Comparison of the best approximation of holomorphic functions from Hardy space

F. G. Abdullayev ${ }^{\text {a,b }}$, V. V. Savchuk ${ }^{\text {c,* }}$, D. Şimşek ${ }^{\text {b }}$
${ }^{a}$ Mersin University, Mersin, Turkey.
${ }^{\text {b }}$ Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan.
${ }^{c}$ Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine.

Abstract

We compare the best approximations of holomorphic functions in the Hardy space H^{1} by algebraic polynomials and trigonometric polynomials. Particulary, we establish a class of functions $f \in H^{1}$ for which the best trigonometric approximation do not coincide with the best algebraic approximation.

Keywords: Best approximation, Hardy space, non-negative trigonometric polynomials.
2010 MSC: 30C45, 30C50.
(c)2019 All rights reserved.

1. Introduction and main results

Let $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}, \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ and let $d m$ be a normalized Lebesgue measure on \mathbb{T}. The Hardy space H^{q} for $1 \leqslant q \leqslant \infty$ is the class of holomorphic in the \mathbb{D} functions f satisfied $\|f\|_{q}<\infty$, where

$$
\|f\|_{q}:= \begin{cases}\sup _{\rho \in(0,1)}\left(\int_{\mathbb{T}}|f(\rho t)|^{q} d m(t)\right)^{1 / q}, & 1 \leqslant q<\infty, \\ \sup _{z \in \mathbb{D}}|f(z)|, & q=\infty .\end{cases}
$$

It is well-known that each function f from H^{q} has the nontangential limits $f(t), t \in \mathbb{T}$, almost everywhere and

$$
\|f\|_{q}= \begin{cases}\left(\int_{\mathbb{T}}|f|^{q} d m\right)^{1 / q}, & 1 \leqslant q<\infty, \\ \underset{t \in \mathbb{T}}{\operatorname{ess} \sup }|f(t)|, & q=\infty .\end{cases}
$$

[^0]The best polynomial approximation of $f \in H^{q}$ of order $n, n \in \mathbb{N}$, is the quantity

$$
E_{n}(f)_{q}:=\inf _{P \in \mathcal{P}_{n-1}}\|f-P\|_{q}, \quad n \in \mathbb{N},
$$

where $\mathcal{P}_{\mathrm{n}-1}$ is the set of all algebraic polynomials of degree at most $n-1$.
We will denote by $\mathcal{J}_{\mathfrak{n}-1}$ the set of all trigonometric polynomials of degree at most $\mathfrak{n}-1$ on the circle \mathbb{T} with complex coefficients, that is a functions of the form $T(t)=\sum_{|k| \leqslant n-1} c_{k} t^{k}, t \in \mathbb{T}$.

The best trigonometric approximation of $f \in H^{q}$ of order $n, n \in \mathbb{N}$, is the quantity

$$
\widetilde{E}_{n}(f)_{q}:=\inf _{T \in \mathcal{T}_{n-1}}\|f-T\|_{q}, \quad n \in \mathbb{N}
$$

The polynomials P^{*} and T^{*} satisfied $\left\|f-P^{*}\right\|_{q}=E_{n}(f)_{q}$ and $\left\|f-T^{*}\right\|_{q}=\widetilde{E}_{n}(f)_{q}$ are called a best approximation to f among the set \mathcal{P}_{n-1} and \mathcal{T}_{n-1} respectively in the metric $\|\cdot\|_{q}$.

Obviously, for any $1 \leqslant q \leqslant \infty$, one has

$$
\widetilde{E}_{1}(f)_{q}=E_{1}(f)_{q},
$$

and

$$
\begin{equation*}
\widetilde{E}_{n}(f)_{q} \leqslant E_{n}(f)_{q}, \quad \forall n \in \mathbb{N} \backslash\{1\} . \tag{1.1}
\end{equation*}
$$

