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Abstract
We propose a new distribution with two parameters called the odd Fréchet inverse Rayleigh (OFIR) distribution. The new

model can be more flexible. Several of its statistical properties are studied. The maximum likelihood (ML) estimation is used to
drive estimators of OFIR parameters. The importance and flexibility of the new model is assessed using one real data set.
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1. Introduction

An appropriate comprehensive lifetime model is often of concentration in the analysis of data. Trayer
[19] introduced a distribution in order to model reliability and survival data sets, named inverse Rayleigh
distribution. After that, inverse Rayleigh (IR) distribution was championed by Voda [20]. He discussed
its properties and ML estimator of the scale parameter. Further, Gharraph [8] provided closed-form
expressions for the mean, harmonic mean, geometric mean, mode and the median of this distribution.

Lots of works have been studied in the literature on IR distribution. Gharraph [8] and Hassan et al.
[13] estimated the parameters using classical and Bayesian estimation methods.

Beta inverse Rayleigh distribution was studied by Leao et al. [16], Ahmed et al. [4] introduced a
generalization of the inverse Rayleigh distribution, modified inverse Rayleigh distribution studied by
Khan [14], Khan and King [15] studied transmuted modified inverse Rayleigh distribution, Haq [11]
introduced transmuted exponentiated inverse Rayleigh distribution, and Kumaraswamy exponentiated
inverse Rayleigh distribution was studied by Haq [10].

The probability density function (pdf) and cumulative distribution function (cdf) of IR distribution are
given by

g (x:α)=
2α
x3 e

− α

x2 , x,α > 0,
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and

G (x:α)=e−
α

x2 , x,α > 0. (1.1)

Recently, the odd Fréchet generated family of distributions (OF-G) has been proposed by Haq and Elgarhy
[12] in order to get more flexibility to a family of distributions. The cdf of a continuous random variable
X having OF-G is given by:

F (x: θ, ξ)=
∫ [ G(x;ξ)

1−G(x;ξ)

]
0

θ

xθ+1 e
−x−θdx=e

−
[

1−G(x;ξ)
G(x;ξ)

]θ
, x ∈ R, θ > 0. (1.2)

The corresponding pdf to (1.2) is given by

f (x : θ, ξ) =
θg (x; ξ) [1 −G (x; ξ)]θ−1

G (x; ξ)θ+1 e
−
[

1−G(x;ξ)
G(x;ξ)

]θ
, (1.3)

where g (x : ξ) considers a pdf of baseline distribution. Hereafter, a random variable X with density
function (1.3) is denoted by X ∼ OF−G (θ, ξ) .

The hazard rate function (hrf) of the OF-G family is

h (x : θ, ξ) =
θg (x; ξ) [1 −G (x; ξ)]θ−1e

−
[

1−G(x;ξ)
G(x;ξ)

]θ

G (x; ξ)θ+1

[
1 − e

−
[

1−G(x;ξ)
G(x;ξ)

]θ] .

In this paper, we define a new lifetime model called the OFIR distribution. We hope that it will attract
wider applications in engineering, medicine, and other areas of research. This paper is organized as
follows. In Sections 2 and 3, we study the OFIR and calculate its properties. The ML method is applied
to drive the estimators of the model parameters in Section 4. Numerical results are carried out obtain the
estimates of the model parameters of OFIR distribution in Section 5. The analyses of one real data set is
employed in Section 6. Concluding remarks appear in Section 7.

