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Abstract

The main objective of this work is to modify two hybrid projection algorithm. First, we prove the strongly convergence
to common fixed points of a sequence {xn} generated by the hybrid projection algorithm of two asymptotically nonexpansive
mappings, second, we prove the strongly convergence of a sequence {xn} generated by the hybrid projection algorithm of two
asymptotically nonexpansive semigroups. Our main results extend and improve the results of Dong et al. [Q.-L. Dong, S. N. He,
Y. J. Cho, Fixed Point Theory Appl., 2015 (2015), 12 pages].
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1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of Hand T : C — C a mapping.
Recall that a self-mapping f of C is a contraction if ||f(x) —f(y)|| < «||x —y|| for some o € (0,1) and T is
a nonexpansive if ||Tx — Ty|| < |[x —y|| for all x,y € C, and T is asymptotically nonexpansive [2] if there
exists a sequence {kn} with k,, > 1 for all n and limy o kn = 1 and such that ||[T"x — T™y|| < kn||x —y||
foralln > 1and x,y € C. A point x € C is a fixed point of T provided Tx = x. Denote by Fix(T) the set
of fixed points of T, that is, Fix(T) = {x € C: Tx = x}.

Recall also that a one—parameter family T = {T(t)|0 < t < oo} of self-mappings of a nonempty closed
convex subset C of a Hilbert space H is said to be a (continuous) Lipschitzian semigroup on C (see, e.g.,
[12]) if the following conditions are satisfied:

(1) TOx=x, x€eC;
(i) T(s+t)(x) =T(s)T(t), s,t>0, xe€C

(iii) for each x € C, the map t — T(t)x is continuous on [0, 00);
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(iv) there exists a bounded measurable function L : [0, c0) — [0, 00) such that, for each t > 0

ITEx =Tyl < Lefx—yll, xyeC.

A Lipschitzian semigroup 7 is called nonexpansive (or a contraction semigroup) if Ly =1 forall t > 0,
and asymptotically nonexpansive semigroup if limsup, , Li < 1, respectively. We use Fix(7T) to denote
the common fixed point set of the semigroup, that is Fix(7) ={x € C: T(t)x =x,t > 0}.

Fixed point iteration processes for nonexpansive mappings and asymptotically nonexpansive map-
pings in Hilbert spaces and Banach spaces including Mann and Ishikawa iteration processes have been
studied extensively by many authors to solve nonlinear operator equations as well as variational inequal-
ities, see [4, 7, 9-11]. However, Mann and Ishikawa iterations processes have only weak convergence even
in Hilbert space, see [5, 11].

Very recently, Takahashi et al. [11] proved the following strong convergence theorems by the hybrid
method for nonexpansive mappings and nonexpansive semigroup in Hilbert space.

Theorem 1.1 ([11]). Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T be a
nonexpansive mapping of C into H such that F(T) # 0 and let xo € H. For C; = C and u; = P¢,xo, define a
sequence {un } of C as follows:

Yn = XnlUn + (1 - O‘n)Tun/
Cni1={z€Cn:llyn—z[ < [un —z|},
Un4+1 =Pc, . ;x0, n €N,

where 0 < oy < a < 1 foralln € N. Then {un} converges strongly to zg = Pg(1)xo.

In 2008, Inchan and Plubtieng [3] modified Ishikawa iteration process for two asymptotically nonex-
pansive mappings, for C is a nonempty closed convex subset of a Hilbert space H, let xg € C. For C; = C
and x; = P¢,, define {x,} as follows:

Yn = nXn + (1 —an)Tzy,

Zn = Bnxn + (1—PBn)S™xn,
Cni1=1{z€Cnillyn—2zl <|xn—z[* + 00},
Xn+1 = Pc, %0, n €N,

where 0, = (1 — on)[(t3 — 1) + (1 — Bn)t3 (s34 — 1)](diamC)> - 0asn — coand 0 < &, < a < 1 and
0<b<Pn<c<1forall n € N. Then the sequence {xn} converges strongly to common fixed points of
two asymptotically nonexpansive mappings.

