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Abstract
Based on the introduction of notions of S∗-doubly continuous posets and B-topology in [T. Sun, Q. G. Li, L. K. Guo,

Topology Appl., 207 (2016), 156–166], in this paper, we further propose the concept of B-consistent S∗-doubly continuous posets
and prove that the O1-convergence in a poset is topological if and only if the poset is a B-consistent S∗-doubly continuous
poset. This is the main result which can be seen as a sufficient and necessary condition for the O1-convergence in a poset being
topological. Additionally, in order to present natural examples of posets which satisfy such condition, several special sub-classes
of B-consistent S∗-doubly continuous posets are investigated.
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1. Introduction and preliminaries

The concept of O-convergence in partially ordered sets (posets, for short) was introduced by Birkhoff
[1], Frink [5], and Mcshane [9]. It is defined as follows: a net (xi)i∈I in a poset P is said to O-converges to
x ∈ P (we write (xi)i∈I

O−→ x in this paper) if there exist subsets D and F of P such that

(1) D is directed and F is filtered;
(2) supD = x = inf F;
(3) for every d ∈ D and e ∈ F, d 6 xi 6 e holds eventually, i.e., there exists i0 ∈ I such that d 6 xi 6 e for

all i > i0.

As what has been showed in [18], the O-convergence (Note: in [18], the O-convergence is called order-
convergence) in a general poset P may not be topological, i.e., it is possible that P can not be endowed with
a topology such that the O-convergence and the associated topological convergence are consistent. Hence,
much works has been done to characterize those special posets in which the O-convergence is topological.
The most recent result in [13] shows that the O-convergence in a poset which satisfies condition (M) is
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topological if and only if the poset is O-doubly continuous. This means that for a special class of posets,
a sufficient and necessary condition for O-convergence being topological is obtained. For more results on
O-convergence, the reader can refer to [8, 10, 14, 17].

The O1-convergence is a special type of O-convergence in posets and was also introduced by Birkhoff
[1]. In fact, the O1-convergence in a general poset may also not be topological. To search those special
posets in which the O1-convergence is topological, Riecanová [11] proved that the O1-convergence in
any separable strongly compactly atomistic orthomodular lattice is topological. This result clarified a
special condition of posets under which the O1-convergence is topological. However, to the best of our
knowledge, the equivalent characterization to the O1-convergence in general posets being topological is
still unknown.

We continue to consider the O1-convergence in poset with the aim of establishing the equivalent
characterization to the O1-convergence in general posets being topological. More specifically, given a
general poset P, we hope to clarify the order-theoretical condition of P which is sufficient and necessary
for the associated O1-convergence being topological. To this end, in Section 2, we propose the notion of
B-consistent S∗-doubly continuous posets by introducing condition (?), and then obtain the main result
of this paper, that is: given a poset P, the O1-convergence in P is topological if and only if P is a B-
consistent S∗-doubly continuous poset if and only if the O1-convergence and the topological convergence
with respect to the B-topology on P are consistent. In Section 3, we study several special sub-classes of
B-consistent S∗-doubly continuous posets.

Some conventional notions will be used in the sequel. Throughout this paper, given a set X, F v X
means that F is a finite subset of X. Let P be a poset and x ∈ P, ↑x and ↓x are always used to denote the
principal filter {y ∈ P : y > x} and the principal ideal {z ∈ P : z 6 x} of P, respectively. P is said to be bounded
if it has the least element ⊥ and the largest element >. Given a poset P and A ⊆ P, by writing supA we
mean that the least upper bound of A in P exists and equals to supA ∈ P; dually, by writing infA we
mean that the greatest lower bound of A in P exists and equals to infA ∈ P. And the set A is called an
upper set if A = ↑A = {b ∈ P : (∃a ∈ A) a 6 b}, the lower set is defined dually.

Given a topological space (X,T) [4, 7] and a net (xi)i∈I in X, we take (xi)i∈I
T−→ x ∈ X to mean that the

net (xi)i∈I converges to x with respect to the topology T.
To make this paper self-contained, we briefly review the following notions and propositions.

Definition 1.1 ([6]). Let P be a poset and x,y, z ∈ P. We say y � x if for every directed subset D of P with
x 6 supD, there exists d ∈ D such that y 6 d; dually, we say zB x if for every filtered subset F of P with inf F 6 x,
there exists e ∈ F such that e 6 z.