Pekarskii [3] was the first to point out in print that there exists a function $f \in H^{\infty}$ such that

$$
\begin{equation*}
\widetilde{E}_{n}(f)_{\infty}<E_{n}(f)_{\infty}, \tag{1.2}
\end{equation*}
$$

for a given natural $n>1$.
Particularly, in [3] it was shown that for the sequence $\left\{f_{n, \rho}\right\}_{0<p<1}$ of functions

$$
\begin{equation*}
f_{n, \rho}(z)=z^{n} \frac{1-\rho^{2(n+1)}}{1-\rho^{n+1} z^{n+1}}, \quad n \in \mathbb{N} \backslash\{1\}, \tag{1.3}
\end{equation*}
$$

we have

$$
\widetilde{E}_{n}\left(f_{n, \rho}\right)_{\infty}=1<E_{n}\left(f_{n, \rho}\right)_{\infty}=\left\|f_{n, \rho}\right\|_{\infty}=1+\rho^{n+1} \rightarrow 2 \quad \text { as } \quad \rho \rightarrow 1 .
$$

In view of these results, it is natural to assume that function $f_{n, \rho}$ must satisfy the inequality

$$
\begin{equation*}
\widetilde{E}_{n}(f)_{1}<E_{n}(f)_{1} . \tag{1.4}
\end{equation*}
$$

As we will show later (see Proposition 2.4), this is indeed the case, but the method of [3] cannot be applied to proving this one.

Finally, let us pay attention that Pekarskii's example says nothing about the inequality (1.2) for an individual function for each natural n .

The aim of this note is to establish a class of functions f satisfied (1.4) for a given n as well as to construct an individual function f for which (1.4) holds true for each natural n.

Let $\Pi_{n}, n \in \mathbb{N} \backslash\{1\}$, denote the set of all algebraic polynomials $f(z)=\sum_{k=0}^{3 n-1} a_{k} z^{k}$ of degree at most $3 n-1$ with complex coefficients satisfied $\left|a_{n}\right| \sum_{k=2 n+1}^{3 n-1}\left|a_{k}\right|>0$ and such that

$$
\min _{z \in \mathbb{T}} \operatorname{Re} \sum_{k=0}^{2 n-1} \frac{a_{n+k}}{a_{n}} z^{k} \geqslant \frac{1}{2} .
$$

Let $\widehat{f}_{k}=\frac{f^{(k)}(0)}{k!}, k=0,1, \cdots$, denote the Taylor coefficients of $f \in H^{1}$.
Our main results are the following two theorems.

Theorem 1.1. Suppose $n \in \mathbb{N} \backslash\{1\}$ and $f \in \Pi_{n}$. Then

$$
\left|\widehat{f}_{n}\right|=\widetilde{E}_{n}(f)_{1}<E_{n}(f)_{1} .
$$

Theorem 1.2. Suppose that $0<\rho<1$ and let $f(z)=1 /(1-\rho z)$. Then for each natural n,

$$
\begin{equation*}
\widetilde{E}_{n}(f)_{1}=\frac{2}{\pi} \rho^{n} \mathbf{K}\left(\rho^{2 n}\right), \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}(f)_{1}=\frac{2}{\pi} \rho^{n} K\left(\rho^{n+1}\right) \tag{1.6}
\end{equation*}
$$

where

$$
\mathbf{K}(x)=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-x^{2} \sin ^{2} \theta}}
$$

is the complete elliptic integral of the first kind.
Corollary 1.3. Suppose that $0<\rho<1$ and let $f(z)=1 /(1-\rho z)$. Then for each natural $n>1$ the inequality (1.2) holds true.

2. Examples

In this section, our goal is to prove the following propositions that may be considered as examples to the main theorems.

Firstly, we give some examples of polynomials from Π_{n}.
Proposition 2.1. Let $n, p \in \mathbb{N}, n \leqslant p \leqslant 2 n-1$ and let $A_{p}(t)=\sum_{|k| \leqslant p} a_{k} t^{k}, B_{2 n-p-1}(t)=\sum_{|k| \leqslant 2 n-p-1} b_{k} t^{k}$, $\left|a_{p} b_{2 n-p-2}\right|>0$ be two trigonometric polynomials, such that $A_{p}(t) B_{2 n-p-1}(t) \geqslant 0$ for all $t \in \mathbb{T}$. Then the function

$$
\begin{equation*}
f(z)=z^{n}\left(\sum_{k=0}^{p} a_{k} z^{k}\right)\left(\sum_{|k| \leqslant 2 n-p-1} b_{k} z^{k}\right), \tag{2.1}
\end{equation*}
$$

