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Abstract
In this study, uncertain complex dynamical network model with time varying coupling delay and derivative coupling delay

is considered. The lag synchronization between two such uncertain networks with different nodes is investigated. An adaptive
control method is designed by using Lyapunov stability theory for achieving the lag synchronization and some corollaries are also
given. In addition, on the basis of the adaptive update law, unknown parameters of the networks are estimated. The analytical
results show that the states of the dynamical network with derivative delay coupling can be asymptotically synchronized under
the designed control. The numerical simulation results also demonstrate the validity of the designed method.
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1. Introduction

In recent decades, many researchers have concentrated on synchronization behavior of dynamical net-
work, due to its ability to explain many natural phenomenons and its application in different disciplines
[3, 18, 20]. When the synchronization of complex networks cannot be attained, many control schemes
have been designed effectively for achieving network synchronization. In fact, after the pioneering work
of Pecora and Carroll was published, many researches have been put great efforts to investigate network
synchronization phenomenon [4, 6, 11, 12, 16, 17, 19, 21, 22, 29]. In these studies, lag synchronization
behavior is one of the most interesting type. This behavior has appeared in lasers, neural models, elec-
tronic applications, and secure communication [7, 13], which can cause instability and poor performance.
Therefore, lag synchronization has become a hot topic in the research of complex networks and many
works have been presented [1, 14, 23, 24, 31].

It should be pointed out that all the above mentioned results are concerned with the synchronization
in dynamical networks when the system parameters are well known beforehand. In practical imple-
mentation, knowing the exact values of the systems parameters is difficult which may cause undesirable
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dynamic behaviors and destroy the systems stability. Thus, the main motivation of this work is to study
how to synchronize the networks with unknown parameters and estimate theses parameters effectively.

On the other hand, adaptive control method is an effective way to estimate the unknown parameters
due to its advantages leading to stability. Therefore, it has been designed and applied effectively to explore
the synchronization behavior in dynamical network with unknown parameters. In [25], exponential outer
synchronization problem between two uncertain nonlinearly coupled networks with constant time delays
was discussed. Ji et al. examined lag synchronization in drive-response uncertain complex dynamical
network having delayed coupling and unknown parameters by adaptive control [8]. Based on a hybrid
feedback control, lag synchronization in drive-response dynamical networks with non-delay coupling and
unknown parameters was discussed in [15]. In [2], adaptive control method was designed to achieve the
projective lag synchronization in DRDN with constant and time-varying coupling delay, also the uncertain
parameters of both the network node and drive system were identified.

For a better way of describing the real world, network model should also include information of the
past change rate of the nodes, such as population ecology, biologic system and ecosystem [10], where
each network is shown by the present and historical fluctuating rate information. In [26], Xu et al. were
the first to explore the synchronization of complex networks with derivative and non-derivative coupling.
Following that pioneering work, many studies have been examined. Topological structure identification,
pinning synchronization, finite-time, and pinning impulsive synchronization were studied in [5, 27, 28,
30]. In [9], Jian et al. studied the synchronization of dynamical network with time varying coupling delay
and derivative coupling. To the best of our knowledge, we have not come across any theoretical results
considering the problem of lag synchronization between two uncertain dynamical networks with time
varying delay non-derivative and derivative coupling.

In the light of the above discussion, delayed uncertain complex dynamical network model with deriva-
tive and non-derivative coupling is proposed in this paper. The adaptive control method is developed
for investigating lag synchronization and the unknown parameters are estimated. Numerical simulations
results are given to prove the efficiency of the designed control.

The paper is organized as follows. Section 2 introduced the network model and some necessary
preliminaries. The main results are given and novel criteria are derived in Section 3. Section 4 presented
examples and their simulations. Finally, the conclusions are drawn in Section 5.

2. Model description

A general complex dynamical network model consisting of N linearly coupled nodes with uncertain
parameters and delay derivative coupling can be described as

ẋi(t) = fi(xi(t)) + Fi(xi(t))αi +

N∑
j=1

aijΓxj(t− η(t)) +

N∑
j=1

bijΓ ẋj(t− η(t)), (2.1)

Here, i ∈ N , {1, 2, . . . ,N},N corresponds to the number of units in the delayed network dynamic system,
xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn denotes the state vector of the ith node, and fi : Rn −→ Rn and
Fi : Rn −→ Rn×mi are the continuous nonlinear function matrices. The αi’s are the unknown constant
parameter vector, η(t) > 0 is the time varying coupling delay and Γ is the inner coupling matrix. Also
A = (aij) ∈ RN×N and B = (bij) ∈ RN×N are the coupling configuration matrices representing the
coupling weights and topological structure for non delayed configuration and delayed one, where the
diagonal elements of of them are defined as

aii = −

N∑
j=1,j6=i

aij, bii = −

N∑
j=1,j6=i

bij i = 1, 2, . . . ,N.
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We refer to model (2.1) as the drive network, and a response network is described as

ẏi(t) = gi(yi(t)) +Gi(yi(t))βi +

N∑
j=1

aijΓyj(t− η(t)) +

N∑
j=1

bijΓ ẏj(t− η(t)) + ui(t), (2.2)

where yi(t) = (yi1(t),yi2(t), . . . ,yin(t))T ∈ Rn is response state of the ith node, and gi : Rn −→ Rn and
Gi : Rn −→ Rn×mi are the continuous nonlinear function matrices. The βi’s are the unknown constant
parameter vector and ui ∈ Rn is the control input.