Remark 1.2 ([6]). Let P be a poset and x,y, z,a,b, c,d ∈ P. Then

(1) x� y⇒ x 6 y and zB x⇒ z > x;
(2) a 6 x� y 6 b⇒ a� b and c > zB x > d⇒ cB d.

Definition 1.3 ([16]). A poset P is called a doubly continuous poset if for any x ∈ P, the set {y ∈ P : y � x} is
directed, the set {z ∈ P : zB x} is filtered and sup{y ∈ P : y� x} = x = inf{z ∈ P : zB x}.

Remark 1.4 ([15]). Let P be a doubly continuous poset and x,y, z ∈ P. If x � y, then there exists a ∈ P such that
x� a� y; dually, if zB x, then there exists b ∈ P such that zB bB x.

Example 1.5 ([3, 19]).

(1) Chains, antichains, and finite posets are all doubly continuous posets.
(2) Every completely distributive lattice is a doubly continuous lattice. But the converse may not be true. For example,

every non-distributive finite lattice is a doubly continuous lattice, but not a completely distributive lattice. In fact,
it has been shown that L is a completely distributive lattice if and only if it is a distributive doubly continuous
lattice.
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Definition 1.6 ([12]). Let P be a poset and x,y, z ∈ P. We define y�Sx if for every directed subset D of P with
supD = x, there exists d ∈ D such that y 6 d; dually, we define zBSx if for every filtered subset F of P with
inf F = x, there exists e ∈ F such that z > e.

In what follows, for a poset P and x ∈ P, we denote

(1) ⇓Sx = {a ∈ P : a�Sx}, ⇑Sx = {b ∈ P : x�Sb};
(2) �Sx = {c ∈ P : xBSc}, �Sx = {d ∈ P : dBSx}.

Definition 1.7 ([12]). A poset P is said to be S-doubly continuous if for every x ∈ P, the sets ⇓Sx and �Sx are
directed and filtered, respectively, and sup⇓Sx = x = inf�Sx.

Definition 1.8 ([12]). An S-doubly continuous poset P is said to be S∗-doubly continuous if for every x ∈ P, y ∈ ⇓Sx
and z ∈ �Sx, there exist y0 ∈ ⇓Sx and z0 ∈ �Sx such that ↑y0 ∩ ↓z0 ⊆ ⇑Sy∩�Sz.

Proposition 1.9 ([12]). If P is a doubly continuous poset, then P is S∗-doubly continuous.

Definition 1.10 ([6]). Let P be a poset and U ⊆ P. U is said to be Scott open if and only if the the following two
conditions are satisfied:

(1) U = ↑U, that is to say, U is an upper set;
(2) supD ∈ U implies D∩U 6= ∅ for every directed subset D of P.

It can be formally verified that the collection of all Scott open subsets of P forms a topology on P,
which is called the Scott topology and denoted by σP.

2. B-consistent S∗-doubly continuous posets

In this section, theO1-convergence in posets is reviewed. Then, a special class of S∗-doubly continuous
posets, named B-consistent S∗-doubly continuous posets, is introduced. Finally, we present a sufficient
and necessary condition of a general poset which can precisely serve as an order-theoretical condition for
the associated O1-convergence being topological.

Definition 2.1 ([1]). Let P be a poset. A net (xi)i∈I in P is said to O1-converges to x ∈ P if there exist nets (ui)i∈I
and (vi)i∈I in P such that

(O1) (ui)i∈I is an increasing net, i.e., ui1 6 ui2 for any i1, i2 ∈ I with i1 6 i2, and (vi)i∈I is a decreasing net, i.e.,
vi1 > vi2 for any i1, i2 ∈ I with i1 6 i2;

(O2) ui 6 xi 6 vi for all i ∈ I;
(O3) sup{ui : i ∈ I} = x = inf{vi : i ∈ I}.

In this case, we write (xi)i∈I
O1−−→ x.

It is worth noting that if (xi)i∈I is a net in a poset P, then (xi)i∈I
O1−−→ x ∈ P implies (xi)i∈I

O−→ x. But
the converse implication may not be true. This fact can be illustrated by the following Example 2.2.

Example 2.2. Let P = {a,b, x} with a 6 x and b 6 x, and I = {1, 2, 3} with 1 6 2 6 3. And let (xi)i∈I be the net

defined by x1 = a, x2 = b and x3 = x. By the definition of O-convergence, it is easy to verify that (xi)i∈I
O−→ x.