belongs to Π_{n} and

$$
\widetilde{E}_{n}(f)_{1}=\widehat{f}_{n}=a_{0} b_{0}+2 \operatorname{Re} \sum_{k=1}^{2 n-p-1} a_{k} \bar{b}_{k}
$$

where for $p=2 n-1, \sum_{k=1}^{0}=0$. Moreover, the trigonometric polynomial

$$
T(t)=-t^{n}\left(\sum_{k=1}^{p} a_{-k} t^{-k}\right) B_{2 n-p-1}(t)
$$

is the best approximation to f among the set $\mathcal{T}_{\mathfrak{n}-1}$ in the metric $\|\cdot\|_{1}$.
Indeed, a straightforward calculation shows that T has the form $T(t)=\sum_{k=-(n-1)}^{3 n-2 p-1} c_{k} t^{k}, c_{k} \in \mathbb{C}$. Therefore, $T \in \mathcal{T}_{n-1}$, since $3 n-2 p-1 \leqslant n-1$.

As it is easy to see that

$$
t^{-n}(f(t)-T(t))=A_{p}(t) B_{2 n-p-1}(t) \geqslant 0, \quad t \in \mathbb{T},
$$

then

$$
\widetilde{E}_{n}(f)_{1} \leqslant\|f-T\|_{1}=\int_{T} A_{p} B_{2 n-p-1} d m=a_{0} b_{0}+2 \operatorname{Re} \sum_{k=1}^{2 n-p-1} a_{k} \bar{b}_{k} .
$$

Since $\left|\widehat{f}_{n}\right| \leqslant \widetilde{E}_{n}(f)_{1}$ and

$$
\widehat{f}_{n}=\int_{\mathbb{T}} f(t) t^{-n} d m(t)=\int_{\mathbb{T}}(f(t)-T(t)) t^{-n} d m(t)=\int_{\mathbb{T}} A_{p} B_{2 n-p-1} d m \geqslant \widetilde{E}_{n}(f)_{1},
$$

we get $\widetilde{E}_{n}(f)_{1}=\widehat{f}_{n}$. As it follows from Lemma 3.1 below,

$$
\widetilde{\mathrm{E}}_{\mathrm{n}}(\mathrm{f})_{1}=\left|\widehat{\mathrm{f}}_{\mathrm{n}}\right| \Longleftrightarrow \min _{\mathrm{t} \in \mathbb{T}} \sum_{\mathrm{k}=0}^{2 \mathrm{n}-1} \frac{\widehat{f}_{\mathrm{k}+\mathrm{n}}}{\widehat{f}_{n}} \mathrm{t}^{k} \geqslant \frac{1}{2} .
$$

Therefore $f \in \Pi_{n}$, because $\left|\widehat{f}_{n}\right| \sum_{k=n+1}^{3 n-1}\left|\widehat{f}_{k}\right| \geqslant\left|\widehat{f}_{n} \widehat{f}_{3 n-1}\right|=\left|\widehat{f}_{n} a_{p} b_{2 n-p-1}\right|>0$.
The computation of the value of best approximation $E_{n}(f)_{1}$ for function from Π_{n} is a more complicated problem. In the next two propositions we would like to pay attention to how a sieve-method may be applied to computation of this one.

Let $r \in \mathbb{Z}_{+}$and $s \in \mathbb{N}$. The linear operator $\mathcal{W}_{r, s}$ defined on H^{1} by

$$
\mathcal{W}_{r, s}(f)(z)=\sum_{j=0}^{\infty} \widehat{f}_{\mathfrak{j} s+r} z^{j}, \quad z \in \mathbb{D},
$$

is called the sieve operator.
The importance of sieve operator for the theory of approximation of holomorphic functions is recognized by the following.