In 2015, Dong et al. [1], introduced a hybrid algorithm. Let T and S be two nonexpansive mappings
into itself such that F(T) N F(S) # 0, the sequence generated as follows:

X0 € C,

Yn = onXn + (1 —an)Txn,

zn = Bnlynyn + (1 —=vn)xnl + (1= Bn)SyYn,

Cn={z€ C:ollzn — 2>+ (1= 0)|lyn —2l1* < [Ixn —2z[*},
Qn ={z€ C: (xn—2z,xn —x0) <0},

Xn4l = PcannXO, n=>o,

for each n > 0, where o, r, € [0,1], 8 € [0,1),vn € [0,1],0 € (0,1). Then proved that {x,} converges in
norm to Pr(1)nF(s)Xo0-
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Inspired and motivated by above, the purpose of this paper is to extend the results of Dong et al. [1]
for S and T are two asymptotically nonexpansive mappings then we consider

x0 € C=Cq1, x1=Pc;x0,

Yn = onXn + (1 — an)T™xn,

zn = Bnlynyn + (1 =vn)xnl + (1 = Bn)S™yYn, (1.1)
Cnt1={z€Cn:llzn—2z|>+ lyn —z|*> < 2||xn — z||* + 00},

Xnt1 = Pc %0, 20,

where o, Bn,Yn € [0,1] and
On = [(1—PBn)(sh — 1)+ (1 — o) (th — 1) + (1 — Bn)sh (1 — Ky (13 — 1)](diamC)? — 0,
asn — oo (here t, — 1 and s, = 1 as n — o). Then, under some contral conditions we show the
strongly convergence of {xn}.
2. Preliminaries

In this section, we collect and give some useful lemmas that will be used for our main result in the
next section.

Lemma 2.1. Let H be a real Hilbert space, then the following hold:
@ [x+yl? < X2 +20 ) + lyl?, vxy e H;
(i) [[oe+ (1= thy? = tix]>+ 1= y> = td - )x—yl? t€0,1], ¥xyeH.
Lemma 2.2 ([5]). Let C be a nonempty bounded closed convex subset of real Hilbert space H and let
T:={T(s): 0 <s < o0},
an asymptotically nonexpansive semigroup on C. If {xn} is a sequence in C satisfying the properties
(i) xn — z;
(i) limsup, , limsup, . _ | T(t)xn —xn||=0;
then z € Fix(7).
Lemma 2.3 ([5]). Let C be a nonempty bounded closed convex subset of real Hilbert space H and let
T:={T(s): 0 <s < o0},
an asymptotically nonexpansive semigroup on C. Then for any u > 0,
1(t 1t
lim sup lim sup sup || - J T(s)xds —T(u)(= J T(s)xds)|| =0.
u—co  t—oo xeC tJo tJo

Lemma 2.4 ([6]). Let T be an asymptotically nonexpansive mapping defined on a bounded convex subset C of a
Hilbert space H. If {xn} is a sequence in C such that xn, — x and Txn —xn — 0, then x € F(T).

Lemma 2.5 ([8]). Let C be a nonempty closed convex subset of H. Let {xn} be a sequence in H and uw € H. Let
q = Pcu. If {xn} is such that w., (xn) C C and satisfies the condition

n —ufl < flu—qll,

forallm > 1, then xn, — q.
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3. Main result

In this section we introduce two theorems. We first prove the strong convergence theorem of modified
the hybrid method of of asymptotically nonexpansive mappings into Pr(1)~r(s)X0. As the second part, we
prove the strong convergence of modified the hybrid method of asymptotically nonexpansive semigroups
into Pyxg.

3.1. Strong convergence theorem of asymptotically nonexpansive mappings

In this section, we prove the strong convergence theorem of the algorithm (1.1) into P(1)qr(s)Xo-

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space Hand T,S : C — C be two asymptot-
ically nonexpansive mappings with the sequences {tn} and {sy}, respectively, such that F(T) N F(S) # (. Assume
that {&n}, {Bn} and {yn} are the sequences in [0, 1] such that &y, frn < 1— 20 for some & € (0,1]. Then the sequence
{xn} generated by (1.1) converges in norm to Pr1ynr(s)Xo.

