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Abstract

Our main objective is to study the real fixed points and singular values of a two-parameter family of transcendental
meromorphic functions gλ,n(z) = λ z

(bz−1)n , λ ∈ R\{0}, z ∈ C\{0}, n ∈ N\{1}, b > 0, b 6= 1 in the present paper which obtains
from generating function of the unified generalized Apostol-type polynomials. The real fixed points of gλ,n(x), x ∈ R \ {0} with
their stability are found for n odd and n even. It is shown that gλ,n(z) has infinite number of singular values. Further, it is seen
that some critical values of gλ,n(z) lie in the closure of the disk and other lie in the exterior of the disk with center at the origin.
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1. Introduction

Often the fixed points and singular values are much important and play crucial role in the study of
the behavior of nonlinear dynamical systems. For one parameter families of functions, the real fixed
points are studied in [8, 9] and the singular values are shown in [10, 11]. For two-parameter families,
the real fixed points are described in [4, 13] and the singular values are found in [13, 14]. Generally,
the real and complex dynamics of functions are associated to the fixed points and singular values and
have become an interesting research area, make worth studying partially due to applicability of these
for describing properties of the Julia sets and Fatou sets [1–3, 5, 16]. Using the real fixed points, the
real dynamics of functions are investigated in [6, 12, 17] and the bifurcation as well as chaos in the real
dynamics of a two-parameter family of functions arises from generating function of generalized Apostol-
type polynomials are discussed in [15]. Some advanced results on transcendental dynamics can be seen
in [7, 19] by applicability of fixed points and singular values.

A point x is called a fixed point of function f(x) if f(x) = x. A fixed point xf is said to be attracting,
neutral (rationally or irrationally indifferent), or repelling if |f′(xf)| < 1, |f′(xf)| = 1, or |f′(xf)| > 1,
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respectively. Let f : C→ C. A point z∗ ∈ C is said to be a critical point of f(z) if f ′(z∗) = 0. The value f(z∗)
corresponding to a critical point z∗ is called a critical value of f(z). A point w ∈ Ĉ = C∪ {∞} is said to be
an asymptotic value for f(z), if there exists a continuous curve γ : [0,∞)→ Ĉ satisfying limt→∞ γ(t) =∞
and limt→∞ f(γ(t)) = w. A singular value of f is defined to be either a critical value or an asymptotic
value of f.

Let

G =

{
gλ,n(z) = λ

z

(bz − 1)n
: λ ∈ R\{0}, z ∈ C\{0},n ∈N\{1},b > 0,b 6= 1

}
be two-parameter family of transcendental meromorphic functions which is neither even nor odd. This
family of generating function is a unification of three generalized Apostol-type polynomials (Apostol-
Bernoulli, Apostol-Euler, and Apostol-Genocchi) of order α ∈ C which is given as [18](

2µzν

λbz + az

)α
cxz =

∞∑
k=0

Z
(α)
k (x; λ;a,b, c;µ;ν)

zk

k!
,(

|z| <

∣∣∣∣ log(−λ)
log(ba)

∣∣∣∣;a ∈ C\{0};b, c ∈ R+;a 6= b;α, λ,µ,ν ∈ C, 1α := 1
)

.

Setting x = 0, λ = 1, µ = 0, α = n, ν = 1
n and az = −1, we have

z

(bz − 1)n
=

∞∑
k=0

Z
(n)
k (0; 1;a,b, c, 0,

1
n
)
zk

k!
; |z| <

∣∣∣∣ log(−1)
log(ba)

∣∣∣∣.
For n = 1, the real fixed points and singular values of λ z

bz−1 are investigated in [8, 9] and [11]
respectively. Moreover, it is a generalized family of functions z

(ez−1)n [13] on base b and the study of
these kinds of maps are scarily found in the literature since most of the work has performed up to now
deals with polynomials and rational maps.