Suppose (xi)i∈I
O1−−→ x. Then there exist an increasing net (ui)i∈I and a decreasing net (vi)i∈I which satisfy the

conditions (O2) and (O3) in Definition 2.1. By (O2), we have u1 6 x1 = a 6 v1 and u2 6 x2 = b 6 v2, which
implies that u1 = a,u2 = b and u1 66 u2. This contradicts the fact that (ui)i∈I is an increasing net. Thus, the net
(xi)i∈I does not O1-converge to x.

Remark 2.3. Let P be a poset and (xi)i∈I a net in P.
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(1) If (xi)i∈I is a constant net in P with value x, then (xi)i∈I
O1−−→ x since the increasing net (ui)i∈I defined by

ui = x for all i ∈ I and the decreasing net (vi)i∈I defined by vi = x for all i ∈ I satisfy the conditions (O2) and
(O3) in Definition 2.1.

(2) Suppose (xi)i∈I
O1−−→ x ∈ P. Then there exist an increasing net (ui)i∈I and a decreasing net (vi)i∈I in P that

satisfy the conditions (O2) and (O3) in Definition 2.1. This can imply that the subsets {ui : i ∈ I} and {vi : i ∈ I}
of P are directed and filtered, respectively.

(3) The O1-convergent point of a net (xi)i∈I in P, if exists, is unique. Indeed, suppose (xi)i∈I
O1−−→ x1 ∈ P and

(xi)i∈I
O1−−→ x2 ∈ P. Then we have (xi)i∈I

O−→ x1 and (xi)i∈I
O−→ x2. By Remark 2.3 (2) (the O-convergent

point of a net (xi)i∈I in P, if exists, is unique.) in [19], x1 = x2.
(4) Let D be a directed subset of P and F a filtered subset of P such that supD and inf F exist. Define the net

(xd)d∈D by xd = d for all d ∈ D and the net (ye)e∈Fop by ye = e for all e ∈ F. Then (xd)d∈D
O1−−→ supD

and (ye)e∈Fop
O1−−→ inf F.

Next we recall the definition and the fundamental properties of B-topology on posets, which has been
introduced in [12].

Definition 2.4 ([12]). Given a poset P, a subset U ⊆ P is called a B-open set if for any filter F in P that order-
converges to x ∈ U, there exists F ∈ F such that F ⊆ U. (Note: for the definition of order-convergence in posets, one
can refer to Definition 2.1 in [12].)

For a poset P, let TP denote the set of all B-open subsets of P. It is routine to check that TP forms a
topology on P. And this topology is called the B-Topology on P.

Proposition 2.5 ([12]). Let P be a poset and U ⊆ P. Then U ∈ TP if and only if for any directed subset D of P and
any filtered subset F of P with supD = inf F = x ∈ U, there exist d0 ∈ D and e0 ∈ F such that ↑d0 ∩ ↓e0 ⊆ U.

Recall that given a topological space (X,T), a subfamily B of T is called an open base for the topological
space (X,T) (sometimes, called an open base of T) if B ⊆ T and for every point x ∈ X and every
neighborhood V of x there exists U ∈ B such that x ∈ U ⊆ V .

Theorem 2.6 ([12]). If P is S∗-doubly continuous, then BP = {⇑Sy ∩�Sz : y, z ∈ P} forms an open base of the
B-topology TP.

Definition 2.7 ([16]). Let P be a poset. A family σP of subsets of P is called the Bi-Scott topology on P if σP =
σP ∨ σPOP , where POP is the dual poset of P. Obviously, σP has an open base B = {U∩ V : U ∈ σP,V ∈ σPOP }.

Theorem 2.8 ([12]). Let P be a doubly continuous poset. Then σP = TP.

Depending on the introduction and discussion of B-topology on posets [12], we are now in the position
to clarify the order-theoretical condition for posets, under which the O1-convergence is topological.

Definition 2.9. The O1-convergence in a poset P is said to be topological if there exists a topology T on P such that

(xi)i∈I
T−→ x ∈ P ⇐⇒ (xi)i∈I

O1−−→ x.