Proof. Putting to, sup{tn : 1 > 1} < 0o and s, sup{sn : n > 1} < co. We first show by induction that
F(T)NF(S) C Cy, for all n € IN. It is obvious that F(T) N F(S) C Cy. Suppose that F(T) NF(S) € Ci for each
k € IN. Let u € F(T) NF(S) C Cy, then from Lemma 2.1, we have

[y —wl® = [Joaexi + (1 — oq) TFxpc — 1|2
= JJot (xx —w) + (1 — o) (THxp — w)|?
= oge[|xi — w4 (1 — oa) | T% — wf]® — o (1 — oue) [ x — THxic ||

(
o || Xk —uHZ (1— o) HTkxk —qu
(

<
< ol — w4 (1 — og ) 2 [ —uf? B8
= [ = ull? =[x =l + o = ulf® + (1 — o)t xie —uff?
= [ = u> = (1= o) e =l + (1 — o)t s — wff?
= [eic — ulf* + (1= o) (8 = 1) i — ul|%.
Similarly, we note that from Lemma 2.1 and (3.1), we have
lzie —ul® = IBlyiyk + (1 —vi)xd + (1 — Br)SFyx — u?
= [IBr(byiyr + (1= vi)xad —w) + (1= Bi) (S yx —u) >
= Buellbyryi + (1 —vi)xid —ul* + (1 — Bi) [ S*yx —u|?
< Brelvicllyre —ull? + (1 —vid) i — wlP] + (1= Bi)|S*yr — u[|?
< Brevilye —ul? + Br(1—vi) e — > + (1= Br) sillyx — ul®
< Brevilxe —ull* + (1 — o) (1 — )i — ufP] + B (1 — vie) [xic — u)? (3.2)

+(1—PBx) sk ka—uH2 (1 —ock)(t2 —-1) ka—uH

< Bl = ul* + (1= oud) (£ — 1) — wl® + (1 = B skl —u?

=[x —uf* = (1= B xx —wf* + (1 — o) (£ — 1) |Ixie — uf| + (1 — Brc)si|[xx — ul)?
+(1— Bk)si(l — ock)(t2 —1)||xx —U.H2
= |Ixx —qu +(1— Bk)(sk — 1) [|xx —uH2 (1— ock)(t2 —1)||xx — qu
(

4+ (1= Br)sz (1 — o) (12 — 1) [Jxse —u|%
From (3.1) and (3.2), we obtain that

lzic —ul? + lyi — ) < e —ul? + (1= Br) (55 — 1) —wf* + (1 — o) (18 — 1) [[xic — w2
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+ (1= Brsic (1 — oue) (6 — Dl — | + xic —ul?
+ (1= ouo) (8 — 1) i —uf|?
< 2l —ul? + (1= i) (s — 1) +2(1 — o) (1 — 1)
+ (1 —By)sz (1 — oy )l (diamC)?
= 2|l —u]> + 6y,
where 0y = [(1 — Bk)(si —1)+2(1— ock)(t%< -1+ (11— Bk)si(l — oy )](diamC)? — 0 as n — oo. It follows
that u € Cy,1 and then F(T) NF(S) C C;, for all n € IN. Next, we show that C;, is closed and convex for
all n € IN. It is obvious that C; = C is closed and convex. Suppose that Cy is closed and convex for each
k € N. Let {zm}95_1 € Cyq1 € Cy with ziy — zas m — oo. Since Cy is closed and z;, € Cy 1, we have
zm € Cx and ||z — zm |? + |lyx — zm||* < 2||zm — xx||? + Ox. From Lemma 2.1, we have
Iz =2l + lyx — 2l* = llzx — 2m + 2m — 2II* + Yk — 2m + 2m — 21?
< 2 _ZmHZ + [[zm _ZHz +2(zk — z2m, zZm — 2)]
+ [lyx — ZmHZ + llzm — ZHZ +2(Yk — z2m, z2m — 2)]
= [lzi — zm > + Iy — zm|* + 2]l zm — 2>
+2([|zx —zm|[lzm — 2| + [lyx — zm|l[|zm — z[))
< ZHXk — ZmHZ + Oy

+2(|zm — 2l + |z — zm 1z — 2ll + [[yic = 2m|l 2 — 2])-
Taking m — oo, it follows that
lzic =2l + [y — 2]* < 2lxc — 211 + B

Then z € Cy1 and hence Cy 1 is closed. Let x,y € Cxy1 C Cy with z = ax + (1 — a)y where « € [0, 1].
Since Cy is convex, z € Cy. Thus, we have

lzic = x|* + [y — x[|* < 2[|xic — x[|* + O,
and
2 2 2
lzx —yll” + [y —ylI” < 2|xx —yl|* + Ok.