Proposition 2.2. Suppose that $1 \leqslant \mathrm{q} \leqslant \infty, \mathrm{r} \in \mathbb{Z}_{+}, \mathrm{s} \in \mathbb{N}, \mathrm{s} \geqslant \mathrm{r}+1$ and let

$$
\mathcal{G}_{r, s}^{q}:=\left\{g \in H^{q}: \mathcal{W}_{r, s}(g)=0\right\} .
$$

Then for any function $f \in \mathrm{H}^{p}$,

$$
\begin{align*}
\left\|\mathcal{W}_{r, s}(f)\right\|_{q} & =\min _{\mathfrak{g} \in \mathcal{G}^{q}, s}\|f-g\|_{q} \tag{2.2}\\
& \leqslant E_{r}(f)_{q} . \tag{2.3}
\end{align*}
$$

The minimum in (2.2) is attained for the function $g(z)=f(z)-z^{r} \mathcal{W}_{r, s}(f)\left(z^{s}\right)$. The equality sign in (2.3) is attained for function of the form $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j+r}$.
Proof. Indeed, for any $\mathrm{g} \in \mathcal{G}_{r, s}^{q}$,

$$
\mathcal{W}_{r, s}(f)=\mathcal{W}_{r, s}(f-g) .
$$

Therefore,

$$
\left\|\mathcal{W}_{r, s}(f)\right\|_{q} \leqslant\left\|\mathcal{W}_{r, s}\right\|_{q}\|f-g\|_{q},
$$

where $\left\|\mathcal{W}_{r, s}\right\|_{q}$ is the norm of operator $\mathcal{W}_{r, s}$ on H^{q} space.
It was shown in [5] that

$$
\left\|\mathcal{W}_{r, s}\right\|_{\infty}=1 \Leftrightarrow s \geqslant r+1 \Rightarrow\left\|\mathcal{W}_{r, s}\right\|_{q}=1 .
$$

Thus, for any $g \in \mathcal{G}_{r, s}^{q}$,

$$
\left\|\mathcal{W}_{r, s}(f)\right\|_{q} \leqslant\|f-g\|_{q} .
$$

It is clear that the best we can minimize the right side in the above inequality is to choose

$$
g(z)=f(z)-z^{r} \mathcal{W}_{r, s}(f)\left(z^{s}\right) .
$$

For proving (2.3) it suffices to note that $\mathcal{P}_{r-1} \subset \mathcal{G}_{r, s}^{\mathfrak{q}}$.

Proposition 2.3. Suppose that $n \in \mathbb{N} \backslash\{1\}$ and let $f(z)=z^{n}+\frac{1}{2} z^{2 n+1}$. Then $f \in \Pi_{n}$,

$$
\widetilde{E}_{n}(f)_{1}=1
$$

and

$$
E_{n}(f)_{1}=\|f\|_{1}=\frac{3}{\pi} \mathbf{E}\left(\frac{2 \sqrt{2}}{3}\right)
$$

where

$$
\mathrm{E}(\mathrm{x})=\int_{0}^{\frac{\pi}{2}} \sqrt{1-x^{2} \sin ^{2} \theta} \mathrm{~d} \theta
$$

is a complete elliptic integral of the second kind.
Clearly, f has the form (2.1), in which $p=n+1, a_{0}=b_{0}=1, a_{n+1}=\frac{1}{2}$, and $a_{k}=a_{n-1}=b_{k}=0$ for $k=1,2, \cdots, n-2$. Therefore, by Proposition $2.1, f \in \Pi_{n}$ and $\widetilde{E}_{n}(f)_{1}=1$.

On the other hand, $\mathcal{W}_{n, n+1}(f)(z)=1+\frac{1}{2} z$. Thus, by Proposition 2.2

$$
\begin{aligned}
\mathrm{E}_{\mathrm{n}}(\mathrm{f})_{1} & =\|\mathrm{f}\|_{1} \\
& =\int_{\mathbb{T}}\left|1+\frac{\mathrm{t}}{2}\right| \mathrm{dm}(\mathrm{t}) \\
& =\frac{3}{4 \pi} \int_{-\pi}^{\pi} \sqrt{1-\frac{8}{9} \sin ^{2} \frac{\theta}{2}} \mathrm{~d} \theta \\
& =\frac{3}{\pi} \mathrm{E}\left(\frac{2 \sqrt{2}}{3}\right) \approx 1.01925
\end{aligned}
$$

