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Abstract
We compare the best approximations of holomorphic functions in the Hardy space H1 by algebraic polynomials and

trigonometric polynomials. Particulary, we establish a class of functions f ∈ H1 for which the best trigonometric approximation
do not coincide with the best algebraic approximation.
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1. Introduction and main results

Let D := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1} and let dm be a normalized Lebesgue measure on T.
The Hardy space Hq for 1 6 q 6 ∞ is the class of holomorphic in the D functions f satisfied ‖f‖q < ∞,
where

‖f‖q :=


sup
ρ∈(0,1)

(∫
T

|f(ρt)|qdm(t)

)1/q

, 1 6 q <∞,

sup
z∈D

|f(z)|, q = ∞.

It is well-known that each function f from Hq has the nontangential limits f(t), t ∈ T, almost every-
where and

‖f‖q =


(∫

T

|f|qdm

)1/q

, 1 6 q <∞,

ess sup
t∈T

|f(t)|, q = ∞.
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The best polynomial approximation of f ∈ Hq of order n, n ∈N, is the quantity

En(f)q := inf
P∈Pn−1

‖f− P‖q, n ∈N,

where Pn−1 is the set of all algebraic polynomials of degree at most n− 1.
We will denote by Tn−1 the set of all trigonometric polynomials of degree at most n− 1 on the circle

T with complex coefficients, that is a functions of the form T(t) =
∑

|k|6n−1 ckt
k, t ∈ T.

The best trigonometric approximation of f ∈ Hq of order n, n ∈N, is the quantity

Ẽn(f)q := inf
T∈Tn−1

‖f− T‖q, n ∈N.

The polynomials P∗ and T∗ satisfied ‖f− P∗‖q = En(f)q and ‖f− T∗‖q = Ẽn(f)q are called a best
approximation to f among the set Pn−1 and Tn−1 respectively in the metric ‖ · ‖q.

Obviously, for any 1 6 q 6 ∞, one has

Ẽ1(f)q = E1(f)q,

and
Ẽn(f)q 6 En(f)q, ∀ n ∈N \ {1}. (1.1)

Pekarskii [3] was the first to point out in print that there exists a function f ∈ H∞ such that

Ẽn(f)∞ < En(f)∞, (1.2)

for a given natural n > 1.
Particularly, in [3] it was shown that for the sequence {fn,ρ}0<ρ<1 of functions

fn,ρ(z) = z
n 1 − ρ2(n+1)

1 − ρn+1zn+1 , n ∈N \ {1}, (1.3)

we have
Ẽn(fn,ρ)∞ = 1 < En(fn,ρ)∞ = ‖fn,ρ‖∞ = 1 + ρn+1 → 2 as ρ→ 1.

In view of these results, it is natural to assume that function fn,ρ must satisfy the inequality

Ẽn(f)1 < En(f)1. (1.4)

As we will show later (see Proposition 2.4), this is indeed the case, but the method of [3] cannot be
applied to proving this one.

Finally, let us pay attention that Pekarskii’s example says nothing about the inequality (1.2) for an
individual function for each natural n.

The aim of this note is to establish a class of functions f satisfied (1.4) for a given n as well as to
construct an individual function f for which (1.4) holds true for each natural n.

Let Πn, n ∈ N \ {1}, denote the set of all algebraic polynomials f(z) =
∑3n−1
k=0 akz

k of degree at most
3n− 1 with complex coefficients satisfied |an|

∑3n−1
k=2n+1 |ak| > 0 and such that

min
z∈T

Re
2n−1∑
k=0

an+k
an

zk >
1
2

.

Let f̂k =
f(k)(0)
k! , k = 0, 1, · · · , denote the Taylor coefficients of f ∈ H1.

Our main results are the following two theorems.



F. G. Abdullayev, V. V. Savchuk, D. Şimşek, J. Nonlinear Sci. Appl., 12 (2019), 412–419 414

Theorem 1.1. Suppose n ∈N \ {1} and f ∈ Πn. Then∣∣∣f̂n∣∣∣ = Ẽn(f)1 < En(f)1.

Theorem 1.2. Suppose that 0 < ρ < 1 and let f(z) = 1/(1 − ρz). Then for each natural n,

Ẽn(f)1 =
2
π
ρnK

(
ρ2n) , (1.5)

and
En(f)1 =

2
π
ρnK

(
ρn+1) , (1.6)

where

K(x) =

∫ π
2

0

dθ√
1 − x2 sin2 θ

,

is the complete elliptic integral of the first kind.