Hence

2 = zI* + lly — 2I* = [lzic — (ox + (1 = )y) > + [yx — (ox + (1 — a)y) ||?
= la(zic —x) + (1 — &) (2 =) > + oty — %) + (1 — &) (i —y) |I?
= aflzic — x[* + (1 — &)z — y |1 — (1 — o) [x — y|?
+aflyx — x>+ (1 — o) lyx —y|* — (1 — )| |x —y >
= alflz — x| + lyx —x|1*) + (1 — o) (lzx —yI* + [y — y|I*)
—2a(1 — o) [[x —y|]?
< a2fxi = x>+ 0x) + (1 — o) (2] xic — y | + 8x) — 20¢(1 — ) [[x — y||?
= o]} — x[|* + (1 — &) Pxxe — yl|* — ex(1 — &) [x —y]|*]
+ By + (1 — )0y
= 2fJoc(xx —x) + (1 — ) (xsc —y)|* + O
= 2|lxi — (ox + (1 — x)y)||?
=2|xk —z|* + Ox.
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It follows that z € Cy 1 and hence Cy 1 is convex. Therefore, C;, is closed and convex for all n € IN. This
implies that {x,} is well-defined. Since x,, = P¢, xo, it follows that

(X0 = Xn, Xn —Yy) =0,
forally € F(T)NF(S) and n € IN. So u € F(T) NF(S), we have

0 < (X0 —Xn, Xn —u) = —(Xn — X0, Xn —X0) + (X0 —Xn, X0 — )

<
< —lxn —xoll* + IIxo — xnl[Ixo —ull.

This implies that
Ixo —xnl* < llxo —xnlllxo — ],

and hence
[x0 —xn || < [[x0 —ul],

for allu € F(T)NF(S) and n € IN. From x, = Pc, %o and xn41 = Pc, ;%0 € Cy1 € Cyy, we obtain that
<X0 —Xn,Xn — XTL+1> P 0/ (33)
for all n € IN. So, for all x,, 1 € C41, for n € IN, we have

0 < (X0 —Xn, Xn — Xn+1) = —(Xn — X0, Xn — X0) + (X0 — Xn, X0 — Xn+1)

<
< —llxn = xoll* + [Ix0 = %n | 0 = X1l

This implies that
Ixo = xn|* < [Ix0 = xnlllIx0 = Xns1l,

and hence
X0 —xn |l < [Ix0 —*n+1l,

for all n € IN. Since {||xo — xn ||} is bounded, limy, _, || Xxn — X0|| exists. Next, we claim that
lim ||xn —xn41]] =0.
n—oo

From (3.3), we have

[%n = Xna1]? = | (xn = x0) + (%0 — Xn41) |2
= ||xn — %0 ||* + 2(xn — X0, X0 — Xnt1) + [|[X0 — Xnp1|?
= [Jxn — Xol|* = 2(x0 — Xn, X0 — Xn) — 2(X0 — Xn, Xn — Xn+1) + |[[X0 — Xn41[*
< Jxn —x0ll> = 2[lxn — x0l* + X0 — Xn 41>

= —[lxn = o[> + [Ixo = xn 1[I
Since, limn 00 || Xn — X0l exists, we have limn ;o ||Xn —Xn+1]] = 0. Next, we now claim that
T}E};@ [Txn —xn|[=0= nlglgo [SXn —xn .
Since x 41 € Cp, we have
10 = xn1l? + [yn = xn41l? < 2fxn = xnp1 [ +6n.
From limy 00 || Xn —Xn41|| = 0 and 6, — 0 as 1 — oo, it follows that

Jim |z —=xnpal[ =0 = lm flyn —xnall,
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which yields
l2n —%nll < llzn —xnsall+ [Xni1 —xnll =0, asn— oo,
and then we have
[yn —xn|l < [[yn —xns1ll + [[Xns1 —xnll =0, asn — oo.
By definition of y,, we have yn —xn = (1 — ot ) (T™Xn — X1 ), We obtain
1
1—

[T %0 —xn| = [yn —xn -
T

Since &, < 1— 9, then we have
[T"%n —xnl| — 0,

as n — oco. From z,, = Bnlynyn + (1 —vn)xnl + (1 — Bn)S™yn, we have

B
HSTLUTL_ZTI” = 1— - ”Yn )+(1_Yn)(xn_zn)”
< (Ynllyn —zall + (1 =vn)llxn —zal),
1-— Bn
which yields
IS"Yyn —zn|| =0, asn — oo,
and so

I Txn = Xn ] < [ Txn = T [ T o — T o | 4 1T g1 — Xt |+ 1 — xn |
< toolXn — Txn || + HT“Han —Xn41ll + (1 + teo)[[¥n —Xn+1]l = 0, asn — oo.