The present paper describes the real fixed points and singular values of gλ,n ∈ G. In Theorem 2.3 and
Theorem 2.4, the real fixed points of gλ,n ∈ G with their stability are described for n odd and n even,
respectively. It is seen that the function gλ,n ∈ G has infinite number of singular values in Theorem 3.1.
It is found that, in Theorem 3.3, g′λ,n(z) has no zeros in the right half plane for b > 1 and in the left half
plane for 0 < b < 1. In Theorem 3.5, gλ,n(z) maps the left half plane for b > 1 and in the right half
plane for 0 < b < 1 in the closure and into the exterior of the disk with center at origin according to two
different regions, respectively. Further, in Theorem 3.6, it is observed that some critical values of gλ,n ∈ G

lie in the closure and other lie into the exterior of the disk with center at origin.

2. Real fixed points of gλ,n ∈ G and their nature

The real fixed points of the functions fλ,n ∈ G and their stability are discussed in this section. The
following lemma is needed in the sequel:

Lemma 2.1. Let h(x) = 1 − nx lnb
1−b−x , x ∈ R, n ∈N\{1}, b > 0, b 6= 1.

(i) For b > 1, limx→−∞ h(x) = 1, h(0) = 1 −n, limx→+∞ h(x) = −∞, h(x∗1) = −1 and h(x∗∗1 ) = −1, where
x∗1 and x∗∗1 (depending on n and b) are the unique negative real roots of the equation (2 −nx lnb)bx − 2 = 0
for odd n ∈N\{1} and even n ∈N\{1}, respectively.

(ii) For 0 < b < 1, limx→+∞ h(x) = 1, h(0) = 1 − n, limx→−∞ h(x) = −∞, h(x∗2) = −1 and h(x∗∗2 ) = −1,
where x∗2 and x∗∗2 (depending on n and b) are the unique positive real roots of the equation (2 −nx lnb)bx −
2 = 0 for odd n ∈N\{1} and even n ∈N\{1}, respectively.

Proof. For b > 1, it is easily seen that the function x
1−b−x tends to 0, 1

lnb , or ∞ along as x → −∞, x → 0,
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or x→ +∞, respectively. Then

lim
x→−∞h(x) = 1 −n lnb lim

x→−∞ x

1 − b−x
= 1,

h(0) = 1 −n lnb lim
x→0

x

1 − b−x
= 1 −n,

lim
x→+∞h(x) = 1 −n lnb lim

x→+∞ x

1 − b−x
= −∞,

h(x∗1) = 1 −
nx∗1 lnb
1 − b−x

∗
1
= 1 −

nx∗1 lnb
nx∗1

2 lnb
= −1 since 1 − b−x

∗
1 =

nx∗1
2

lnb,

h(x∗∗1 ) = 1 −
nx∗∗1 lnb
1 − b−x

∗∗
1

= 1 −
nx∗∗1 lnb
nx∗∗1

2 lnb
= −1 since 1 − b−x

∗∗
1 =

nx∗∗1
2

lnb.

This completes the proof of (i). Similarly, we can obtain the proof of (ii). The graphs of the function
h(x) = 1 − nx lnb

1−b−x are given in Figure 1 (a) for n = 3 and b = 2 and Figure 1 (b) for n = 2 and b = 0.5.

(a) For n = 3 and b = 2. (b) For n = 2 and b = 0.5.

Figure 1: Graphs of h(x) = 1 − nx lnb
1−b−x .

Remark 2.2. It is easily observed that x∗2 = −x∗1 and x∗∗2 = −x∗∗1 .

For n odd, let us define

λ∗ =
x∗

g(x∗)
= (bx

∗
− 1)n,

where x∗ is either x∗1 or x∗2 which is given in Lemma 2.1 for b > 1 and 0 < b < 1, respectively.
The following theorem describes the real fixed points of the function gλ,n ∈ G and their nature for n

odd greater than 1.

Theorem 2.3. Let gλ,n ∈ G for odd n ∈N\{1}.