Proposition 2.4. Suppose that $\mathfrak{n} \in \mathbb{N} \backslash\{1\}, 0<\rho<1$ and let $\mathrm{f}_{\mathrm{n}, \rho}$ be the function defined in (1.3). Then

$$
\widetilde{E}_{n}\left(f_{n, \rho}\right)_{1} \leqslant 1
$$

and

$$
E_{n}\left(f_{n, \rho}\right)_{1}=\left\|f_{n, \rho}\right\|_{1}=\frac{2}{\pi}\left(1-\rho^{2(n+1)}\right) \mathbf{K}\left(\rho^{n+1}\right) .
$$

Therefore, for the $\rho_{*} \approx(0.139793)^{\frac{1}{n+1}}$ that maximizes the function $\rho \mapsto\left(1-\rho^{2(n+1)}\right) \mathbf{K}\left(\rho^{n+1}\right)$ on $[0,1]$, we get (1.4).

Indeed,

$$
\widetilde{E}_{n}\left(f_{n, \rho}\right)_{1} \leqslant \widetilde{E}_{n}\left(f_{n, \rho}\right)_{\infty}=1
$$

On the other hand,

$$
z^{n} \mathcal{W}_{n, n+1}\left(f_{n, \rho}\right)\left(z^{n+1}\right)=f_{n, \rho}(z)
$$

Therefore, $E_{n}\left(f_{n, \rho}\right)_{1}=\left\|f_{n, \rho}\right\|_{1}$.

3. Auxiliary lemmas

The proof of Theorem 1.1 is based on the following assertions that are also of some independent interest.
Lemma 3.1. Suppose that $n \in \mathbb{N}, \mathrm{f} \in \mathrm{H}^{1}$ and $\left|\widehat{\mathrm{f}}_{\mathrm{n}}\right|>0$. Then equality $\widetilde{\mathrm{E}}_{\mathrm{n}}(\mathrm{f})_{1}=\left|\widehat{\mathrm{f}}_{\mathrm{n}}\right|$ holds true if and only if

$$
f(z)=\sum_{k=0}^{3 n-1} \widehat{f}_{k} z^{k}, \quad\left|\widehat{f}_{n}\right|>0
$$

and

$$
\min _{\mathrm{t} \in \mathbb{T}} \operatorname{Re} \sum_{\mathrm{k}=0}^{2 \mathrm{n}-1} \frac{\widehat{f}_{n+k}}{\widehat{f}_{n}} t^{k} \geqslant \frac{1}{2} .
$$

Moreover, the trigonometric polynomial

$$
T^{*}(t)=\sum_{k=0}^{n-1}\left(\widehat{f}_{k}-\overline{\hat{f}_{2 n-k}} e^{i 2 \arg \hat{f}_{n}}\right) t^{k}-e^{i 2 \arg \widehat{f}_{n}} \sum_{k=1}^{n-1} \overline{\hat{f}_{k+2 n+1}} t^{-k},
$$

is the unique best approximation to f among the set $\mathcal{T}_{\mathrm{n}-1}$ in the metric $\|\cdot\|_{1}$.
Proof. By definition

$$
\begin{aligned}
\widetilde{E}_{n}(f)_{1} & =\inf _{a_{k} \in C} \int_{\mathbb{T}}\left|f(t)-\sum_{|k| \leqslant n}\right| a_{k} t^{k} \mid d m(t) \\
& =\inf _{a_{k} \in C} \int_{\mathbb{T}}\left|t^{n-1} f(t)-\sum_{k=0}^{2(n-1)} a_{k-n+1} t^{k}\right| d m(t)=E_{2 n-1}(g)_{1},
\end{aligned}
$$

where $g(t)=t^{n-1} f(t)$.
Therefore, taking into account that $\widehat{f}_{n}=\widehat{g}_{2 n-1}$, we get the equivalence

$$
\widetilde{E}_{n}(f)_{1}=\left|\widehat{f}_{n}\right| \Longleftrightarrow E_{2 n-1}(g)_{1}=\left|\widehat{g}_{2 n-1}\right| .
$$

In addition, the trigonometric polynomial $\sum_{|k| \leqslant n-1} a_{k} t^{k}$ is the best approximation to f among the set \mathcal{T}_{n-1} if and only if the algebraic polynomial $\sum_{k=0}^{2(n-1)} a_{k-n+1} t^{k}$ is the best approximation to g among the set $\mathcal{P}_{2(n-1)}$.

