the following holds.

1. Likelihood ratio order (X1 6lr X2) if
hAPTEE2(x;$2)

hAPTEE1(x;$1)
is increasing in x.

2. Stochastic order (X1 6sr X2) if H̄APTEE1 (x;$1) 6 H̄APTEE2 (x;$2) for all x.

3. Hazard rate order (X1 6hr X2) if
H̄APTEE2(x;$2)

H̄APTEE1(x;$1)
is increasing in x.

4. Mean residual life order (X1 6mrl X2) if E (X1 − t |X1 < t) 6 E (X2 − t |X2 < t) .

Confirming to Shaked and Shanthikumar [22], the above stochastic orders are related to each other
and the following implications hold:

(X1 6lr X2)⇒ (X1 6hr X2)⇒ (X1 6mrl X2)⇒ (X1 6st X2) .

The following theorem affirms that the APTEE distribution is ordered owing to strongest likelihood ratio
ordering when appropriate assumptions are satisfied.

Theorem 3.1. Let X1 ∼ APTEE ($1) and X2 ∼ APTEE ($2). If α1 = α2 = α, β1 > β2, andγ1 > γ2, then
(X1 6lr X2), (X1 6hr X2) and (X1 6mrl X2), (X1 6st X2).

Proof. The likelihood ratio order is

hAPTEE2 (x;$2)

hAPTEE1 (x;$1)
=

(α1 − 1) (γ1 +β1) logα2γ2
2 (1 +β2x) e

−γ2xα2

γ2+β2−(γ2+β2+γ2β2x)e
−γ2x

γ2+β2

(α2 − 1) (γ2 +β2)γ1
2 logα1 (1 +β1x) e−γ1xα1

γ1+β1−(γ1+β1+γ1β1x)e
−γ1x

γ1+β1

.

So,

d

dx
log
[
hAPTEE2 (x;$2)

hAPTEE1 (x;$1)

]
=

β2

(1 +β2x)
−

β1

(1 +β1x)
+ (γ1 − γ2) x− γ2e

−γ2x

(
1 +

γ2β2x

γ2 +β2

)
logα2

−

(
γ2β2e

−γ2x

γ2 +β2

)
logα2 +γ1e

−γ1x

(
1 +

γ1β1x

γ1 +β1

)
logα1−

(
γ1β1e

−γ1x

γ1 +β1

)
logα1.

Now if α1 = α2 = α, β1 > β2, andγ1 > γ2, then d
dx log

[
hAPTEE2(x;$2)

hAPTEE1(x;$1)

]
> 0, which implies that X1

is stochastically smaller than X2 with respect to likelihood ratio order. Similarly, we can conclude for
(X1 6hr X2), (X1 6mrl X2), and (X1 6st X2).

4. Parameter estimation

Here, estimators of population parameters are worked out via the ML, percentiles (PR), and Cramer-
von-Mises (CV) methods of estimation.

4.1. Maximum likelihood estimators
The ML estimators of the population parameters for the APTEE distribution are obtained. Let X1,. . .,Xn

be values from the APTEE distribution with set of parameters $ = {α,β, γ}T . The log-likelihood function
for the vector of parameters, say `, can be written as

` = n log
[

logα
(α− 1)

]
+ 2n logγ−n log(β+ γ) +

n∑
i=1

log(1 +βxi) − γ

n∑
i=1

xi
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+ logα
n∑
i=1

{
γ+β− (γ+β+ γβx)e−γx

γ+β

}
.

Therefore, the ML equations are given by

∂`

∂α
=
n[α− 1 −α logα]
α(α− 1) logα

+
1
α

n∑
i=1

{
γ+β− (γ+β+ γβx)e−γx

γ+β

}
,

∂`

∂γ
=

2n
γ

−
n

β+ γ
−

n∑
i=1

xi + logα
n∑
i=1

xie
−γxi

[
γβxi
γ+β

−
β2xi

(γ+β)2

]
,

and

∂`

∂β
=

−n

β+ γ
+

n∑
i=1

xi
(1 +βxi)

− logα
n∑
i=1

γ2e−γxi

(γ+β)2 .

ML estimators of the model parameters are determined by solving numerically the non-linear equations
∂`/∂α = 0, ∂`/∂β = 0, and ∂`/∂γ = 0 simultaneously by using mathematical package.

4.2. Percentile estimator (PE)
Let X1, . . .,Xn be a random sample from the APTEE distribution and Let X(1)<X(2)<· · ·<X(n) be the

corresponding order statistics. Based on PR method of estimation; the estimators of set of parameters
$ = {α,β, γ}T , are attained by minimizing the following

n∑
i=1

ln (pi) − ln

α
γ+β−(γ+β+γβx(i))e

−γx(i)

γ+β − 1
α− 1




2

,

with respect to $, where pi denotes some estimates of HAPTEE(x(i);$), and pi = i/n+ 1.