(a) The function gλ,n(x) has a unique real fixed point xλ,n for λ > −1 and no real fixed point for λ < −1. The
fixed point xλ,n of gλ,n(x) is

(i) negative if −1 < λ < 0 and positive if λ > 0 for b > 1.
(ii) positive if −1 < λ < 0 and negative if λ > 0 for 0 < b < 1.

(b) (i) If b > 1, the fixed point xλ,n of gλ,n(x) is attracting for −1 < λ < λ∗, rationally indifferent for λ = λ∗

and repelling for λ∗ < λ < 0 and λ > 0.
(ii) If 0 < b < 1, the fixed point xλ,n of gλ,n(x) is repelling for −1 < λ < 0 and 0 < λ < λ∗, rationally

indifferent for λ = λ∗ and attracting for λ > λ∗.

Proof. For fixed points of gλ,n(x), we have λ x
(bx−1)n = x.

(a) For n odd greater than 1, we get a unique fixed point xλ,n =
ln(1+λ1/n)

lnb . It follows that the fixed point
xλ,n of gλ,n(x) is real for λ > −1 and no real fixed point for λ < −1. Therefore, the real fixed point xλ,n
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of gλ,n(x) is (i) positive if λ > 0 and negative if −1 < λ < 0 for b > 1; (ii) negative if λ > 0 and positive if
−1 < λ < 0 for 0 < b < 1.

(b) Since xλ,n is a fixed point of gλ,n(x), then

g′λ,n(xλ,n) = λ
(1 −nxλ,n lnb)bxλ,n − 1

(bxλ,n − 1)n+1 . (2.1)

Substituting λ = (bxλ,n − 1)n in equation (2.1), we get

g′λ,n(xλ,n) = (bxλ,n − 1)n
(1 −nxλ,n lnb)bxλ,n − 1

(bxλ,n − 1)n+1 = 1 −
nxλ,n lnb
1 − b−xλ,n

.

(i) For b > 1 and λ < 0, the fixed point xλ,n of gλ,n(x) is negative by part (a). It is seen that, using
Lemma 2.1 (i), −1 < g′λ,n(xλ,n) < 1 for −1 < λ < λ∗, g′λ,n(xλ,n) = −1 for λ = λ∗ and g′λ,n(xλ,n) < −1 for
λ∗ < λ < 0. Hence, the fixed point xλ,n of gλ,n(x) is attracting for −1 < λ < λ∗, rationally indifferent for
λ = λ∗ and repelling for λ∗ < λ < 0.

For λ > 0, the fixed point xλ,n of gλ,n(x) is positive by part (a). The function nx lnb
1−b−x is positive and

increasing from 0 to ∞ and the minimum value of the function nx lnb
1−b−x is n at x = 0 in the interval [0,∞).

For n > 3 and x > 0, we can write 1 − nx lnb
1−b−x < 1 − n. Hence, |g′λ,n(xλ,n)| = |1 −

nxλ,n lnb
1−b−xλ,n | > |1 − n| > 1

since n > 3. Therefore, the fixed point xλ,n of gλ,n(x) is repelling for λ > 0.

(ii) For 0 < b < 1, we construct the proof of this part similar as b > 1. For −1 < λ < 0, the fixed point
xλ,n of gλ,n(x) is positive by part (a). The function nx lnb

1−b−x is positive and decreasing from 0 to∞ and the
maximum value of the function nx lnb

1−b−x is n at x = 0 in the interval [0,∞). For n > 3 and x > 0, we can

write 1 − n < 1 − nx lnb
1−b−x < 1. Hence, 1 < |1 −

nxλ,n lnb
1−b−xλ,n | < |1 − n|. It follows that 1 < |g′λ,n(xλ,n)| < |1 − n|

since n > 3. Therefore, the fixed point xλ,n of gλ,n(x) is repelling for −1 < λ < 0.
For λ > 0, by Lemma 2.1 (ii), we get −1 < g′λ,n(xλ,n) < 1 for λ > λ∗, g′λ,n(xλ,n) = −1 for λ = λ∗ and

g′λ,n(xλ,n) < −1 for 0 < λ < λ∗. Therefore, the fixed point xλ,n of gλ,n(x) is repelling for 0 < λ < λ∗,
rationally indifferent for λ = λ∗ and attracting for λ > λ∗. This completes the proof of theorem.