The remainder of this proof follows immediately from the next lemma proved in [1].
Lemma 3.2. Suppose that $n \in \mathbb{N}, f \in H^{1}$ and $\left|\widehat{\mathfrak{f}}_{n}\right|>0$. The equality $\mathrm{E}_{\mathrm{n}}(\mathrm{f})_{1}=\left|\widehat{\mathrm{f}}_{\mathrm{n}}\right|$ holds true if and only if

$$
f(z)=\sum_{k=0}^{2 n} \widehat{f}_{k} z^{k}
$$

and

$$
\min _{\mathfrak{t} \in \mathbb{T}} \operatorname{Re} \sum_{k=0}^{n} \frac{\widehat{f}_{n+k}}{\widehat{f}_{n}} t^{k} \geqslant \frac{1}{2}
$$

Moreover, the polynomial

$$
P^{*}(z)=\sum_{k=0}^{n-1}\left(\widehat{f}_{k}-\overline{\hat{f}_{2 n-k}} e^{i 2 \arg \hat{f}_{n}}\right) z^{k},
$$

is the unique best approximation to f among the set $\mathcal{P}_{\mathrm{n}-1}$ in the metric $\|\cdot\|_{1}$.
Lemma 3.3. Suppose that $0 \leqslant \rho<1$ and $p \in \mathbb{N}$. Then

$$
\int_{\mathbb{T}} \frac{\left|1-\rho^{p} t^{p}\right|}{|1-\rho t|^{2}} d m(t)=\frac{2}{\pi} \frac{1-\rho^{2 p}}{1-\rho^{2}} \mathbf{K}\left(\rho^{p}\right),
$$

where \mathbf{K} is the complete elliptic integral of the first kind.

This assertion essentially is contained in [6]. For convenience, we present here its proof.
Proof. From the expansion

$$
\frac{1}{\sqrt{1-x}}=1+\sum_{k=1}^{\infty} \alpha_{k} x^{k}, \quad \forall x \in \mathbb{D},
$$

where

$$
\alpha_{k}:=\frac{(2 k-1)!!}{(2 k)!!}, \quad k \in \mathbb{N},
$$

we get

$$
\begin{aligned}
\frac{\sqrt{1-x^{p}}}{1-x} & =\frac{1-x^{p}}{1-x} \frac{1}{\sqrt{1-x^{p}}} \\
& =\frac{1-x^{p}}{1-x}\left(1+\sum_{k=1}^{\infty} \alpha_{k} x^{p k}\right) \\
& =\frac{1-x^{p}}{1-x}+\sum_{k=1}^{\infty} \alpha_{k} \frac{1-x^{p}}{1-x} x^{p k} \\
& =\sum_{v=0}^{p-1} x^{v}+\sum_{k=1}^{\infty} \alpha_{k} \sum_{v=p_{k}}^{p(k+1)-1} x^{v}, \quad \forall x \in \mathbb{D} .
\end{aligned}
$$

Therefore, by Parseval's identity,

$$
\begin{aligned}
\int_{\mathbb{T}} \frac{\mid 1-\rho^{p} t^{p}}{|1-\rho t|^{2}} d m(t) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sqrt{1-\rho^{p} e^{i p \theta}}}{1-\rho e^{i \theta}} \frac{\sqrt{1-\rho^{p} e^{-i p \theta}}}{1-\rho e^{-i \theta}} d \theta \\
& =\sum_{v=0}^{p-1} \rho^{2 v}+\sum_{k=1}^{\infty} \alpha_{k}^{2} \sum_{v=p k}^{p(k+1)-1} \rho^{2 v} \\
& =\frac{1-\rho^{2 p}}{1-\rho^{2}}\left(1+\sum_{k=1}^{\infty} \alpha_{k}^{2} \rho^{2 p k}\right) \\
& =\frac{1-\rho^{2 p}}{1-\rho^{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|1-\rho^{p} e^{-i \theta}\right|} \mathrm{d} \theta \\
& =\frac{2}{\pi} \frac{1-\rho^{2 p}}{1-\rho^{2}} \mathbf{K}\left(\rho^{p}\right) .
\end{aligned}
$$

4. Proofs of main results

Proof of Theorem 1.1. It is ease to see that functions from the set Π_{n} satisfies conditions of Lemma 3.1. Therefore, $\left|\widehat{f}_{n}\right|=\widetilde{E}_{n}(f)_{1}$. On the other hand, any function from Π_{n} does not satisfy conditions of Lemma 3.2. Thus, for any $f \in \Pi_{n}, E_{n}(f)_{1} \neq\left|\widehat{f}_{n}\right|$. The result follows, since (1.1).