Definition 2.10. An S∗-doubly continuous poset P is said to be consistent with respect to the O1-convergence (for
short, B-consistent) if it satisfies the following condition for any net (xi)i∈I in P and any x ∈ P:

xi ∈ ↑y∩ ↓z eventually for any y ∈ ⇓Sx and z ∈ �Sx ⇒ (xi)i∈I
O1−−→ x. (?)

Lemma 2.11. If P is a B-consistent S∗-doubly continuous poset, then the O1-convergence in P is topological.



T. Sun, Q. Li, N. Fan, J. Nonlinear Sci. Appl., 12 (2019), 634–643 638

Proof. By Remark 2.3 (2) and Proposition 2.5, it is not difficult to show a net

(xi)i∈I
O1−−→ x ∈ P =⇒ (xi)i∈I

TP−→ x.

To prove the theorem, it suffices to show a net

(xi)i∈I
TP−→ x ∈ P =⇒ (xi)i∈I

O1−−→ x.

Now we suppose the net (xi)i∈I
TP−→ x. For any y ∈ ⇓Sx and z ∈ �Sx, since P is an S∗-doubly continuous poset,

there exist y0 ∈ ⇓Sx and z0 ∈ �Sx such that ↑y0 ∩ ↓z0 ⊆ ⇑Sy ∩�Sz. According to Theorem 2.6, we have that
xi ∈ ⇑Sy0 ∩�Sz0 eventually. Thus xi ∈ ⇑Sy0 ∩�Sz0 ⊆ ↑y0 ∩ ↓z0 ⊆ ⇑Sy ∩�Sz ⊆ ↑y ∩ ↓z holds eventually. It

follows from the assumption of P satisfying condition (?) that the net (xi)i∈I
O1−−→ x.

Conversely, we have the following Lemma.

Lemma 2.12. If theO1-convergence in a poset P is topological, then P is a B-consistent S∗-doubly continuous poset.

The proof of Lemma 2.12 is divided into the following three steps (Facts 2.13, 2.14, and 2.15).

Fact 2.13. If the O1-convergence in a poset P is topological, then P is an S-doubly continuous poset.

Proof. Suppose that the O1-convergence in P is topological. Then there exists a topology T on P such that a net

(xi)i∈I
O1−−→ x⇐⇒ (xi)i∈I

T−→ x

for every x ∈ P. Let D = {(w,W) ∈ (∪Nx)×Nx : w ∈W}, where Nx = {W ∈ T : x ∈W}. Define the order 6 on
D by

(∀(w1,W1), (w2,W2) ∈ D) (w1,W1) 6 (w2,W2)⇐⇒W2 ⊆W1.

It can be verified straightforwardly that 6 is a preorder and D is directed. Let x(w,W) = w for every (w,W) ∈ D.
Then for any V ∈ Nx, we have that x(w,W) = w ∈ W ⊆ V for every (w,W) > (x,V). This means

the net (x(w,W))(w,W)∈D
T−→ x. Hence (x(w,W))(w,W)∈D

O1−−→ x. And thus, there exist an increasing net
(u(w,W))(w,W)∈D and a decreasing net (v(w,W))(w,W)∈D satisfying the conditions (O2) and (O3) in Definition
2.1.

Let D = {u(w,W) : (w,W) ∈ D} and F = {v(w,W) : (w,W) ∈ D}. Then by Definition 2.1 and Remark 2.3 (2),
D is directed, F is filtered, and supD = x = inf F. For every d = u(w1,W1) ∈ D and e = v(w2,W2) ∈ F, as (w,W1 ∩
W2) > (w1,W1), (w2,W2) for every w ∈ W1 ∩W2, we can conclude that d = u(w1,W1) 6 u(w,W1∩W2) 6
x(w,W1∩W2) = w 6 v(w,W1∩W2) 6 v(w2,W2) = e for each w ∈W1 ∩W2, which implies W1 ∩W2 ⊆ ↑d∩ ↓e. Let
D ′ be a directed subset of P with supD ′ = x. Consider the net (xd ′)d ′∈D ′ defined by xd ′ = d ′ for all d ′ ∈ D ′. By

Remark 2.3 (4), the net (xd ′)d ′∈D ′
O1−−→ x. This implies the net (xd ′)d ′∈D ′

T−→ x. Thus, there exists d ′0 ∈ D ′ such
that xd ′ = d ′ ∈W1 ∩W2 ⊆ ↑d∩ ↓e for every d ′ > d ′0. In particular, we have xd ′0 = d

′
0 ∈ ↑d∩ ↓e, and thus d�Sx.