Similarly, we have
|SXn —xn|| — 0, asn — oo.

By Lemma 2.4, and boundedness of {xy,}, we have () # w,(xn) C F(T) NF(S). Since
zZo = PF(T)ﬂF(S)XOIZO e KT)NFES) cC,

and Lemma 2.5 guarantees the strong convergence of {xn} to P¢(1)~r(s)X0. This completes the proof. [

3.2. Strong convergence theorem of asymptotically nonexpansive semigroups
First, we study some examples for relationship between a nonexpansive semigroup and an asymptot-
ically nonexpansive semigroup for motivation of this work.

Example 3.2. Let H} = H, =R and let T :={T(s) : 0 < s < oo}, where

T(s)x = x, VxeR.

We see that for any x,y € R

1 1
T = (7752
IT(s)x = T(s)yll = (g5 )% = (3555l = (355

then we have T is nonexpansive semigroup. If Ly = 1 we have limsup__, Ls =1, then T is asymptotically
nonexpansive semigroup.

Example 3.3. Let H} = Hp =R and let T7:={T(s) : 0 < s < oo}, where

Jx=yll,

2+23
T v R.
(s)x = 1 +2 X €
We see that for any x,y € R
2+25 2+23 2+25
2+2s 2+42s

put Ls = (555) we have limsup,_, Ls = limsup,_, _( ) =1, then T is asymptotically nonexpansive

1+2s
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242s _ 4 : : : :
Ti5s = 3 £ 1, then T is not necessarily nonexpansive semigroup.

semigroup. If we let s =1 we have

From above example we see that a mapping T is a nonexpansive semigroup then 7 is asymptoti-
cally nonexpansive semigroup. But 7 is an asymptotically nonexpansive semigroup is not nonexpansive
semigroup.

In 2008, Takahashi et al. [11] proved the strong convergence theorems by the hybrid method for
nonexpansive semigroup in Hilbert space.

Theorem 3.4 ([11]). Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let
T={T(s):0<s < o0},

be a one-parameter nonexpansive mapping semigroup on C such that F(T) # 0 and let xo € H. For C; = C and
w1 = Pc, %o, define a sequence {un} of C as follows:

Yn = &ntn + (1= &n) 5= 5" T(s)unds,
Cni1={z € Cn:flyn — 2zl <lun —2z[l},
Uni41 = PCHHXO/ ne N,

where 0 < oy < a<1,0< Ay <ooforalln € N and A, — oo. Then {un} converges strongly to zog = Pr(g)Xo.

In the same year, Inchan and Plubtieng [3] modified Ishikawa iteration process for two asymptotically
nonexpansive semigroups for C is a nonempty closed convex subset of a Hilbert space H,

T={T(t):0<t < o0},
and

8§={S(t): 0 <t <o},
be two asymptotically nonexpansive semigroups on C such that ¥ = F(T) N F(8) # () and let xg € C. For
C1 = Cand x; = Pc,, define {x,} as follows:

Yn = dnXn + (1 — o‘n)% 8n T(t)zndt,

Zn = Brxn + (1= Bn) 2 [o" S(t)xndt,
Cnr1={z€ Cn: Jyn — 2| < [xn — 2|2 + 61},
Xnt1 = Pc, . %0, n €N,
where -
On = (1— o) [(t2 — 1) + (1 —Bn)t5 (53 — 1)](diamC)? — 0,
(here%n:% E"detandgni S“Lfdtandog on<a<landO<b <P <c<lforalln eN and
th — 00,8 — 00).