Remark 2.1. Our network model has unknown parameters. Therefore, it is different from the model that
was studied in [9].

Remark 2.2. Assume the model do not contain unknown parameters and η(t) = 0. Then, we can get the
complex network model which was when the controller ui can be pinning control [5], finite time control
[27], and pinning impulsive control [30].

Define the lag synchronization error as

ei(t) = yi(t) − xi(t− τ), i = 1, . . . ,N,

where τ > 0 is a constant representing time delay or lag. Our objective in this paper is to design the
controller ui(t) that makes the drive network and response network asymptotically synchronized, i.e,

lim
t−→∞ ‖yi(t) − xi(t− τ)‖ = 0.

Assumption 2.3 ([6]). Time delay η(t) is a differentiable function with 0 6 η̇(t) 6 ε < 1. Clearly, this assumption
is certainly ensured if the coupling delay η(t) is a constant.

Lemma 2.4 ([16]). For any vector x,y ∈ Rn and positive definite matrix Q ∈ Rn×n, the following matrix
inequality holds,

2xTy 6 xTQx+ yTQ−1y.

3. Main results

In this section, we design an adaptive control method for achieving lag synchronization between
two uncertain complex dynamical networks with time varying delayed coupling and derivative delayed
coupling.

According to the networks (2.1) and (2.2), the error dynamical network for lag synchronization can be
obtained as following:

ėi(t) = gi(yi(t)) +Gi(yi(t))βi +

N∑
j=1

aijΓej(t− η(t)) +

N∑
j=1

bijΓ ėj(t− η(t))

−
(
fi(xi(t− τ)) + Fi(xi(t− τ))αi

)
+ ui(t).

(3.1)

Theorem 3.1. Suppose that Assumption (2.3) holds. If there exist positive constant τ, the drive network and
response network can be achieve lag synchronization by using the following controllers

ui(t) = fi(xi(t− τ)) + Fi(xi(t− τ))α̂i(t) − gi(yi(t)) −Gi(yi(t))β̂i(t) −ωi(t)ei(t) (3.2)

−

N∑
j=1

ri(t)Γ ėj(t− η(t)),

˙̂αi(t) = −κ1F
T
i (xi(t− τ))ei(t), (3.3)
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˙̂βi(t) = κ2G
T
i (yi(t))ei(t), (3.4)

ω̇i(t) = κ3e
T
i (t)ei(t), (3.5)

ṙi(t) = κ4e
T
i (t)Γ ėi(t− η(t)), (3.6)

where κ1, κ2, κ3, and κ4 are positive constants. Here α̂i(t) and β̂i(t) are the estimated parameters for the drive
network (2.1) and response network (2.2), respectively.

Proof. Select a Lyapunov function candidate as

V(t) =
1
2

N∑
i=1

eTi (t)ei(t) +
1

2κ1

N∑
i=1

α̃Ti (t)α̃i(t) +
1

2κ2

N∑
i=1

β̃Ti (t)β̃i(t) +
1

2κ3

N∑
i=1

(ωi(t) −ω
∗
i )

2

+
1

2κ4

N∑
i=1

(ri(t) −

N∑
i=1

bij)
2 +

1
2(1 − ε)

∫t
t−η(t)

N∑
i=1

eTi (s)ei(s)ds,

where α̃i(t) = α̂i(t) −α, β̃i(t) = β̂i(t) −βi, and ω∗i is positive constant.
The time derivative of V is obtained as

V̇ =

N∑
i=1

eTi (t)ėi(t) +
1
κ1

N∑
i=1

˙̂αTi (t)α̃i(t) +
1
κ2

N∑
i=1

˙̂βTi (t)β̃i(t) +
1
κ3

N∑
i=1

(ωi(t) −ω
∗
i )ω̇i(t)

+
1
κ4

N∑
i=1

(ri(t) −

N∑
i=1

bij)ṙi(t) +
1

2(1 − ε)

N∑
i=1

eTi (t)ei(t)

−
1 − η̇(t)

2(1 − ε)

N∑
i=1

eTi (t− η(t))ei(t− η(t)).