Corollary 1.3. Suppose that 0 < ρ < 1 and let f(z) = 1/(1− ρz). Then for each natural n > 1 the inequality (1.2)
holds true.

2. Examples

In this section, our goal is to prove the following propositions that may be considered as examples to
the main theorems.

Firstly, we give some examples of polynomials from Πn .

Proposition 2.1. Let n,p ∈N, n6p 6 2n− 1 and let Ap(t)=
∑

|k|6p akt
k, B2n−p−1(t)=

∑
|k|62n−p−1 bkt

k,
|apb2n−p−2| > 0 be two trigonometric polynomials, such that Ap(t)B2n−p−1(t) > 0 for all t ∈ T. Then the
function

f(z) = zn

(
p∑
k=0

akz
k

) ∑
|k|62n−p−1

bkz
k

 , (2.1)

belongs to Πn and

Ẽn(f)1 = f̂n = a0b0 + 2 Re
2n−p−1∑
k=1

akbk,

where for p = 2n− 1,
∑0
k=1 = 0. Moreover, the trigonometric polynomial

T(t) = −tn

(
p∑
k=1

a−kt
−k

)
B2n−p−1(t),

is the best approximation to f among the set Tn−1 in the metric ‖ · ‖1.

Indeed, a straightforward calculation shows that T has the form T(t) =
∑3n−2p−1
k=−(n−1) ckt

k, ck ∈ C.
Therefore, T ∈ Tn−1, since 3n− 2p− 1 6 n− 1.

As it is easy to see that

t−n (f(t) − T(t)) = Ap(t)B2n−p−1(t) > 0, t ∈ T,

then

Ẽn(f)1 6 ‖f− T‖1 =

∫
T

ApB2n−p−1dm = a0b0 + 2 Re
2n−p−1∑
k=1

akbk.
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Since
∣∣∣f̂n∣∣∣ 6 Ẽn(f)1 and

f̂n =

∫
T

f(t)t−ndm(t) =

∫
T

(f(t) − T(t)) t−ndm(t) =

∫
T

ApB2n−p−1dm > Ẽn(f)1,

we get Ẽn(f)1 = f̂n. As it follows from Lemma 3.1 below,

Ẽn(f)1 =
∣∣∣f̂n∣∣∣⇐⇒ min

t∈T

2n−1∑
k=0

f̂k+n

f̂n
tk >

1
2

.

Therefore f ∈ Πn, because
∣∣∣f̂n∣∣∣∑3n−1

k=n+1

∣∣∣f̂k∣∣∣ > ∣∣∣f̂nf̂3n−1

∣∣∣ = ∣∣∣f̂napb2n−p−1

∣∣∣ > 0.

The computation of the value of best approximation En(f)1 for function from Πn is a more complicated
problem. In the next two propositions we would like to pay attention to how a sieve-method may be
applied to computation of this one.

Let r ∈ Z+ and s ∈N. The linear operator Wr,s defined on H1 by

Wr,s(f)(z) =

∞∑
j=0

f̂js+rz
j, z ∈ D,

is called the sieve operator.
The importance of sieve operator for the theory of approximation of holomorphic functions is recog-

nized by the following.

Proposition 2.2. Suppose that 1 6 q 6 ∞, r ∈ Z+, s ∈N, s > r+ 1 and let

Gqr,s := {g ∈ Hq : Wr,s(g) = 0} .

Then for any function f ∈ Hp,

‖Wr,s(f)‖q = min
g∈Gqr,s

‖f− g‖q (2.2)

6 Er(f)q. (2.3)

The minimum in (2.2) is attained for the function g(z) = f(z) − zrWr,s(f)(z
s). The equality sign in (2.3) is

attained for function of the form f(z) =
∑∞
j=0 ajz

js+r.

Proof. Indeed, for any g ∈ G
q
r,s,

Wr,s(f) = Wr,s(f− g).

Therefore,
‖Wr,s(f)‖q 6 ‖Wr,s‖q‖f− g‖q,

where ‖Wr,s‖q is the norm of operator Wr,s on Hq space.
It was shown in [5] that

‖Wr,s‖∞ = 1⇔ s > r+ 1⇒ ‖Wr,s‖q = 1.