Proof of Theorem 1.2. First for all we note that as was shown by Alper [2] (see also some generalizations in [4])

$$
E_{p}(f)_{1}=\rho^{p} \frac{1-\rho^{2}}{1-\rho^{2(p+1)}} \int_{\mathbb{T}} \frac{\left|1-\rho^{p+1} t^{p+1}\right|}{|1-\rho t|^{2}} d m(t) .
$$

From this formula, by Lemma 3.3 we get the equality (1.6).

Let us prove (1.5).

We have

$$
\begin{aligned}
\widetilde{E}_{n}(f)_{1} & =\min _{a_{k} \in \mathbb{C}} \int_{\mathbb{T}}\left|\frac{1}{1-\rho t}-\sum_{|k| \leqslant n-1} a_{k} t^{k}\right| d m(t) \\
& =\min _{a_{k} \in \mathbb{C}} \frac{1}{\rho^{n-1}} \int_{\mathbb{T}}\left|\frac{\rho^{n-1} t^{n-1}}{1-\rho t}-\sum_{k=0}^{2(n-1)} \rho^{n-1} a_{k-n+1} t^{k}\right| d m(t) \\
& =\frac{1}{\rho^{n-1}} \min _{a_{k} \in \mathbb{C}} \int_{\mathbb{T}}\left|\frac{1}{1-\rho t}-\sum_{k=0}^{n-2} \rho^{k} t^{k}-\sum_{k=0}^{2(n-1)} \rho^{n-1} a_{k-n+1} t^{k}\right| d m(t) \\
& =\frac{1}{\rho^{n-1}} \min _{b_{k} \in \mathbb{C}} \int_{\mathbb{T}}\left|\frac{1}{1-\rho t}-\sum_{k=0}^{2(n-1)} b_{k} t^{k}\right| d m(t) \\
& =\frac{1}{\rho^{n-1}} E_{2 n-1}(f)_{1} .
\end{aligned}
$$

Therefore by (1.6) we get the equality (1.5).

Acknowledgment

This research was supported by the Kyrgyz-Turkish Manas University (Bishkek/Kyrgyz Republic), project No. KTMÜ-BAP-2018.FBE. 05.

References

[1] F. G. Abdullayev, G. A. Abdullayev, V. V. Savchuk, Best approximation of holomorphic functions from Hardy space in terms of Taylor coefficient, to appear in Filomat. 3
[2] S. Y. Al'per, On the Best Mean First-degree Approximation of Analytic Functions on Circle (Russian), Dokl. Akad. Nauk S.S.S.R., 153 (1963), 503-506. 4
[3] A. A. Pekarskii, Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary (Russian), translated from Tr. Mat. Inst. Steklova, 255 (2006), 227-232. 1, 1, 1
[4] V. V. Savchuk, Best Approximation of Cauchy-Szegö Kernel in the Mean on Circle (Ukrainian), Ukr. Mat. Zh., 70 (2018), 708-714. 4
[5] V. V. Savchuk, S. O. Chaichenko, Addendum to a theorem of F. Wiener about sieve (Ukrainian), Praci Instytutu Matematyky NAN Ukrainy, 12 (2015), 262-272. 2
[6] V. V. Savchuk, M. V. Savchuk, S. O. Chaichenko, Approximation of Analytic Functions byde Valle Poussin sums (Ukrainian), Matematychni Studii, 34 (2010), 207-219. 3

[^0]: *Corresponding author
 Email addresses: fabdul@mersin.edu.tr (F. G. Abdullayev), savchuk@imath.kiev.ua (V. V. Savchuk),
 dagistan.simsek@manas.edu.kg (D. Şimşek)
 doi: 10.22436/jnsa.012.07.01
 Received: 2018-10-22 Revised: 2019-01-18 Accepted: 2019-01-25