Because d is arbitrarily taken from D, we have D ⊆ ⇓Sx and supD = sup⇓Sx = x. For y1,y2 ∈ ⇓Sx, since D
is directed and supD = x, by the definition of�S, there exist d1,d2 ∈ D such that y1 6 d1 and y2 6 d2. Hence
there exists d0 ∈ D ⊆ ⇓Sx such that y1 6 d1 6 d0 and y2 6 d2 6 d0. Therefore, the set ⇓Sx is directed. It can be
similarly proved that the set�Sx is filtered and inf�Sx = x. Therefore, P is S-doubly continuous.

Fact 2.14. If the O1-convergence in a poset P is topological, then P is an S∗-doubly continuous poset.

Proof. For any y ∈ ⇓Sx and z ∈ �Sx, it follows from the definitions of�S andBS that there exist dy = u(w3,W3) ∈
D and ez = v(w4,W4) ∈ F such that y 6 dy and ez 6 z. By the discussion in Fact 2.13, we have W3 ∩W4 ⊆
↑dy ∩ ↓ez ⊆ ↑y ∩ ↓z. Ix = {↑a ∩ ↓b : a ∈ ⇓Sx & b ∈ �Sx} and I0 = {(k,K) ∈ (∪Ix)× Ix : k ∈ K}. And define
the order ≺ on I0 by

(∀(k1,K1), (k2,K2) ∈ I0) (k1,K1) ≺ (k2,K2)⇐⇒ K2 ⊆ K1.
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One can easily check that ≺ is a directed preoder. Let x(k,K) = k, u(k,K) = a and v(k,K) = b for every (k,K) =
(k, ↑a ∩ ↓b) ∈ I0. Then the nets (x(k,K))(k,K)∈I0 , (u(k,K))(k,K)∈I0 (increasing) and(v(k,K))(k,K)∈I0 (decreasing)

satisfy the conditions (O2) and (O3) in Definition 2.1, and hence the net (x(k,K))(k,K)∈I0

O1−−→ x. Thus, the net

(x(k,K))(k,K)∈I0

T−→ x. This means that there exists (k0,K0) = (k0, ↑y0 ∩ ↓z0) ∈ I0, where y0 ∈ ⇓Sx and z0 ∈ �Sx,
such that x(k,K) = k ∈ W3 ∩W4 ⊆ ↑dy ∩ ↓ez ⊆ ↑y ∩ ↓z for all (k,K) � (k0,K0). In particular, it holds that
(k,K0) � (k0,K0) for all k ∈ K0, which implies x(k,K0) = k ∈ W3 ∩W4 ⊆ ↑dy ∩ ↓ez ⊆ ↑y ∩ ↓z for all k ∈ K0.
Thus, we conclude that K0 = ↑y0 ∩ ↓z0 ⊆W3 ∩W4 ⊆ ↑dy ∩ ↓ez ⊆ ↑y∩ ↓z.

We finally show ↑y0 ∩ ↓z0 ⊆ ⇑Sy ∩�Sz. Suppose that D ′′ is a directed subset of P with supD ′′ = r ∈
↑y0 ∩ ↓z0. Then by Remark 2.3 (4), the net (xd ′′)d ′′∈D ′′ defined by xd ′′ = d ′′ for all d ′′ ∈ D ′′ O1-converges to r,

and thus the net (xd ′′)d ′′∈D ′′
T−→ r. It follows that there exists d ′′0 ∈ D ′′ such that xd ′′0 = d ′′0 ∈W3 ∩W4 ⊆ ↑y∩ ↓z,

which implies y�Sr. It is analogous to prove zBSr. Hence, we have ↑y0 ∩ ↓z0 ⊆ ⇑Sy ∩�Sz. Therefore P is an
S∗-doubly continuous poset.

Fact 2.15. If the O1-convergence in a poset P is topological, then P satisfies condition (?).

Proof. Let (xj)j∈J be a net in P with xj ∈ ↑y∩↓z eventually for any y ∈ ⇓Sx and z ∈ �Sx. By what has been shown

in Fact 2.14, the net (x(k,K))(k,K)∈I0

T−→ x. This means that for every W ∈ Nx there exists (k1,K1) = (k1, ↑y1 ∩
↓z1) ∈ I0, where y1 ∈ ⇓Sx and z1 ∈ �Sx, such that x(k,K) = k ∈ W for all (k,K) � (k1,K1). In particular,
(k,K1) � (k1,K1) for all k ∈ K1, i.e., x(k,K1) = k ∈ W for all k ∈ K1, which implies K1 = ↑y1 ∩ ↓z1 ⊆ W.