Thus, for any g ∈ G
q
r,s,

‖Wr,s(f)‖q 6 ‖f− g‖q.

It is clear that the best we can minimize the right side in the above inequality is to choose

g(z) = f(z) − zrWr,s(f)(z
s).

For proving (2.3) it suffices to note that Pr−1 ⊂ G
q
r,s.
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Proposition 2.3. Suppose that n ∈N \ {1} and let f(z) = zn + 1
2z

2n+1. Then f ∈ Πn,

Ẽn(f)1 = 1,

and

En(f)1 = ‖f‖1 =
3
π

E

(
2
√

2
3

)
,

where

E(x) =
∫ π

2

0

√
1 − x2 sin2 θdθ,

is a complete elliptic integral of the second kind.

Clearly, f has the form (2.1), in which p = n+ 1, a0 = b0 = 1, an+1 = 1
2 , and ak = an−1 = bk = 0 for

k = 1, 2, · · · ,n− 2. Therefore, by Proposition 2.1, f ∈ Πn and Ẽn(f)1 = 1.
On the other hand, Wn,n+1(f)(z) = 1 + 1

2z. Thus, by Proposition 2.2

En(f)1 = ‖f‖1

=

∫
T

∣∣∣∣1 +
t

2

∣∣∣∣dm(t)

=
3

4π

∫π
−π

√
1 −

8
9

sin2 θ

2
dθ

=
3
π

E

(
2
√

2
3

)
≈ 1.01925.

Proposition 2.4. Suppose that n ∈N \ {1}, 0 < ρ < 1 and let fn,ρ be the function defined in (1.3). Then

Ẽn (fn,ρ)1 6 1,

and
En (fn,ρ)1 = ‖fn,ρ‖1 =

2
π

(
1 − ρ2(n+1)

)
K
(
ρn+1) .

Therefore, for the ρ∗ ≈ (0.139793)
1
n+1 that maximizes the function ρ 7→

(
1 − ρ2(n+1)

)
K
(
ρn+1

)
on [0, 1], we get

(1.4).

Indeed,
Ẽn (fn,ρ)1 6 Ẽn (fn,ρ)∞ = 1.

On the other hand,
znWn,n+1 (fn,ρ) (z

n+1) = fn,ρ(z).

Therefore, En (fn,ρ)1 = ‖fn,ρ‖1.

3. Auxiliary lemmas

The proof of Theorem 1.1 is based on the following assertions that are also of some independent
interest.

Lemma 3.1. Suppose that n ∈N, f ∈ H1 and
∣∣∣f̂n∣∣∣ > 0. Then equality Ẽn(f)1 =

∣∣∣f̂n∣∣∣ holds true if and only if

f(z) =

3n−1∑
k=0

f̂kz
k,

∣∣∣f̂n∣∣∣ > 0,
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and

min
t∈T

Re
2n−1∑
k=0

f̂n+k

f̂n
tk >

1
2

.

Moreover, the trigonometric polynomial

T∗(t) =

n−1∑
k=0

(
f̂k − f̂2n−ke

i2 arg f̂n
)
tk − ei2 arg f̂n

n−1∑
k=1

f̂k+2n+1t
−k,

is the unique best approximation to f among the set Tn−1 in the metric ‖ · ‖1.

Proof. By definition

Ẽn(f)1 = inf
ak∈C

∫
T

∣∣∣∣∣∣f(t) −
∑

|k|6n−1

akt
k

∣∣∣∣∣∣dm(t)

= inf
ak∈C

∫
T

∣∣∣∣∣∣tn−1f(t) −

2(n−1)∑
k=0

ak−n+1t
k

∣∣∣∣∣∣dm(t) = E2n−1(g)1,

where g(t) = tn−1f(t).
Therefore, taking into account that f̂n = ĝ2n−1, we get the equivalence

Ẽn(f)1 =
∣∣∣f̂n∣∣∣⇐⇒ E2n−1(g)1 = |ĝ2n−1| .

In addition, the trigonometric polynomial
∑

|k|6n−1 akt
k is the best approximation to f among the set

Tn−1 if and only if the algebraic polynomial
∑2(n−1)
k=0 ak−n+1t

k is the best approximation to g among the
set P2(n−1).

The remainder of this proof follows immediately from the next lemma proved in [1].

