
ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.isr-publications.com/jnsa

Fixed point theorems for Θ -contractions in left *K*-complete T_1 -quasi metric space

Durdana Lateef^a, Jamshaid Ahmad^{b,*}

^aDepartment of Mathematics, College of Science, Taibah University, Al Madina Al Munawara, 41411, Kingdom of Saudi Arabia. ^bDepartment of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia.

Abstract

The aim of this paper is to define $\Theta_{\beta}^{u} = \left\{ v \in \mathcal{J}u : \Theta(\varrho(u, v)) \leq [\Theta(\varrho(u, \mathcal{J}u))]^{\beta} \right\}$ and establish some new fixed point theorems in the setting of left *K*-complete *T*₁-quasi metric space. Our theorems generalize, extend, and unify several results of literature.

Keywords: Θ-contractions, property *P*, property *Q*, fixed points. **2010 MSC:** 47H10, 54H25.

©2019 All rights reserved.

1. Introduction and preliminaries

Definition 1.1 ([7]). Let $\mathcal{E} \neq \emptyset$. A function $\varrho : \mathcal{E} \times \mathcal{E} \to \mathbb{R}^+$ is said to be a quasi-pseudo metric so that $\forall u, v, w \in \mathcal{E}$:

- q(u, v) = 0;
- $\varrho(u,v) \leq \varrho(u,w) + \varrho(w,v).$

If it satisfies:

• $\varrho(u,v) = \varrho(v,u) = 0 \Rightarrow u = v$,

then ϱ is called T_1 -quasi metric.

Remark 1.2 ([7]).

- (i) Each metric is a T_1 -quasi metric.
- (ii) Each T_1 -quasi metric is a quasi metric.
- (iii) Each quasi metric is a quasi-pseudo metric.

*Corresponding author

Email addresses: drdurdanamaths@gmail.com (Durdana Lateef), jkhan@uj.edu.sa (Jamshaid Ahmad) doi: 10.22436/jnsa.012.10.05

Received: 2019-01-01 Revised: 2019-04-03 Accepted: 2019-04-30

Definition 1.3 ([7]). Assume that a quasi-pseudo metric space (\mathcal{E}, ϱ) . Given $u_0 \in \mathcal{E}$ as centre and $\epsilon > 0$ as radius, then

$$B_{\varrho}(u_0,\epsilon) = \{ v \in \mathcal{E} : \varrho(u_0,r) < \epsilon \}$$

denotes the open ball and

$$B_{\varrho}(u_0,\epsilon) = \{ v \in \mathcal{E} : \varrho(u_0,r) \le \epsilon \}$$

denotes the closed ball.

Every quasi-pseudo metric ϱ on \mathcal{E} originate a topology τ_{ϱ} on \mathcal{E} . If ϱ is a quasi metric on \mathcal{E} , then the originated topology τ_{ϱ} must be T_0 . If ϱ is a T_1 -quasi metric, then the generated topology τ_{ϱ} is a T_1 .

If ϱ is a quasi-pseudo metric on \mathcal{E} , then define ϱ^{-1} , ϱ^s , and ϱ_+ as

$$\varrho^{-1}(u,v) = \varrho(v,u), \quad \varrho^{s}(u,v) = \max\{\varrho(u,v), \varrho^{-1}(u,v)\}, \text{ and } \varrho_{+}(u,v) = \varrho(u,v) + \varrho^{-1}(u,v)$$

All these metrics are also quasi-pseudo metrics on \mathcal{E} . Moreover, if ϱ satisfies

$$u \neq v \Longrightarrow \varrho(u,v) + \varrho^{-1}(u,v) > 0,$$

then ϱ_+ (and also ϱ^s) is a metric on \mathcal{E} . Here $cl_{\varrho}(A)$, $cl_{\varrho^{-1}}(A)$, and $cl_{\varrho^s}(A)$ denote the closure of A in \mathcal{E} with respect to τ_{ϱ} , $\tau_{\varrho^{-1}}$, and τ_{ϱ^s} , respectively.