2. The new model

The cdf of OFIR distribution with set of parameters ϕ = (α, θ) is obtained by substituting (1.1) in (1.2)
as follows

F (x; θ, α) = e
−

[
e
α
x2 −1

]θ
, x, α, θ > 0. (2.1)

The corresponding pdf to (2.1) is given by

f (x; θ, α) =
2θα
x3 e

α

x2

[
e
α

x2 − 1
]θ−1

e
−

[
e
α
x2 −1

]θ
, x,α, θ > 0. (2.2)

Also, the survival function (sf), hrf, reversed hrf, and cumulative hrf of X are given, respectively, as follows:

R (x; θ, α) = 1 − e
−

[
e
α
x2 −1

]θ
,

h (x;θ, α) =
2θα
x3 e

α

x2

[
e
α

x2 − 1
]θ−1

e
−

[
e
α
x2 −1

]θ

1−e
−

[
e
α
x2 −1

]θ ,
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τ (x; θ, α) =
2θα
x3 e

α

x2

[
e
α

x2 − 1
]θ−1

,

and

H (x; θ, α) = − ln (1−e
−

[
e
α
x2 −1

]θ
).

Hereafter, a random variable X that follows the distribution in (2.2) is denoted by X ∼ OFIR (ϕ), where
ϕ = (θ,α). Some descriptive pdf and hrf plots of X ∼ OFIR (ϕ) are illustrated below for specific parameter
choices of ϕ (see Figure 1).

Figure 1: Plots of the pdf and hrf of the (OFIR) distribution for different values of parameters.

From Figure 1, we conclude that pdf of OFIR distribution can be upside-down and right skewed. Also,
the hrf of OFIR distribution can be J-shaped and unimodal as seen from Figure 1.

3. Statistical properties

In this section some properties of the OFIR distribution are obtained.

3.1. Quantile and median
The quantile function, say Q(u) = F−1(u) of X is given by

u = e
−

[
e

α

(Q(u))2
−1
]θ

,

after some simplifications, it reduces to the following form

Q (u) =

√√√√√ α

ln
(

1 +
[
ln
( 1
u

) ] 1
θ

) , (3.1)

where, u is considered as a uniform random variable on the unit interval (0, 1).
In particular, the median can be derived from (3.1) by setting u = 0.5. That is, the median (M) is given

by

M =

√√√√ α

ln
(

1 + [ln (2) ]
1
θ

) .
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3.2. Linear representation
In this subsection representations of the pdf and cdf for OFIR distribution are derived.
Haq and Elgarhy [12] expressed the equation (1.3) as

f (x) =

∞∑
k=0

ηkg (x, ξ)G (x, ξ)k, (3.2)

where

ηk =

∞∑
i,j=0

θ(−1)i+k

i!

(
θ (i+ 1) + j

j

)(
θ (i+ 1) + j− 1

k

)
.

By inserting equation (2.2) in equation (3.2) we can rewite the OFIR as a linear combination of IR distri-
bution as

f (x) =

∞∑
k=0

wk
x3 e

−
α(k+1)
x2 , (3.3)

where wk = 2αηk.

3.3. Moments
If X has the pdf (3.3), then its rthmoment can be calculated through the following relation

µ
′
r = E(X

r) =

∫∞
−∞ xrf(x;ϕ)dx . (3.4)

Substituting (3.3) into (3.4) yields:

µ
′
r = E(X

r) =

∞∑
k=0

wk

∫∞
0
xr−3e−α(k+1)x−2

dx.

Let y = x−2, then

µ
′
r =

∞∑
k=0

wk
2

∫∞
0
y

−r
2 e−α(k+1)ydy,

then µ
′
r becomes

µ
′
r =

∞∑
k=0

wkΓ(1 − r
2 )

2 [α(k+ 1)]1−
r
2

, r < 2.

The moment generating function of OFIR distribution is obtained through the following relation

MX(t) =

∞∑
r=0

tr

r!
E(Xr) =

∞∑
r,k=0

tr

r!
wkΓ(1 − r

2 )

2 [α(k+ 1)]1−
r
2

, r < 2.

3.4. Incomplete and conditional moments
The main application of the first incomplete moment refers to the Bonferroni and Lorenz curves.

These curves are very useful in economics, reliability, demography, insurance and medicine. The answers
to many important questions in economics require more than just knowing the mean of the distribution,
but its shape as well. This is obvious not only in the study of econometrics but in other areas as well. The
incomplete moments, say $s(t), is given by

$s(t) =

∫t
0
xsf(x;ϕ)dx.
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Using (3.3), then φs(t) can written as follows

$s(t) =

∞∑
k=0

wk

∫t
0
xs−3e−α(k+1)x−2

dx.