For n even, let us define

λ∗∗ =
x∗∗

g(x∗∗)
= (bx

∗∗
− 1)n,

where x∗∗ is either x∗∗1 or x∗∗2 , which is given in Lemma 2.1 for b > 1 and 0 < b < 1, respectively.
The description of the real fixed points of gλ,n ∈ G for n even greater than 0 are different than for n

odd greater than 1. The following theorem shows the real fixed points of the function gλ,n ∈ G and their
nature for n even greater than 0.

Theorem 2.4. Let gλ,n ∈ G for even n ∈N\{1}.

(i) The function gλ,n(x) has two real fixed points for 0 < λ < 1, a unique real fixed point for λ > 1 and no
real fixed point for λ < 0. If b > 1, one fixed point x−λ,n is negative and other fixed point x+λ,n is positive for
0 < λ < 1; and only one fixed point xλ,n is positive for λ > 1. If 0 < b < 1, vice versa.

(ii) For b > 1, the fixed point x−λ,n is repelling for 0 < λ < λ∗∗, rationally indifferent for λ = λ∗∗ and attracting
for λ∗∗ < λ < 1. The fixed point x+λ,n is repelling for 0 < λ < 1 and the fixed point xλ,n is repelling for λ > 1.
For 0 < b < 1, the fixed point x+λ,n is repelling for 0 < λ < λ∗∗, rationally indifferent for λ = λ∗∗ and
attracting for λ∗∗ < λ < 1. The fixed point x−λ,n is repelling for 0 < λ < 1 and the fixed point xλ,n is repelling
for λ > 1.

Proof. For fixed points of gλ,n(x), we have λ x
(bx−1)n = x.

(i) For even n ∈ N\{1}, the fixed points are given as xλ,n =
ln(1±λ1/n)

lnb . It follows that gλ,n(x) has two
real fixed points for 0 < λ < 1, a unique real fixed point for λ > 1 and no real fixed point for λ < 0. For
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0 < λ < 1, it is easily seen that one fixed point x−λ,n is negative and other fixed point x+λ,n is positive for
b > 1 and vice versa for 0 < b < 1. For λ > 1, gλ,n(x) has positive real fixed point x+λ,n for b > 1 and has
negative real fixed point x−λ,n for 0 < b < 1.

(ii) Since xλ,n is a fixed point of gλ,n(x) and λ = (bxλ,n − 1)n, then we have

g′λ,n(xλ,n) = (bxλ,n − 1)n
(1 −nxλ,n lnb)bxλ,n − 1

(bxλ,n − 1)n+1 = 1 −
nxλ,n lnb
1 − b−xλ,n

.

For b > 1, by Lemma 2.1 (i), it is easily found that g′λ,n(x
−
λ,n) < −1 for 0 < λ < λ∗∗, g′λ,n(x

−
λ,n) = −1

for λ = λ∗∗ and −1 < g′λ,n(x
−
λ,n) < 1 for λ∗∗ < λ < 1. It gives that the fixed point x−λ,n is repelling for

0 < λ < λ∗∗, rationally indifferent for λ = λ∗∗ and attracting for λ∗∗ < λ < 1.
Now, with similar arguments as used for n odd, we can deduce that the fixed point x+λ,n of gλ,n(x) is

repelling for 0 < λ < 1 and the fixed point xλ,n is repelling for λ > 1.
For 0 < b < 1, the proof of this part can be obtained similar as b > 1. The proof of the theorem is

completed.

From above theorems, it is observed that the nature of the fixed points of gλ,n(x) changes when
parameter λ crosses certain parameter value for both n even or n odd.