By the assumption that xj ∈ ↑y1 ∩ ↓z1 ⊆ W eventually, it follows that the net (xj)j∈J
T−→ x. Therefore, the net

(xj)j∈J
O1−−→ x. This shows P satisfies condition (?).

The combination of Lemma 2.11 and Lemma 2.12 gives the main result of this paper.

Theorem 2.16. For a poset P the following statements are equivalent:

(1) The O1-convergence in P is topological.
(2) P is a B-consistent S∗-doubly continuous poset.

(3) For any net (xi)i∈I in P, (xi)i∈I
O1−−→ x ∈ P ⇐⇒ (xi)i∈I

TP−→ x.

Proof.

(1)⇒(2): By Lemma 2.12.

(2)⇒(3): By the proof of Lemma 2.11.

(3)⇒(1): It is straightforward.

Corollary 2.17. Let P be a B-consistent doubly continuous poset. Then

(1) The O1-convergence in P is topological.

(2) For any net (xi)i∈I in P, (xi)i∈I
O1−−→ x ∈ P ⇐⇒ (xi)i∈I

TP−→ x.

(3) For any net (xi)i∈I in P, (xi)i∈I
O1−−→ x ∈ P ⇐⇒ (xi)i∈I

σP−−→ x.

Proof.

(1): By Proposition 1.9 and Theorem 2.16.

(2): By Proposition 1.9 and Theorem 2.16.

(3): By Theorems 2.8 and 2.16.

3. Special B-consistent S∗-doubly continuous posets

In this section, we will discuss several special B-consistent S∗-doubly continuous posets. We first give
a basic property of B-consistent S∗-doubly continuous posets.
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Proposition 3.1. Every B-consistent S∗-doubly continuous poset is bounded.

Proof. Suppose that P is a B-consistent S∗-doubly continuous poset. Let I = P ∪ {0, 1} and define the order 6 on I
as follows: 0 6 i 6 1 for every i ∈ I. Then I is directed since 1 is the largest element in I. For every x ∈ P, let
x0 = x1 = x and xi = i for all i ∈ P. Since x1 = x ∈ ↑y∩ ↓z for every y ∈ ⇓Sx and z ∈ �Sx, by condition (?), the

net (xi)i∈I
O1−−→ x. This means that there exist an increasing net (ui)i∈I and a decreasing net (vi)i∈I satisfying the

conditions (O2) and (O3) in Definition 2.1, which implies that u0 6 xi = i 6 v0 for all i ∈ P. Thus u0 is the least
element in P and v0 is the largest element in P. Therefore, P is bounded.

A ordinal number λ, from the order-theoretical point of view, is indeed a linearly ordered set of which
every nonempty subset has the least element. It is easy to see that if a subset λ0 of λ has an upper bound
in λ, then sup λ0 = minU(λ0), where U(λ0) is the set of all upper bound of λ0 in λ. One can refer to [2]
for a more detailed discussion about ordinal numbers.

Let P and Q be two posets. A mapping f : P → Q is an order embedding if for any x,y ∈ P, f(x)6Qf(y)
in Q if and only if x6Py in P. Similarly, a mapping g : P → Q is a dual order embedding if for any x,y ∈ P,
g(x)6Q g(y) in Q if and only if x>Py in P. We should note that both f and g are injective but need not to
be bijective.

Let P and Q be two posets and Q1,Q2 ⊆ Q. An order embedding f : P → Q is said to be cofinal in
Q1 if f(P) ⊆ Q1, and for any q1 ∈ Q1 there exists p1 ∈ P such that f(p1)>Qq1. Similarly, a dual order
embedding g : P → Q is said to be dually cofinal in Q2 if g(P) ⊆ Q2, and for any q2 ∈ Q2 there exists
p2 ∈ P such that g(p2)6Qq2.

Definition 3.2. An S∗-doubly continuous poset P is called locally ordinal embedded if for every x ∈ P, there exist
ordinal numbers λx,µx, an order embedding fx : λx → P and a dual order embedding gx : µx → P such that fx is
cofinal in ⇓Sx and gx is dually cofinal in�Sx.