Then, using the lower incomplete gamma function, we obtain

$s(t) =

∞∑
k=0

wk
ν
(
1 − s

2 ,α(k+ 1)t−2
)

2 (α(k+ 1))1− s
2

, s < 2,

where ν (s, t) =
∫t

0 x
s−1e−xdx is the lower incomplete gamma function.

Further, the conditional moments, say ∆s(t), is given by

∆s(t) =

∫∞
t

xsf(x;ϕ)dx.

Hence, by using pdf (3.3), we can write

∆s(t) =

∞∑
k=0

wk

∫∞
t

xs−3e−α(k+1)x−2
dx.

Then using the upper incomplete gamma function, we obtain

∆s(t) =

∞∑
k=0

wk
Γ
(
1 − s

2 ,α(k+ 1)t−2
)

2 (α(k+ 1))1− s
2

, s < 2,

where Γ (s, t) =
∫∞
t x

s−1e−xdx is the upper incomplete gamma function.

3.5. Inequality measures
Lorenz and Bonferroni curves are the most widely used inequality measures in income and wealth

distribution. In this subsection, we will calculated Lorenz, Bonferroni and Zenga curves for the OFIR
distribution. The Lorenz, Bonferroni, and Zenga curves are obtained, respectively, as

LF(x) =

∫t
0 xf(x)dx

E(X)
=

∑∞
k=0wk

ν( 1
2 ,α(k+1)t−2)

2(α(k+1))
1
2∑∞

k=0
wk
√
π

2[α(k+1)]
1
2

,

BF(x) =

∫t
0 xf(x)dx

E(X)F(x)
=
LF(x)

F(x)
=

∑∞
k=0wk

ν( 1
2 ,α(k+1)t−2)

2(α(k+1))
1
2(∑∞

k=0
wk
√
π

2[α(k+1)]
1
2

)
e
−

(
e
α
x2 −1

)θ ,

and

AF(x) = 1 −
µ−(x)

µ+(x)
,

where

µ−(x) =

∫t
0 xf(x)dx

E(X)
=

∑∞
k=0wk

ν( 1
2 ,α(k+1)t−2)

2(α(k+1))
1
2∑∞

k=0
wk
√
π

2[α(k+1)]
1
2

and µ+(x) =

∫∞
t xf(x)dx

1 − F(x)
=

∑∞
k=0wk

Γ( 1
2 ,α(k+1)t−2)

2(α(k+1))
1
2

1 − e
−

(
e
α
x2 −1

)θ .

4. Maximum likelihood estimation

The ML estimators of the unknown parameters for the OFIR distribution are determined based on
complete samples. Let X1, . . . ,Xn be observed values from the OFIR distribution with set of parameters
ϕ = (α, θ)T . The total log-likelihood function for the vector of parameters ϕ can be expressed as
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lnL(ϕ) = n ln 2θ+n lnα− 3
n∑
i=1

ln xi +α
n∑
i=1

1
xi2

+ (θ− 1)
n∑
i=1

ln
(
e
α

xi
2 − 1

)
−

n∑
i=1

(
e
α

xi
2 − 1

)θ
.

The elements of the score function U(ϕ) = (Uα, Uθ) are given by

Uα =
n

α
+

n∑
i=1

1
xi2

+ (θ− 1)
n∑
i=1

1
xi2 e

α

xi
2

e
α

xi
2 − 1

− θ

n∑
i=1

1
xi2
e
α

xi
2
(
e
α

xi
2 − 1

)θ−1
,

and

Uθ =
n

θ
+

n∑
i=1

ln
(
e
α

xi
2 − 1

)
−

n∑
i=1

(
e
α

xi
2 − 1

)θ
ln
(
e
α

xi
2 − 1

)
.