As the second part of this work, we extend the results of Dang, et al. [1] for T is an asymptotically
nonexpansive semigroup, then we consider

x0 € C = Cq,x1 =P %0,

Yn = &nXn + (1 — ocn)% S“ T(t)zndt,

Zn = Brlynyn + (1= vyn)xal + (1= Bn)5 [o" S(t)xndt, (3.4)
Crt1 =1{2 € Cn: zn — 2|2 + lyn — 2% < 2l — 2|2 + 61),

Xnt1 = Pc, %0, 20,

where o, B, vn € [0,1] and

On = [(1—Bn) (32 —1) 4+ (1 — ) (T2 — 1) + (1 — B )32 (1 — otn) (t2 — 1)) (diamC)? — 0,

asn — oo (here t, = - [ 1Tdt — 1and 3,1 [ 1LSdt — 1asn — o).
th JO t snd0o Lt
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Theorem 3.5. Let H be a Hilbert space and let C be a nonempty closed bounded subset of H. Let
T={T(t):0 <t < 0},

and
G={S(t):0<t< o0},

be two asymptotically nonexpansive semigroups on C such that § = F(Z)NF(S) # 0 and let xg € C. Let
C1 = C,x1 = Pc,x0 and {xn} be a sequence generated by (3.4) with satisfies &n, Pn,Yyn €1[0,1, 0 < axn <a <1
and 0 <b < Pn <c<1foralln e NU{0}and tn, — 00, sn — 00. Then {xn} converges strongly to zo = PgXxo.

Proof. First observe that § C Cy, for all n € IN. For § C C = C; suppose that § C Cy for each k € IN. Let
u € § C Ck. Then we have

1t
gk — w2 = [l + (1 _““)tkL T(t)xdt — w2

tx
_ Hock(xk—u)m—ock)(ijo T(t)edt — )2
tx

1
< ouelxc —uf? + (1 — o) HI T(t)xidt —ul
Jo

1 [t
<ockllxk—ull2+(1—ock)(E T (6% — l|dt)? (3.5)

1 [
< ol —uf? 4+ (1= oad (- | - Liac—ullt)®

1 ([t
< ogeljxe —ul]? + 1—o<k)(tk LI dt)?|xe —ul?
JO

~2
= |l —ul? + (1 — og) (ti” — 1) s —uef|*.

By Lemma 2.1 again, we have
2 1 [ 2
ot =l = [Bcycvic+ (1= viwad + (1= B - | * SCeyucdt —u]

— 1By + (1 — vi)xied —w) + (1 — rsk)(lk Lk S(t)yrdt —w)|P

< Brellbyicyr + (1 —vi)xad —ul® + (1—Bi) ||JOkS(t)ykdt—u||2
1 k
< Brelvilyk —w) + (1 —vi) e — WP + 1—ﬁk)(kj 1Sty — wfjdb)®

1 [
< Brvillyie— wl? + Bilt =y ol + (1= B | Ly —wfav?
sk Jo
2 2, 1 (% 5. 0 2 (3:6)
< By —wlP - Bl = yid i~ + (1= B (- L L3t lyx — ]
2
< Brevillxe —ul + (1 — o) (. — 1) ||Xk—u|| 1+ Bre (1 —vi) [ —uf?
+ (1= Br)si i — ul? + 1—0€k)(tk —1)[xi — /]
< Brelie — w2 + (1 — o) (15— 1) —wl? + (1 — Bro)sic e —
+(1—Br)si (1—0¢k)(tk — 1) |Jxg —uf?
=[x —u|® + +(1—Br)(s—1 ) [xe —u||® + 1—(xk)(tk —1)||xic —ulf?

(1= Bt (1 — o) (B — 1) |xge — |
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From (3.5) and (3.6), we obtain that

lzic — w2+ [y — ull? < i —ulP + (1= Bi) (512 — Dllxic — ull + (1 — o) (fic” — 1) xic — w2
+(1—Br)si (1—0<k)(tk — 1) [xie — wl? + [Ixie — w2
(1—cxk)(tk —1)|Jx —u|? + (1= Br)si (1 — o) (2 — 1) |Ixie —uff?
+ [P —uf® + (1 — o) (£ — Dlxs — u)?
< 2l — w2+ [(1 - Br) (k2 — 1) +2(1 — e (Bi” — 1)
+(1— B (1— ) (B — 1)) (diamC)?

=2[x —u|? + 0,
where
O = [(1—Br) (32 —1) +2(1 — o) (B2 — 1) + (1 — Br)32 (1 — o) (2 — 1))(diamC)? — 0,

as n — oo (here ty = % Sk Lldt — 1and Eki gk LPdt — 1 as k — oo). It follows that u € Cy 1 and
then F(T)NF(S) € Cy for all n € IN. Again, by using the same argument in the proof in Theorem 3.1,
we can show that C,, is closed and convex for all n € IN. It is obvious that C; = C is closed and convex.
Suppose that Cy is closed and convex for each k € IN. Let {z,}%,_; € Cx41 € Cx withz;, = zas m — oo.