Proposition 3.3. Let P be an S∗-doubly continuous poset. If P is locally ordinal embedded and bounded, then it is
B-consistent.

Proof. Suppose that an S∗-doubly continuous poset P is locally ordinal embedded and bounded. Then for every
x ∈ P, there exist ordinal numbers λx,µx, an order embedding fx : λx → P and a dual order embedding gx : µx → P

such that fx is cofinal in ⇓Sx and gx is dually cofinal in �Sx. Let (xi)i∈I be a net in P with that xi ∈ ↑y ∩ ↓z
eventually for every y ∈ ⇓Sx and z ∈ �Sx. For every i ∈ I, we define

ui =


x, {λ ∈ λx : (∀j > i)xj > fx(λ)} = λ,

fx(sup{λ ∈ λx : (∀j > i)xj > fx(λ)}), ∅ 6= {λ ∈ λx : (∀j > i)xj > fx(λ)}  λx,
⊥, {λ ∈ λx : (∀j > i)xj > fx(λ)} = ∅,

and

vi =


x, {µ ∈ µx : (∀j > i)xj 6 gx(µ)} = µx,
gx(sup{µ ∈ µx : (∀j > i)xj 6 gx(µ)}), ∅ 6= {µ ∈ µx : (∀j > i)xj 6 gx(µ)}  µx,
>, {µ ∈ µx : (∀j > i)xj 6 gx(µ)} = ∅,

where ⊥ and > are the least and largest elements of P, respectively .
It is tedious but straightforward to check that the nets (ui)i∈I, (vi)i∈I are respectively increasing and decreasing,

and satisfy the conditions (O2) and (O3) in Definition 2.1. Thus the net (xi)i∈I
O1−−→ x. By Definition 2.10, P is

B-consistent.

Definition 3.4. We say that an S∗-doubly continuous poset P is locally countable if |⇓Sx|, |�Sx| 6 ω0 for every
x ∈ P, where |⇓Sx| and |�Sx| denote the cardinalities of the sets ⇓Sx and �Sx, respectively, and ω0 is the first
infinite cardinal number.

Proposition 3.5. Let P be an S∗-doubly continuous poset. If P is locally countable, then P is locally ordinal embedded.
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Proof. For every x ∈ P, we consider the following two cases:

(Case 1.) If x ∈ ⇓Sx, let λx = 1 and define fx : 1 → P by fx(0) = x. Now we can easily see that fx : 1 → P is an
order embedding and is cofinal in ⇓Sx.

(Case 2.) If x 6∈ ⇓Sx, then ⇓Sx is directed and |⇓Sx| = ω0 since P is S∗-doubly continuous and locally countable.
Without loss of generality, we assume ⇓Sx = {y0,y1,y2,y3, . . .}. Let λx = ω0 and define fx : ω0 → P by inductive
approach with respect toω0:

(Step 1.) Let fx(0) = y0.

(Step 2.) Suppose that all of fx(0), fx(1), fx(2), . . . , fx(n) have been defined. Then we can take a yn+1 ∈ ⇓Sx such
that yn+1 > yi and yn+1 > fx(i) for all i 6 n. Now let fx(n+ 1) = yn+1.

It is clear that fx : ω0 → P is an order embedding which is cofinal in ⇓Sx.
In sum, we have proved that there exist an ordinal numbers λx and an order embedding fx : λx → P such that

fx is cofinal in ⇓Sx. It can be similarly showed that there exist an ordinal numbers µx and a dual order embedding
gx : µx → P such that gx is dually cofinal in�Sx. Hence P is locally ordinal embedded.

Definition 3.6. An S∗-doubly continuous poset P is said to be weakly locally countable if for every x ∈ P there always
exist a countable directed subsetDx of ⇓Sx and a countable filtered subset Fx of�Sx such that supDx = x = inf Fx.

Proposition 3.7. Let P be an S∗-doubly continuous poset. If P is weakly locally countable, then P is locally ordinal
embedded.