We give the following examples in which the mapping $\varrho : \mathcal{E} \times \mathcal{E} \to \mathbb{R}^+$ is a quasi metric but not a T_1 -quasi metric.

Example 1.4 ([7]).

(i) Let $\mathcal{E} = \mathbb{R}$. Define $\varrho : \mathcal{E} \times \mathcal{E} \to \mathbb{R}^+$ as follows

$$\varrho(u,v) = \max\{v-u,0\}\}$$

 $\forall u, v \in \mathcal{E}.$ (ii) Let $\mathcal{E} = \mathbb{R}$ and

$$\varrho(u,v) = \begin{cases} 0, & u = v, \\ |v|, & u \neq v, \end{cases}$$

 $\forall u, v \in \mathcal{E}.$

We give the following example in which the mapping $\varrho : \mathcal{E} \times \mathcal{E} \to \mathbb{R}^+$ is a T_1 -quasi metric although not a metric on \mathcal{E} .

Example 1.5 ([7]). Let $\mathcal{E} = \mathbb{R}$ and

$$\varrho(u,v) = \begin{cases} v-u, & u \leq v, \\ 1, & u > v, \end{cases}$$

 $\forall u, v \in \mathcal{E}.$

Let (\mathcal{E}, ϱ) be a quasi metric space, *B* a nonempty subset of \mathcal{E} , and $u \in \mathcal{E}$. Then

$$u \in cl_{\varrho}(A) \iff \varrho(u, B) = inf\{\varrho(u, a) : a \in B\} = 0.$$

Likewise,

$$u \in \operatorname{cl}_{\varrho^{-1}}(A) \iff \varrho(B, u) = \inf\{\varrho(a, u) : a \in B\} = 0$$

If *B* is compact subset of \mathcal{E} and (\mathcal{E}, ϱ) is a metric space, then for each $u \in \mathcal{E}$, $\exists a \in B$ so that

$$\varrho(u,a) = \varrho(u,B).$$

But this property does not hold in a quasi metric space (\mathcal{E}, ϱ) .

However, if (\mathcal{E}, ϱ) is a quasi metric space and A is a $\tau_{\varrho^{-1}}$ -compact subset of \mathcal{E} , then this property holds. Let (\mathcal{E}, ϱ) be a quasi metric space and $u \in \mathcal{E}$. A sequence $\{u_n\}$ converges to u regarding τ_{ϱ} is said to be ϱ -convergence and denoted by $u_n \ \varrho \ u$ and is defined by

$$\varrho(u,u_n)\to 0,$$

as $n \to \infty$. Similarly, the convergence of $\{u_n\}$ to u regarding $\tau_{\varrho^{-1}}$ is said to be ϱ^{-1} -convergence and denoted by $u_n \, \varrho^{-1} \, u$ and is defined by

$$g^{-1}(u_n,u)\to 0,$$

as $n \to \infty$. Finally, the convergence of $\{u_n\}$ to u regarding τ_{ϱ^s} is said to be ϱ^s -convergence and denoted by $u_n \ \varrho^s \ u$ and is defined by

$$\varrho^s(u_n, u) \to 0,$$

as $n \to \infty$. It is clear that $u_n \xrightarrow{\varrho^s} u \iff u_n \xrightarrow{\varrho} u$ and $u_n \xrightarrow{\varrho^{-1}} u$.

Definition 1.6 ([7]). Assume that (\mathcal{E}, ϱ) is a quasi metric space (QMS).

(i) If $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ so that

$$\forall n,k, n \geq k \geq n_0, \ \varrho(u_k,u_n) < \epsilon,$$

then $\{u_n\}$ in \mathcal{E} is called a left *K*-Cauchy.

(ii) If $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ so that

$$\forall n, k, n \geq k \geq n_0, \ \varrho(u_n, u_k) < \epsilon,$$

then $\{u_n\}$ in \mathcal{E} is called a right *K*-Cauchy.

(iii) If $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ so that

$$\forall n, k \geq n_0, \ \varrho(u_n, u_k) < \epsilon$$

then $\{u_n\}$ in \mathcal{E} is said to be ϱ^s -Cauchy.