Since Cy is closed and z, € Cy1, we have z € Cy and ||zx — zm|]> < ||zm —xx||* + 0. From Lemma 2.1,
we have
lzic = 2)1* + lyx — zI* = [z — 2m + 2m — 2l + [y — 2m + 2m — 2|
< lllzic = zml* + llzm — 2I* + 2{zic — 2m, 2m — 2)]
+ [llyx _ZmHZ +[lzm _Z”2 +2(yx — zZm, zZm — 2)]
= |z — zml* + [y — zml* + 2/|zm — 2|I?
+2(|lzx — zmllllzm — 2| + [lyx — zmll[lzm —z))
< 2|xk — zm [|? + 0k +2([|zm — 22

+ 2z — zm|llzm — 2zl + [y — zm || [|zm — 2l]).
Taking m — oo, it follows that
Iz — 2| + i — 2II* < 2[xi — z|* + .

Then z € Cy,1 and hence Cy 1 is closed. Let x,y € Cx 1 C Cx with z = ax + (1 — &)y where « € [0, 1].
Since Cy is convex, z € Cx. Thus, we have

Iz =% + yx = x[1* < 2l|xi —x||* + B,

and N
lzie —ylI* + llyx —ylI* < 2fxc —y||* + Ok

Hence
lzie — zl* + [y — zl* = |z — (ox + (1 — oY) |I* + [lyr — (ax + (1 — )y)|?

1 + loc(yre —x) + (1 — ) (yx —y)
= aflzic —x[* + (1 — &) f|zic — yl* — (1 — )| [x —y|?

= [Joc(zk —x) + (1 — o) (z — y) 12

+ oty = x| + (1= o)y =yl — a1 = o) [x —y?
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= alllzic = x| + [lyxe = x|*) + (1 = Q) ([|zie = y[I* + [y —y1*)
—20(1— o) [[x —ylP?
< x(2f|xe — x[? 4 0x) + (1 — &) (2[xic —y||? + 0x) — 2x(1 — &) ||x — y]|?
= 2o — x| + (1= o) xac —y 1> — (1 — &) [x =y ] + &by + (1 — )0y
= 2[Joc(x — %) + (1 — &) (x — y)||* + Ok
= 2|jxc — (ox + (1 — a)y)|?
= 2|xi — z||* + Ox.

It follows that z € Cy 1 and hence Cy 1 is convex. Therefore, C;, is closed and convex for all n € IN. This
implies that {x,, } is well-defined. Since x,, = P¢, xo, it follows that

<X0 —Xn,Xn —9> 2 0/
forally € F(T)NF(S) and n € IN. So u € F(T) NF(S), we have

0 <X0_anxn_u> :_<Xn_XO/Xn_XO>+<X0_Xn/X0_u>

<
< —lxn =01 + [[xo = xn |0 — .

This implies that
Ixo =31 < flxo —xn %0 — ull,

and hence
[x0 —xnl| < [lxo —ull,

for all u € F(T)NF(S) and n € IN. From x, = Pc,_ %o and xn+1 = Pc, ., %0 € Cry1 € Cyy, we obtain that

n+1
(X0 —Xn, Xn —Xn+1) =0, (3.7)
for all n € IN. So, for all x,, .1 € Cy11, for n € IN, we have

0 < (X0 —Xn, Xn — Xn+1) = —(Xn — X0, Xn — X0) + (X0 — Xn, X0 — Xn+1)

<
< —lxn = xoll* + [Ix0 — xn | 0 — X1l

This implies that
Ixo =31 < flxo —xnl X0 —Xn41 I

and hence
[xo = xn [l < [[x0 —%n+1l,

for all n € IN. Since {||xo — xn ||} is bounded, limy, _, || Xn — X0|| exists. Next, we claim that

lim ||xn —Xn41]] =0.
n—o0

From (3.7), we have

[[xn — Xn+1H2 = [[(xn —%0) + (%0 _Xn+1)H2
= [lxn = xol* +2(xn — X0, X0 — Xn1) + [[X0 — X1
= 1 — ol — 2{x — %0 — ) — 250 — X X — X1} + [0 — X
< xen = xol* = 2[lxn = xol|* + [fx0 = xn+11?