Then the ML estimators of the parameters α and θ are obtained by setting Uα and Uθ to be zero and
solving them. Clearly, it is difficult to solve them, therefore applying the Newton-Raphson’s iteration
method and using the computer packages such as Maple or R or other softwares will solve them.

5. Numerical results

A numerical results is designed to evaluate and compare the behavior of the estimators with respect to
their mean square errors (MSEs). We generate 3000 random sample X1, . . .,Xn of sizes n = (30, 50, 100, 300)
from OFIR distribution. Six choices sets of parameters are considered as: set 1:(0.5, 0.5), set 2:(1.5, 0.5), set
3:(0.5, 1.5), set 4:(1.5, 1.5), set 5:(0.5, 1), and set 6:(1, 0.5).

The ML estimates of α and θ are computed. Then, the MSEs of the ML estimates (MLEs) of the un-
known parameters are calculated. Simulated outcomes are listed in Table 1 and the following observations
are detected. The MSEs and the MLEs decrease as sample sizes increase for all estimates.

Table 1: The parameter estimation from OFIR distribution using MLmethod.

n Par set 1: (0.5, 0.5) set 2:(1.5, 0.5) set 3:(0.5, 1.5)
MLE MSE MLE MSE MLE MSE

30 α 0.5189 0.0095 0.6509 0.5736 1.5611 0.0828
θ 0.5291 0.0184 1.5907 0.1757 0.5347 0.0211

50 α 0.5114 0.0060 0.5587 0.0766 1.5357 0.0520
θ 0.5155 0.0104 1.5457 0.0954 0.5201 0.0109

100 α 0.5057 0.0031 0.5299 0.0196 1.5121 0.0253
θ 0.5091 0.0049 1.5303 0.0444 0.5076 0.0049

300 α 0.5017 0.0010 0.5084 0.0048 1.5064 0.0089
θ 0.5026 0.0015 1.5079 0.0140 0.5043 0.0016

n Par set 4:(1.5, 1.5) set 5:(0.5, 1) set 6:(1, 0.5)
MLE MSE MLE MSE MLE MSE

30 α 1.8977 5.6026 1.0350 0.0371 0.5518 0.0364
θ 1.5919 0.1705 0.5314 0.0199 1.0664 0.0829

50 α 1.7085 0.6372 1.0214 0.0236 0.5287 0.0165
θ 1.5500 0.0969 0.5159 0.0105 1.0388 0.0414

100 α 1.5853 0.1643 1.0106 0.0117 0.5119 0.0081
θ 1.5255 0.0428 0.5076 0.0049 1.0175 0.0203

300 α 1.5219 0.0425 1.0039 0.0041 0.5058 0.0024
θ 1.5073 0.0141 0.5038 0.0016 1.0069 0.0063

6. Application

In this section, we provide an application to a real data set to assess the flexibility of the OFIR model.
In order to compare the OFIR model with other fitted distributions has four, five, and six parameters.
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We compare the fits of the OFIR distribution with the beta generalized inverse Weibull geometric distribution
(BGIWGc) ( Elbatal et al., [7]), beta transmuted Weibull (BTW) (Afify et al., [3]), McDonald log-logistic (McLL)
(Tahir et al., [18]), McDonald Weibull (McW) (Cordeiro et al., [6]), new modified Weibull (NMW) (Almalki
and Yuan, [5]), transmuted complementary Weibull-geometric (TCWG) (Afify et al., [1]), beta Weibull (BW)
(Lee et al., [17]), and exponentiated transmuted generalized Rayleigh (ETGR) (Afify et al., [2]) distributions.

The data set (Gross and Clark, [9]) on the relief times of twenty patients receiving an analgesic is 1.1,
1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

The ML estimates along with their standard errors (SEs) of the model parameters are provided in
Tables 2 and 3. In the same tables, the analytical measures including minus double log-likelihood (−2 logL),
Anderson Darling statistic (A∗), Cramér-von Mises statistic (W∗), Akaike Information Criterion (AIC), corrected
Akaike information criterion (CAIC), Bayesian information criterion (BIC), and Hannan-Quinn information crite-
rion (HQIC) are presented.