Apply of the control function (3.2) to error dynamics (3.1), we obtain

V̇ =

N∑
i=1

eTi (t)
(
Fi(xi(t− τ))α̃i(t) −Gi(yi(t))β̃i(t) +

N∑
j=1

aijΓej(t− η(t))

+

N∑
j=1

bijΓ ėj(t− η(t)) −ωi(t)ei(t) −

N∑
j=1

ri(t)Γ ėj(t− η(t))
)

+
1
κ1

N∑
i=1

˙̂αTi (t)α̃i(t) +
1
κ2

N∑
i=1

˙̂βTi (t)β̃i(t) +
1
κ3

N∑
i=1

(ωi(t) −ω
∗
i )ω̇i(t)

+
1
κ4

N∑
i=1

(ri(t) −

N∑
i=1

bij)ṙi(t) +
1

2(1 − ε)

N∑
i=1

eTi (t)ei(t)

−
1 − η̇(t)

2(1 − ε)

N∑
i=1

eTi (t− η(t))ei(t− η(t)).

By the adaptation updating laws (3.3)-(3.6), we have

V̇ =

N∑
i=1

eTi (t) +

N∑
j=1

aijΓej(t− η(t)) −ω
∗
i

N∑
i=1

eTi (t)ei(t)

+
1

2(1 − ε)

N∑
i=1

eTi (t)ei(t) −
1 − η̇(t)

2(1 − ε)

N∑
i=1

eTi (t− η(t))ei(t− η(t)).



G. Al-mahbashi, M. S. Md Noorani, J. Nonlinear Sci. Appl., 12 (2019), 252–261 256

Let us define Ω∗ = diag(ω∗1 ,ω∗2 , . . . ,ω∗N),P = (A⊗ Γ), e(t) = (eT1 (t), e
T
2 (t), . . . , eTN(t))

T . Then we have

V̇ = −eT (t)Ω∗e(t) + e(t)TPe(t− η(t)) +
1

2(1 − ε)
eT (t)e(t) −

1 − η̇(t)

2(1 − ε)
eT (t− η(t))e(t− η(t)).

Using Lemma (2.4), we have

V̇ 6 −eT (t)Ω∗e(t) +
1
2
e(t)TPPTe(t) +

1
2
eT (t− η(t))e(t− η(t)) +

1
2(1 − ε)

eT (t)e(t)

−
1 − η̇(t)

2(1 − ε)
eT (t− η(t))e(t− η(t)).

From Assumption (2.3), we get
1 − η̇(t)

2(1 − ε)
>

1
2

.

Thus, we obtain

V̇ 6 eT (t)
(1

2
PPT +

1
2(1 − ε)

−Ω∗
)
e(t).

Taking Ω∗i =
1
2PP

T + 1
2(1−ε) + 1, we obtain

V̇ 6 −e(t)Te(t).

Based on Lyapunov stability theory, the error dynamics ei(t) → 0 as t → ∞. That means the drive
network (2.1) and response network (2.2) with delay derivative coupling achieve lag synchronization
and the unknown parameters can be successfully estimated via adaptive control (3.2) and updating laws
(3.3)-(3.6).

Remark 3.2. When the model does not contain derivative coupling and η(t) is constant, then lag synchro-
nization between uncertain drive-response complex dynamical network with non-delay coupling was
discussed in Ji et al. [8] by adaptive control.

Corollary 3.3. For any given positive propagation delay τ, if η(t) = η, then the two networks can achieve
lag synchronization under the following controllers

ui(t) = fi(xi(t− τ)) + Fi(xi(t− τ))α̂i(t) − gi(yi(t)) −Gi(yi(t))β̂i(t) −ωi(t)ei(t) (3.7)

−

N∑
j=1

ri(t)Γ ėj(t− η),

˙̂αi(t) = −κ1F
T
i (xi(t− τ))ei(t), (3.8)

˙̂βi(t) = κ2G
T
i (yi(t))ei(t), (3.9)

ω̇i(t) = κ3e
T
i (t)ei(t), (3.10)

ṙi(t) = κ4e
T
i (t)Γ ėi(t− η). (3.11)

Corollary 3.4. For any given positive delay τ, if A = 0 then the two networks can achieve lag synchro-
nization under the following controllers

ui(t) = fi(xi(t− τ)) + Fi(xi(t− τ))α̂i(t) − gi(yi(t)) −Gi(yi(t))β̂i(t) −

N∑
j=1

ri(t)Γ ėj(t− η(t)),

˙̂αi(t) = −κ1F
T
i (xi(t− τ))ei(t),

˙̂βi(t) = κ2G
T
i (yi(t))ei(t),

ṙi(t) = κ4e
T
i (t)Γ ėi(t− η(t)).
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4. Numerical analysis

In this section, numerical examples are given to show the effective of the designed control methods
obtained in the previous section. In the numerical simulations, the node of the drive dynamical equations
are taken as the Lü chaotic system, which is given by

ẋ1(t) = α1(x2(t) − x1(t)), ẋ2(t) = α3x2(t) − x1(t)x3(t), ẋ3(t) = x1(t)x2(t) −α2x3(t).