4.3. The Cramer-von Mises minimum distance estimators
The CV estimator is a type of minimum distance estimators which is based on the difference between

the estimate of the cdf and the empirical cdf (see D’Agostino and Stephens [4] and Luceño [13]). The CV
estimators are obtained by minimizing

C($) =
1

12n
+

n∑
i=1

αγ+β−(γ+β+γβx(i))e
−γx(i)

γ+β − 1
α− 1

−
2i− 1

2n


2

.

MacDonald [14] mentioned that the choice of CV method type minimum distance estimators providing
empirical evidence that the bias of the estimator is smaller than the other minimum distance estimators.

4.4. Simulation study
A simulation study is conducted to evaluate and compare the behavior of the estimates with respect

to their mean square errors (MSEs), and absolute biases (ABs). We generate 1000 random sample X1, . . .,Xn
of sizes n = 10, 30, and 100 from APTEE distribution. Four choices sets of parameters are considered as:

set 1 ≡ (α = 0.5, γ = 0.8, β = 2) , set 2 ≡ (α = 0.3, γ = 0.8, β = 2) ,
set 3 ≡ (α = 1.25, γ = 1.75, β = 0.3) , set 4 ≡ (α = 1.5, γ = 1.75, β = 0.3) .

The ML, CV, and PR estimates of α,γ, and β are computed. Then, the ABs and MSEs of the estimates
of the unknown parameters are computed. Simulated outcomes are listed in Table 4 and the following
observations are detected.
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1. The ABs and MSEs decrease as sample sizes increase for all estimates (see Figures 3 and 4).
2. The ABs and MSEs of ML estimates, for α and γ estimates are smaller than the corresponding for β

(see Table 4).
3. For fixed values of γ, β, and as the values of α decrease, the ABs and MSEs of all estimates are

decreasing, in approximately most of situations (see Table 4).
4. The MSEs of the ML estimates of γ and β take the smallest value among the corresponding MSEs

for the other methods in almost all of the cases (see Table 4).

Figure 3: MSE of β for the ML estimates for all values of
parameters.

Figure 4: MSE of γ for the PR estimates for all set values of
parameters.

5. As it seems from Figure 5, the MSEs of the ML estimates of α take the smallest values corresponding
to the other estimates of all methods for the same sample size and for all values of parameters. Also,
from Figure 5 the MSEs of ML of α for all set of parameters have the smallest values for the same
sample size. Generally, the set 1 of parameters has the smallest MSEs corresponding to other set of
parameters.

Figure 5: MSEs of α for ML, CV and PR estimates. Figure 6: ABs of β for ML, CV and PR estimates.

6. As it seems from Figure 6, the ABs of the ML of β take the smallest values corresponding to the
other estimates of all methods for the same sample size. Also the ABs of β for the three sets of
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parameters take the smallest values for the same sample size. Generally, the set 1 of parameters
gives the smallest ABs for differentβestimates corresponding to other sets of parameters.

Table 4: MSEs and ABs of APTEE distribution for ML, PR, and CV estimates.

5. Real data illustration

To illustrate the usefulness of the APTEE model, we provide analysis to two real data sets. The first
data set taken from Linhart and Zucchini [12], represents the failure times of air-conditioned system of
an airplane. While second data set taken from Aarset [1] represents the failure times of 50 devices. We fit
the APTEE distribution and other five competing models namely; alpha power transformed Weibull (APTW)
(Nassar et al. [18]), APTL, APTE, Lindley (L), and exponential (E) distributions. The two data sets are
recorded in Table 5.

Table 5: The failure times of air-conditioned system of an airplane and Aarset data.
Data 1 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120,

11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95
Data 2 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36,

40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82,
83, 84, 84, 84, 85, 85, 85, 85,85, 86, 86

The ML estimates along with their standard error (SE) of the model parameters are provided in Tables
6 and 7. In the same tables, the analytical measures including; minus log-likelihood(-log L) Kolmogorov-
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Smirnov (KS) test statistic, Akaike information Criterion (AIC), corrected Akaike information criterion
(CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC) are pre-
sented.