Tables 2 lists the MLEs of the model parameters and their corresponding standard whereas errors the
values of −2 logL, AIC, CAIC, BIC, HQIC, A∗, and W∗ are given in Table 3.

Table 2: MLEs and their SEs (in parentheses) for the data set.
Model MLE and SE

OFIR (α, θ)
1.623 1.462 - - - -

(0.182) (0.265) - - - -

BGIWGc (α, γ, θ, p, a, b)
19.1874 20.5968 1.4346 9.8485 39.2308×10−5 5.8015
(33.03) (43.241) (0.837) (2.001) (63.252) (4.346)

BTW (α, β, a, b, λ)
5.6186 0.5311 53.3438 3.5683 -0.7718 -
(9.353) (0.148) (111.453) (4.265) (3.894) -

McLL (α, β, a, b, c)
0.8811 2.0703 19.2254 32.0332 1.9263 -
(0.109) (3.693) (22.341) (43.077) (5.165) -

McW (α, β, a, b, c)
2.7738 0.3802 79.108 17.8976 3.0063 -
(6.38) (0.188) (119.131) (39.511) (13968) -

NMW (α, β, γ, δ, θ)
0.1215 2.7837 8.227×10−5 0.0003 2.7871 -
(0.056) (20.37) (1.512×10−3) (0.025) (0.428) -

TCWG (α, β, γ, λ)
43.6627 5.1271 0.2823 -0.2713 - -
(45.459) (0.814) (0.042) (0.656) - -

BW (α, β, a, b)
0.8314 0.6126 29.9468 11.6319 - -
(0.954) (0.34) (40.413) (21.9) - -

ETGR (α, β, λ, δ)
0.1033 0.6917 -0.342 23.5392 - -
(0.436) (0.086) (1.971) (105.371) - -

Table 3: Measures of goodness-of-fit statistics for the data set.
Model −2 logL AIC CAIC BIC HQIC A∗ W∗

OFIR 31.476 35.476 36.181 34.078 35.864 0.23635 0.0399
BGIWGc 31.662 43.662 50.124 39.468 44.828 0.24665 0.0434
BTW 33.051 43.051 47.337 39.556 44.023 0.39769 0.06896
McLL 33.854 43.854 48.14 40.359 44.826 0.46199 0.07904
McW 33.907 43.907 48.193 40.412 44.879 0.46927 0.08021
NMW 41.173 51.173 55.459 47.678 52.145 1.0678 0.17585
TCWG 33.607 41.607 44.274 38.811 42.385 0.43603 0.07252
BW 34.396 42.396 45.063 39.6 43.174 0.51316 0.0873
ETGR 36.856 44.856 47.523 42.06 45.634 0.79291 0.13629
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Figure 2: The empirical pdf and pp plots of the OFIR model.

Figure 3: The empirical cdf and sf of the OFIR model.

Table 3 compares the fits of the OFIR distribution with the BGIWGc, BTW, McLL, McW, NMW, TCWG,
BW and ETGR distributions. The figures in these tables show that the OFIR model has the lowest values
for −2 logL, AIC, CAIC, HQIC, A∗, and W∗ among all fitted distributions. So, it could be chosen as the
best model. The fitted pdf and pp plots for the OFIR model are displayed in Figure 2. Figure 3 shows the
estimated cdf and sf for the OFIR model. From these plots it is evident that the new model provides close
fit to the data.

7. Concluding Remarks

In this paper, we propose a new two-parameter distribution named the odd Fréchet inverse Rayleigh
distribution. The pdf of OFIR can be expressed as a linear mixture of IR densities. We calculate explicit ex-
pressions for some of its statistical properties. We study the maximum likelihood estimation. Simulation
results are carried to assess the accuracy and performance of estimates. The proposed model provides
better fits than some other competitive models using a real data set. We wish that the proposed distribu-
tion would attract wider applications in applied areas such as lifetime analysis, reliability, hydrology, and
engineering.
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