= —lxn = %0l + [[x0 — xn1/*.
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Since, limy 00 || Xn — X0l exists, we have limn o ||Xn —Xn1]] = 0. Since x, 11 € Cn, we have
zn = Xn1l* + lyn —xnr1l* < 2lxn —xnp1l* + 6.
From limn o0 || Xn —Xn+1|| =0 and 6, — 0 as 1 — oo, it follows that

iz =1 =0 = Tm [lyn —xnsal,

which yields
120 =xn | < flzn =Xnp1l + [Xnp1 =xnll = 0, asn — oo,

and then we have
[yn —xnll < [yn —xns1ll + Xny1 —xnl =0, asn — co.

We now claim that

lim sup lim sup ||T(r)xn, —xn|| = 0 = limsup limsup ||S(r)xn —Xn||.
T—00 n—oo T—00 n—oo

Indeed, by definition of y» and x,, 11 C C, we have

1 [t 1
||J Tt)xpndt —xnl| = lyn —xn|| = 0, asn — oo.
th 0 1-— Xn

From zn = Brnlynyn + (1 —Yn)xnl + (1= Bn) 3= [5" S(t)xndt, we have

1 (s
Hj S(Hyndt—znl| = —P Jlyn (yn —2n) + (1 =) (xn — 20|
Sn Jo 1_Bn
<y lyn — zal + (1= Va)ln = 2al) 0, asm oo,
- mn

It follows that

Sn Sn
0

1 (s 1 1 o 1
”J S(t)xndt—angHJ S(t)xndt—J S(t)yndtH+\J S()yndt — zn || + [z — xn|
Sn 0 Sn Sn 0 Sn 0

1 Sn 1 Sn
< J IIS(t)xn — S(t)ynl|ldt + ‘J S(H)yndt —znl| + [lzn —xn |
Sn Jo Sn Jo
1 [ S 1 (s
< — | RRdtxn—ynl +1— | SYyndt—znl + [lzn —xnl|

S Sn 0

n JO

~ 1 (5n
< Snllxn —ynll + Hsj S(t)yndt —zn|| + |lzn —xn]| = 0, asm — oo.
n JO
For all 0 < r < oo, we note that

15(7)%n — x| < [IS(r)xn —sm(slj " S(t)xndt)] + HS(T)(:J " S(txndt) — :J " S(Uxndt]

n Jo n Jo n JO
1 (sn
—HJ S(t)xndt — xq||
Sn Jo

1o 1 (o 1o
A L S(t)xndt—xnuuswsjo S(thendt) — - | S|
n n

n Jo
= (Loo + DA} (1) + BR(1),
where A3 = Hé 0" S(t)xndt —xn || and B := [|S(r)(L [o" S(t)xndt) — L [3" S(t)xndt|. By Lemma 2.3,

sn J0 sp J0
we have limsup,, _, AS(r) =0 =lim sup, B3 (). We can deduce that for all 0 < 1 < oo,

tnh th th
ITr)xn —xn || < || T(r)xn — T(T)(ti Jo T(t)xndt)|| + ||T(T)(ti Jo T(t)xndt) — ti Jo T(t)xndt|]
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1 [t
-|-||J T(t)xndt —xn||
tn 0
1 (™ 1 (™ 1 (™
<Lt Dl | Tt =l + T | " Titxndt) = o | " Tioxnat|
th Jo th Jo tn Jo
= (Loo + DAL () + B (1),
where Al (1) = H% S“ T(t)xndt — x|l and Bl (r) = HT(T)(% 8“ T(t)xndt)—% S“ T(t)xndt|. By

Lemma 2.3, we have limsup, _, . A}(r) =0 =limsup, . B](r). Then we obtain

lim sup lim sup ||T(r)xn —xn|| = 0 = limsup limsup ||S(r)xn — xn||.
T—00 n—oo T—00 n—oo

We note by Lemma 2.2, that every weak limit of {x,} is a member of §. From x,, — z € Pgxo, we have
X0 —Xn — Xp — 2o, form H satisfies the Kadec-Klee property, it follows that

X0 —Xn — X0 — Zp-

So, we have
[xn —zo|| = |[[xn —%0 — (z0 —20)|| = 0, asmn — oo.

Hence, x,, — zo. This completes the proof. O
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