The node of the response dynamics described by the following Chen chaotic system

ẏ1(t) = β1(y2(t) − y1(t)), ẏ2(t) = (β3 −β1)y1(t) +β3y2(t) − y1(t)y3(t), ẏ3(t) = y1(t)y2(t) −β2x3(t),

where the unknown parameter vectors are αi = [α1 α2 α3]
T = [36 3 20]T , βi = [β1 β2 β3]

T = [35 3 28]T .
We take the propagation delay as τ = 1, the inner coupling matrix Γ as the identity matrix and the outer
coupling matrices as following:

A =



−7 1 0 0 2 0 1 0 2 1
0 −4 1 1 0 1 0 1 0 0
1 0 −5 0 1 0 2 0 1 0
0 0 1 −4 1 1 0 0 0 1
1 1 1 0 −4 1 0 0 0 0
0 1 0 1 0 −3 0 1 0 0
0 0 0 0 0 1 −2 0 1 0
0 1 0 1 0 0 1 −4 0 1
2 0 1 1 0 1 0 2 −8 1
1 0 0 0 0 1 0 0 0 −2


,

B = =



−4 1 1 0 0 0 1 0 0 1
1 −5 1 1 0 0 0 0 1 1
1 1 −6 1 1 1 0 1 0 0
0 1 1 −4 1 1 0 0 0 0
1 0 1 1 −7 1 1 1 0 1
0 0 1 1 1 −5 1 1 0 0
1 0 0 0 1 1 −6 1 1 1
0 0 0 0 1 1 1 −5 1 1
0 1 0 0 0 0 1 1 −4 1
1 1 0 0 0 0 1 1 1 −5


.

According to Theorem 3.1, the adaptive laws gains are κ1 = κ2 = κ3 = 1 and κ4 = 0.3. The time-varying
coupling delay is chosen as η(t) =

exp(t)
2(1+exp(t)) , then η̇(t) =

exp(t)
2(1+exp(t))2 ∈ (0, 1

2 ], where the Assumption

2.3 holds. The initial values are α̂i = β̂i = 0,ωi = 2, ri = 3. We take the initial states as xi(0) and yi(0)
are randomly chosen. The numerical results are presented in Fig. 1 and Fig. 2. The lag synchronization
error is depicted in Fig. 1, showing that the lag synchronization between the drive and response networks
is achieved. Fig. 2 ((a) and (b)) shows the identification of the uncertain parameters α̃ and β̃ converge
to their real values, which means that the unknown parameters are successfully estimated. These results
prove the effectiveness of our designed control (3.2) with adaptive law (3.3)-(3.6) for uncertain complex
dynamical networks with time varying delay coupling and delay derivative coupling.

According to corollary 3.3, when the delay coupling is constant, we choose η = 0.1 and the adaptive
laws gains are κ1 = κ2 = 4, κ3 = 1 and κ4 = 0.3. The initial values are α̂i = β̂i = 0,ωi = 4, ri =
3. We take the initial states as xi(0) and yi(0) are chosen randomly. In numerical simulation, the lag
synchronization error is depicted in Fig. 3, which displays e −→ 0 with t −→∞. That means the required
lag synchronization has been achieved with our designed control (3.7). The estimated parameters of
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the drive network nodes and response network nodes are shown in Fig. 4 ((a) and (b)) respectively,
successfully estimated. These results prove the effectiveness of our designed control (3.7) with adaptive
law (3.8)-(3.11) for uncertain complex dynamical networks with constant delay coupling and derivative
coupling.
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Figure 1: Time evolution of the lag synchronization error with time varying delay.
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Figure 2: The estimated unknown parameter of (a) α̂, (b)β̂.



G. Al-mahbashi, M. S. Md Noorani, J. Nonlinear Sci. Appl., 12 (2019), 252–261 259

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

time

e x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

8

time

e y

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−4

−3

−2

−1

0

1

2

3

4

time

e z

(c)

Figure 3: Time evolution of the lag synchronization error with constant delay coupling.
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Figure 4: The estimated unknown parameter of (a): α̂; (b): β̂.

5. Conclusion

In this paper, we explored a general uncertain complex dynamical networks model with time varying
delayed coupling and derivative coupling delay. The adaptive lag synchronization method was studied
between uncertain complex dynamical networks with different nodes. Based on the Lyapunov stability
theory and adaptive control, lag synchronization criterion was obtained and the unknown parameters
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were identified. The numerical simulation results showed the efficiency of the proposed method.
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