Proof. Suppose that an S∗-doubly continuous poset P is weakly locally countable. Then for every x ∈ P, there exist
a countable directed subset Dx of ⇓Sx and a countable filtered subset Fx of �Sx such that supDx = x = inf Fx.
By the technique of induction used in the proof of Proposition 3.5, we can get ordinal numbers λx,µx, an order
embedding fx : λx → P and a dual order embedding gx : µx → P such that fx is cofinal in Dx and gx is dually
cofinal in Fx. Furthermore, One can easily check by the definitions of�S and BS that fx is also cofinal in ⇓Sx and
gx is dually cofinal in�Sx. Hence P is locally ordinal embedded.

Theorem 3.8. If P is an S∗-doubly continuous, locally ordinal embedded and bounded poset, then theO1-convergence
in P is topological.

Proof. Straightforwardly from Theorem 2.16 and Proposition 3.3.

Corollary 3.9. Let P be a poset. Then

(1) If P is S∗-doubly continuous, bounded and locally countable, then the O1-convergence in P is topological.
(2) If P is a countable poset, i.e., |P| 6 ω0, then the O1-convergence in P is topological if and only if P is S∗-doubly

continuous and bounded.
(3) If P is a finite poset, i.e., |P| < ω0, then the O1-convergence in P is topological if and only if P is bounded.

Proof.

(1): Straightforwardly follows from Proposition 3.5 and Theorem 3.8.

(2): Let P be a countable poset. If the O1-convergence in P is topological. Then, by Theorem 2.16, P is a B-
consistent S∗-doubly continuous poset. It follows from Proposition 3.1 that P is bounded. Conversely, suppose that P
is S∗-doubly continuous and bounded. Since P is a countable poset, it is locally countable. By Proposition 3.5, P is
locally ordinal embedded. Thus we can conclude by Theorem 3.8 that the O1-convergence in P is topological.

(3): It is straightforwardly from (2) if we notice the fact that every finite poset is a doubly continuous poset and hence
an S∗-doubly continuous poset.

Definition 3.10. An S∗-doubly continuous poset P is said to be locally complete if for any x ∈ P, A ⊆ ⇓Sx and
B ⊆ �Sx, both of supA and infB in P exist.
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Proposition 3.11. If P be an S∗-doubly continuous, locally complete and bounded poset, then P is B-consistent.

Proof. Suppose P is an S∗-doubly continuous, locally complete and bounded poset. Let (xi)i∈I be a net in P with
that xi ∈ ↑y∩ ↓z eventually for every y ∈ ⇓Sx and z ∈ �Sx. For every i ∈ I we define

ui =

{
sup{y ′ ∈ ⇓Sx : (∀j > i)xj > y ′}, {y ′ ∈ ⇓Sx : (∀j > i)xj > y ′} 6= ∅,
⊥, {y ′ ∈ ⇓Sx : (∀j > i)xj > y ′} = ∅,

and dually define

vi =

{
inf{z ′ ∈ �Sx : (∀j > i)xj 6 z ′}, {z ′ ∈ �Sx : (∀j > i)xj 6 z ′} 6= ∅,
>, {z ′ ∈ �Sx : (∀j > i)xj 6 z ′} = ∅,

where, ⊥ and > are the least element and largest element of P, respectively.
One can straightforwardly verifies that the increasing net (ui)i∈I and decreasing net (vi)i∈I satisfy the conditions

(O2) and (O3) in Definition 2.1. Hence the net (xi)i∈I
O1−−→ x. Thus, P is B-consistent.

Theorem 3.12. If P is an S∗-doubly continuous, locally complete and bounded poset, then the O1-convergence in P
is topological.

Proof. Straightforwardly from Theorem 2.16 and Proposition 3.11.

Corollary 3.13. Let P be a poset.

(1) If P is a complete lattice, then the O1-convergence in P is topological if and only if P is S∗-doubly continuous.
(2) If P is a completely distributive lattice, then the O1-convergence in P is topological.
(3) If P is a complete chain, then the O1-convergence in P is topological.

Proof.

(1) Let P be a complete lattice. If theO1-convergence in P is topological, then P is S∗-doubly continuous by Theorem
2.16. Conversely, suppose P is an S∗-doubly continuous poset. Since P is a complete lattice, it is locally complete
and bounded. By Theorem 3.12, the O1-convergence in P is topological.

(2) Noticing that every completely distributive lattice is doubly continuous, and hence is S∗-doubly continuous, by
(1), the O1-convergence in P is topological.

(3) Noticing that every complete chain is completely distributive, by (2), theO1-convergence in P is topological.
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