Table 6: Analytical results of the APTEE model and other competing models for data 1.
Model ML Estimates (SE) -Log L AIC BIC CAIC HQIC KS

APTEE
α̂ = 0.161(0.282)

176.631 359.262 357.694 360.186 360.607 0.14683β̂ = 2.01× 10−4(0.024)
γ̂ = 0.011(0.022)

APTW
α̂ = 6.257× 10−10(9.854× 10−8)

182.718 371.436 369.867 372.359 372.78 0.26544θ̂ = 0.509(0.095)
γ̂ = 7.168× 10−3(0.057)

APTL α̂ = 0.1(0.104) 183.415 370.83 369.784 371.274 371.727 0.2803
γ̂ = 0.024(5.127× 10−3)

APTE α̂ = 8.688× 10−10(5.698× 10−8) 177.388 358.775 357.729 359.22 359.672 0.19989
γ̂ = 8.536× 10−4(2.844× 10−3)

L γ̂ = 7.723× 10−3(0.001) 202.837 407.674 407.151 407.817 408.123 0.663
E γ̂ = 4.339× 10−4(7.922× 10−5) 233.056 468.111 467.589 468.254 468.56 0.8929

Table 7: Analytical results of the APTEE model and other competing models for data 2.
Model ML Estimates (SE) -Log L AIC BIC CAIC HQIC KS

APTEE
α̂ = 2.11(1.643)

281.447 568.893 567.99 569.816 571.078 0.17419β̂ = 0.021(0.021)× 10−4(0.024)
γ̂ = 0.035(6.552× 10−3)

APTW
α̂ = 8.911(9.1374)

281.962 569.928 569.0257 570.851 572.113 0.17423θ̂ = 0.685(0.128)
γ̂ = 0.121(0.078)

APTL α̂ = 4.359× 10−6(6.762× 10−3) 269.747 597.495 569.892 597.939 598.951 0.2186
γ̂ = 8.754× 10−3(6.886× 10−3)

APTE α̂ = 4.822× 10−3(3.528× 10−6) 283.583 571.167 570.565 571.611 572.623 0.19311
γ̂ = 1.361× 10−3(6.19× 10−3)

L γ̂ = 7.137× 10−3(0.00071) 347.347 696.694 696.393 696.837 697.422 0.8712
E γ̂ = 4.204× 10−4(5.9448× 10−5) 389.68 781.36 781.059 781.503 782.088 0.9645

Based on Tables 6 and 7, it is clear that APTEE distribution provides the overall best fit and therefore
could be chosen as the more adequate model than other models for explaining the considered data set.
More information can be provided in Figures 7 and 9. Also PP-plots are shown in Figures 8 and 10 for
both real data.

Figure 7: Estimated pdf, cdf, and reliability function of APTEE and other competing models for data 1.
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Figure 8: PP plots of APTEE and other competing distributions corresponding to data 1.

Figure 9: Estimated pdf, cdf and survival function of APTEE and other competing distributions for data 2.

Figure 10: PP plots of APTEE and other competing distributions corresponding to data 2.
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From figures 7-10, we conclude that the APTEE distribution provides better fits then we expect that
the proposed model may be an interesting alternative model for a wider range of statistical research.

6. Concluding remarks

In this paper, we study the so-called alpha power transformed extended exponential distribution.
The APTEE model comprises alpha power transformed exponential, alpha power transformed Lindley,
exponential, gamma and Lindley distributions as special sub-models. Some structural properties of the
APTEE distribution are derived. Estimation of the population parameters is achieved via three different
procedures. Simulation results are carried to assess the accuracy and performance of different estimators.
Real data sets are used to illustrate the applications of APTEE distribution.
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[7] Y. M. Gómez, H. Bolfarine, H. W. Gómez, A new extension of the exponential distribution, Rev. Colombiana Estadıst.,

37 (2014), 25–34. 1
[8] R. D. Gupta, D. Kundu, Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biom. J.,

43 (2001), 117–130. 1
[9] R. D. Gupta, D. Kundu, Generalized exponential distributions, Aust. N. Z. J. Stat., 41 (1999), 173–188. 1

[10] P. Jodra, Computer generation of random variables with Lindley or Poisson-Lindley distribution via the LambertW function,
Math. Comput. Simulation, 81 (2010), 851–859. 3.1

[11] D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, 20 (1958), 102–107. 1
[12] H. Linhart, W. Zucchini, Model Selection, John Wiley & Sons, New York, (1986). 5
[13] A. Luceño, Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Comput. Statist.

Data Anal., 51 (2006), 904–917. 4.3
[14] P. D. M. MacDonald, Comment on ”An estimation procedure for mixtures of distributions” by Choi and Bulgren, J. Roy.

Statist. Soc. Ser. B, 33 (1971), 326–329. 4.3
[15] A. Mahadavi, D. Kundu, A new method of generating distribution with an application to exponential distribution, Comm.

Statist. Theory Methods, 46 (2017), 6543–6557. 1, 1, 1
[16] F. Merovci, Transmuted exponentiated exponential distribution, Math. Sci. Appl. E-Notes, 1 (2013), 112–122. 1
[17] S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543–558. 1
[18] M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha power Weibull distribution: Properties and applications,

Comm. Statist. Theory Methods, 46 (2017), 10236–10252. 5
[19] M. Rasekhi, M. Alizadeh, E. Altun, G. G. Hamedani, A. Z. Afify, M. Ahmad, The modified exponential distribution

with applications, Pakistan J. Statist., 33 (2017), 383–398. 1
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