3. Singular values of gλ,n ∈ G

In this section, we describe the singular values of gλ,n ∈ G. The following theorem explains that the
function gλ,n ∈ G has infinitely many singular values.

Theorem 3.1. Let gλ,n ∈ G. Then, the function gλ,n(z) possesses infinitely many singular values.

Proof. For critical points of gλ,n(z), g′λ,n(z) = λ
(bz−1)n−nz lnb(bz−1)n−1bz

(bz−1)2n = 0. From this, we get the
equation (1 −nz lnb)bz − 1 = 0. Using the real and imaginary parts, we have

y lnb
sin(y lnb)

−
1
n
ey lnb cot(y lnb)− 1

n = 0, (3.1)

x =
1

n lnb
− y cot(y lnb). (3.2)

For b > 1, it is seen that, from Figure 2 (a), equation (3.1) has infinitely many solutions for n = 3 and
b = 5 since number of intersections increases if interval increases along horizontal axis . For 0 < b < 1,
similarly it is observed, from Figure 2 (b), equation (3.1) has infinitely many solutions for n = 3 and
b = 0.5.

(a) For n = 3 and b = 5. (b) For n = 3 and b = 0.5.

Figure 2: Graphs of y lnb
sin(y lnb) −

1
ne
y lnb cot(y lnb)− 1

n (a) for n = 3 and b = 5, and (b) for n = 3 and b = 0.5.

Let {yk}
k=∞
k=−∞,k6=0 be solutions of equation (3.1) for b > 1. From equation (3.2), xk = 1

n lnb −
yk cot(yk lnb) for k = ±1,±2,±3, . . .. Therefore, it follows that zk = xk + iyk are critical points of
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gλ,n(z) since g′λ(zk) = 0, and then the critical values are given by gλ,n(zk). It is easily observed that
gλ,n(zk) = λ

zk
(bzk−1)n are distinct for different k. It shows that gλ,n ∈ G has infinitely many critical values

for b > 1.
Similarly, we can obtain result for 0 < b < 1 using similar arguments as above.
The finite asymptotic value of gλ,n(z) is 0 since gλ,n(z) → 0 as z → ∞ along the positive real axis for

b > 1 and along the negative real axis for 0 < b < 1.
Thus, it proves that gλ,n ∈ G possesses infinitely many singular values.

Remark 3.2. The rigorous theoretical calculation to show infinitely many solutions of equation (3.1) is not
a very easy task. To achieve our goal, we use graphical utility to observe infinitely many solutions. One
may be interested to obtain theoretical rigorous proof, they can construct it similar as [3, Proposition 1.2].

Let H+ = {z ∈ Ĉ : Re(z) > 0} be the right half plane and H− = {z ∈ Ĉ : Re(z) < 0} be the left half plane.
The following result shows that the function g′λ,n(z) has no zeros in the right half plane for b > 1 and no
zeros in the left half plane for 0 < b < 1.

Theorem 3.3. Let gλ,n ∈ G. Then, the function g′λ,n(z) has no zeros in (i) the right half plane H+ for b > 1; (ii)
the left half plane H− for 0 < b < 1.

Proof. Since g′λ,n(z) = λ
(1−nz lnb)bz−1

(bz−1)n+1 = 0, then we have the equation b−z = 1 −nz lnb. It can be written
as

cos(y lnb) − i sin(y lnb)
ex lnb = 1 −nx lnb− i ny lnb. (3.3)

(i) For b > 1, when y 6= 0, by imaginary part of equation (3.3), we have sin(y lnb)
y lnb = nex lnb > 1 since

x > 0. This is not true for y > 0. It is also false for y < 0 because sin(y lnb)
y lnb is an even function.