Lemma 3.2. Suppose that n ∈N, f ∈ H1 and
∣∣∣f̂n∣∣∣ > 0. The equality En(f)1 =

∣∣∣f̂n∣∣∣ holds true if and only if

f(z) =

2n∑
k=0

f̂kz
k,

and

min
t∈T

Re
n∑
k=0

f̂n+k

f̂n
tk >

1
2

.

Moreover, the polynomial

P∗(z) =

n−1∑
k=0

(
f̂k − f̂2n−ke

i2 arg f̂n
)
zk,

is the unique best approximation to f among the set Pn−1 in the metric ‖ · ‖1.

Lemma 3.3. Suppose that 0 6 ρ < 1 and p ∈N. Then∫
T

|1 − ρptp|

|1 − ρt|2
dm(t) =

2
π

1 − ρ2p

1 − ρ2 K(ρp),

where K is the complete elliptic integral of the first kind.



F. G. Abdullayev, V. V. Savchuk, D. Şimşek, J. Nonlinear Sci. Appl., 12 (2019), 412–419 418

This assertion essentially is contained in [6]. For convenience, we present here its proof.

Proof. From the expansion
1√

1 − x
= 1 +

∞∑
k=1

αkx
k, ∀ x ∈ D,

where

αk :=
(2k− 1)!!
(2k)!!

, k ∈N,

we get
√

1 − xp

1 − x
=

1 − xp

1 − x

1√
1 − xp

=
1 − xp

1 − x

(
1 +

∞∑
k=1

αkx
pk

)

=
1 − xp

1 − x
+

∞∑
k=1

αk
1 − xp

1 − x
xpk

=

p−1∑
ν=0

xν +

∞∑
k=1

αk

p(k+1)−1∑
ν=pk

xν, ∀ x ∈ D.

Therefore, by Parseval’s identity,∫
T

|1 − ρptp

|1 − ρt|2
dm(t) =

1
2π

∫ 2π

0

√
1 − ρpeipθ

1 − ρeiθ

√
1 − ρpe−ipθ

1 − ρe−iθ
dθ

=

p−1∑
ν=0

ρ2ν +

∞∑
k=1

α2
k

p(k+1)−1∑
ν=pk

ρ2ν

=
1 − ρ2p

1 − ρ2

(
1 +

∞∑
k=1

α2
kρ

2pk

)

=
1 − ρ2p

1 − ρ2
1

2π

∫ 2π

0

1
|1 − ρpe−iθ|

dθ

=
2
π

1 − ρ2p

1 − ρ2 K(ρp).

4. Proofs of main results

Proof of Theorem 1.1. It is ease to see that functions from the set Πn satisfies conditions of Lemma 3.1.
Therefore,

∣∣∣f̂n∣∣∣ = Ẽn(f)1. On the other hand, any function from Πn does not satisfy conditions of Lemma

3.2. Thus, for any f ∈ Πn, En(f)1 6=
∣∣∣f̂n∣∣∣. The result follows, since (1.1).

Proof of Theorem 1.2. First for all we note that as was shown by Alper [2] (see also some generalizations in
[4])

Ep(f)1 = ρp
1 − ρ2

1 − ρ2(p+1)

∫
T

∣∣1 − ρp+1tp+1
∣∣

|1 − ρt|2
dm(t).

From this formula, by Lemma 3.3 we get the equality (1.6).
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Let us prove (1.5).
We have

Ẽn(f)1 = min
ak∈C

∫
T

∣∣∣∣∣∣ 1
1 − ρt

−
∑

|k|6n−1

akt
k

∣∣∣∣∣∣dm(t)

= min
ak∈C

1
ρn−1

∫
T

∣∣∣∣∣∣ρ
n−1tn−1

1 − ρt
−

2(n−1)∑
k=0

ρn−1ak−n+1t
k

∣∣∣∣∣∣dm(t)

=
1

ρn−1 min
ak∈C

∫
T

∣∣∣∣∣∣ 1
1 − ρt

−

n−2∑
k=0

ρktk −

2(n−1)∑
k=0

ρn−1ak−n+1t
k

∣∣∣∣∣∣dm(t)

=
1

ρn−1 min
bk∈C

∫
T

∣∣∣∣∣∣ 1
1 − ρt

−

2(n−1)∑
k=0

bkt
k

∣∣∣∣∣∣dm(t)

=
1

ρn−1E2n−1(f)1.

Therefore by (1.6) we get the equality (1.5).
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