When y = 0, then z = x > 0 and, by the real part of equation (3.3), ex lnb = 1
1−nx lnb . For x > 1

n lnb
and n > 2, it is not valid because the left hand side is positive and the right hand side is negative. It is
obviously not true when x = 1

n lnb . For 0 < x < 1
n lnb , define the function q(x) = 1

1−nx lnb − ex lnb. Now,
we show that q(x) > 0 for 0 < x < 1

n lnb . Using the series expansion, we have

q(x) = 1 +nx lnb+ (nx lnb)2 + (nx lnb)3 + · · ·−
(

1 +
x lnb

1!
+

(x lnb)2

2!
+

(x lnb)3

3!
+ · · ·

)
= (n−

1
1!
)x lnb+ (n2 −

1
2!
)(x lnb)2 + (n3 −

1
3!
)(x lnb)3 + · · · .

Since n > 2, b > 1, and x > 0, it follows that q(x) > 0. Hence, there is no zeros for 0 < x < 1
n lnb .

For instance, it can also be observed from Figure 3 that the function q(x) is positive for b = 5 and
n = 2, 3, 4, 5, . . . .

Figure 3: Graphs of 1
1−nx lnb − ex lnb for b = 5 and n = 2, 3, 4, 5.

Therefore, it follows that the function g′λ,n(z) has no zeros in H+ for b > 1.
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Figure 4: Graphs of 1
1−nx lnb − ex lnb for b = 0.5 and n = 2, 3, 4, 5.

(ii) For 0 < b < 1, similar as (i) for b > 1, we can obtain the proof of this part (see Figure 4). Thus, the
function g′λ,n(z) has no zeros in H− for 0 < b < 1. This completes the proof.

Remark 3.4. For the zeros of g′λ,n(z) on imaginary axis, from equation (3.3), we have cos(y lnb)−i sin(y lnb)
= 1− iny lnb. This equation gives y = 0. It follows that g′λ,n(z) has no zeros on imaginary axis for b > 0,
b 6= 1.

The following theorem shows that the function gλ,n ∈ G maps the left half plane for b > 1 and the
right half plane for 0 < b < 1 in the closure and into the exterior of the disk according to two different
regions, respectively.

Theorem 3.5. Let gλ,n ∈ G.

(a) For b > 1, the function gλ,n(z) maps H−

(i) in the closure of the disk centered at origin and having radius |λ|R
(lnb)n for |z| > 1 and R may be large.

(ii) into the exterior of the disk centered at origin and having radius |λ|
(lnb)n for |z| < 1.

(b) For 0 < b < 1, the function gλ,n(z) maps H+

(i) in the closure and into the exterior of the disk centered at origin and having radius | λR
(lnb)n | for |z| > 1 and

R may be large.
(ii) into the exterior of the disk centered at origin and having radius | λ

(lnb)n | for |z| < 1.

Proof. Suppose the line segment γ which is defined by γ(t) = tz, t ∈ [0, 1]. Further, let us consider the
function ξ(z) = bz for an arbitrary fixed z ∈ C. Then∫

γ

ξ(z)dz =

∫ 1

0
ξ(γ(t))γ′(t)dt = z

∫ 1

0
btzdt =

1
lnb

(bz − 1).

(a) For b > 1 and z ∈ H−,

M1 ≡ max
t∈[0,1]

|ξ(γ(t))| = max
t∈[0,1]

|btz| = max
t∈[0,1]

|etz lnb| < 1

and
m1 ≡ min

t∈[0,1]
|ξ(γ(t))| = min

t∈[0,1]
|btz| = min

t∈[0,1]
|etz lnb| > ε1 > 0.

Then,

m1|z| lnb < |z| lnb 6 |bz − 1| =
∣∣ lnb

∫
γ

ξ(z)dz
∣∣ 6M1|z| lnb < |z| lnb. (3.4)

For all |z| > 1 and n ∈N\{1}, by the left side of inequality (3.4),∣∣∣∣ z

(bz − 1)n

∣∣∣∣ 6 1
|z|n−1mn1 (lnb)

n
6

1
mn1 (lnb)

n
.
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Assume R = 1
mn

1
, we have

|gλ,n(z)| =

∣∣∣∣λ z

(bz − 1)n

∣∣∣∣ 6 |λ|R

(lnb)n
.

It shows that the function gλ,n(z) maps H− in the closure of the disk centered at origin and having radius
|λ|R

(lnb)n for all |z| > 1.
Similarly, using the right side of inequality (3.4),∣∣∣∣ z

(bz − 1)n

∣∣∣∣ > 1
|z|n−1(lnb)n

>
1

(lnb)n
for all |z| < 1 and n ∈N\{1}.

Therefore, it follows that

|gλ,n(z)| =

∣∣∣∣λ z

(bz − 1)n

∣∣∣∣ > |λ|

(lnb)n
for all |z| < 1.

This gives that the function gλ,n(z) maps H− into the exterior of the disk centered at origin and having
radius |λ|

(lnb)n for all |z| < 1.

(b) For 0 < b < 1, and z ∈ H+,

M2 ≡ max
t∈[0,1]

|ξ(γ(t))| = max
t∈[0,1]

|btz| = max
t∈[0,1]

|etz lnb| < 1

and
m2 ≡ min

t∈[0,1]
|ξ(γ(t))| = min

t∈[0,1]
|btz| = min

t∈[0,1]
|etz lnb| > ε2 > 0.

Then,

m2|z|| lnb| < |z|| lnb| 6 |bz − 1| =
∣∣ lnb

∫
γ

ξ(z)dz
∣∣ 6M2|z|| lnb| < |z|| lnb|.

Now, similar as part (a), we can obtain the rest of the proof.
Thus, this completes the proof of theorem.

In the following theorem, it is proved that the function gλ,n ∈ G has some critical values in the closure
and other into the exterior of the disk centered at origin according to two different regions, respectively.

Theorem 3.6. Let gλ,n ∈ G. Then

(i) for b > 1, some critical values of gλ,n(z) lie in the closure of the disk centered at origin and having radius
|λ|R

(lnb)n for z > 1 and other into the exterior of the disk centered at origin and having radius |λ|
(lnb)n for z < 1

in H−; and
(ii) for 0 < b < 1, some critical values of gλ,n(z) lie in the closure of the disk centered at origin and having radius

| λR
(lnb)n | for z > 1 and other into the exterior of the disk centered at origin and having radius | λ

(lnb)n | for z < 1
in H+.

Proof.

(i) For b > 1, by Theorem 3.3 (a), all the critical points of gλ,n(z) lie in H− since g′λ,n(z) has no zeros
in H+. By Theorem 3.5 (a), the function gλ,n(z) maps the left half plane H− in the closure of the disk
centered at origin and having radius |λ|R

(lnb)n for |z| > 1 and into the exterior of the disk centered at origin

and having radius |λ|
(lnb)n for |z| < 1. Therefore, it follows that some critical values of gλ,n(z) lie in the

closure of the disk centered at origin and having radius |λ|R
(lnb)n for |z| > 1 and other into the exterior of

the disk centered at origin and having radius |λ|
(lnb)n for z < 1 in H−.

(ii) For 0 < b < 1, we can proof this part similar as above.



M. Sajid, J. Nonlinear Sci. Appl., 12 (2019), 602–610 610

4. Conclusions

The real fixed point and singular values of a family of functions z
(bz−1)n have been investigated here,

where functions have arose from generating function of the unified generalized Apostol type polynomials.
It is also a generalization of a family of functions z

(ez−1)n on base b. The real fixed points of gλ,n(z) have
been found with their nature and it is observed that these real fixed points have different nature for n
odd and n even. We have shown that gλ,n(z) has infinitely many singular values for n ∈N\{1}. We have
also seen that some critical values of gλ,n(z) lie in the closure and other into the exterior of the open disk
with center at origin according to two different regions in the left half plane and in the right half plane
for b > 1 and 0 < b < 1, respectively.
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