Definition 1.7 ([7]). Assume that (\mathcal{E}, ϱ) be a QMS.

- If each left (right) K-Cauchy sequence is ϱ -convergent then (\mathcal{E}, ϱ) is called a left (right) K-complete.
- If each left (right) *K*-Cauchy sequence is ϱ^{-1} -convergent then (\mathcal{E}, ϱ) is called a left (right) *M*-complete.
- If each left (right) *K*-Cauchy sequence is ρ^s -convergent then (\mathcal{E}, ρ) is called a left (right) Smyth complete.

Currently, Jleli and Samet [12] initiated a contemporary kind of contraction and proved a new result for this contraction in the framework of generalized metric spaces.

Definition 1.8. Let Θ : $(0, \infty) \rightarrow (1, \infty)$ be a function satisfying:

- (Θ_1) Θ is nondecreasing;
- (Θ_2) for each sequence $\{\alpha_n\} \subseteq R^+$, $\lim_{n\to\infty} \Theta(\alpha_n) = 1 \iff \lim_{n\to\infty} (\alpha_n) = 0$;
- (Θ_3) $\exists 0 < k < 1 \text{ and } l \in (0, \infty] \text{ such that } \lim_{a \to 0^+} \frac{\Theta(\alpha) 1}{\alpha^k} = l.$

A mapping $\mathcal{J} : \mathcal{E} \to \mathcal{E}$ is said to be Θ -contraction if there exist the function Θ satisfying (Θ_1)-(Θ_3) and $\alpha \in (0, 1)$ so that $\forall u, v \in \mathcal{E}$,

$$\varrho(\mathcal{J}u,\mathcal{J}v)\neq 0 \Longrightarrow \Theta(\varrho(\mathcal{J}u,\mathcal{J}v)) \leq [\Theta(\varrho(u,v))]^{\alpha}.$$

Theorem 1.9 ([12]). If \mathcal{J} be a Θ -contraction on be a complete metric space (\mathcal{E}, ϱ) , then $u^* = \mathcal{J}u^*$.

To be consistent with Samet et al. [12], we denote by Ω the set of all functions Θ : $(0, \infty) \rightarrow (1, \infty)$ satisfying the above conditions.

Many researchers [1–6, 9–11, 13–16] have generalized various theorems on metric space by taking the class Ω .

Subsequently Hancer et al. [8] extended the above definition and added one more condition in this way.

(Θ_4) $\Theta(\inf A) = \inf \Theta(A), \forall A \subset (0, \infty)$ with $\inf A > 0$.

We denote by Ω^* the set of all functions Θ satisfying (Θ_1)-(Θ_4).

The purpose of this manuscript is to define a new family Θ^{u}_{β} for a multivalued mapping and obtain some fixed point theorems.

2. Main Result

Let (\mathcal{E}, ϱ) be a quasi metric space, $\mathcal{J} : \mathcal{E} \to P(\mathcal{E})$, $\Theta \in \Omega$, and $\beta \ge 0$. For $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J}u) > 0$, define the set $\Theta_{\beta}^{u} \subseteq \mathcal{E}$ as

$$\Theta^{u}_{\beta} = \left\{ v \in \mathcal{J}u : \Theta(\varrho(u,v)) \leq [\Theta(\varrho(u,\mathcal{J}u))]^{\beta} \right\}.$$

It is obvious that, if $\beta_1 \leq \beta_2$, then $\Theta_{\beta_1}^u \subseteq \Theta_{\beta_2}^u$. Now, we explore these cases for Θ_{β}^u .

If $\mathcal{J}: \mathcal{E} \to A_{\varrho}(\mathcal{E})$, then it is clear that $\Theta_{\beta}^{\tilde{u}} \neq \emptyset, \forall \beta \geq 0$ and $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J}u) > 0$.

In this section, we defined Θ -contraction with respect to a self mapping and establish a common fixed point theorem using the concept of dominating and dominated mappings.

Theorem 2.1. Let (\mathcal{E}, ϱ) be a left K-complete T_1 -quasi metric space, $\Theta \in \Omega$ and $\mathcal{J} : \mathcal{E} \to A_{\varrho}(\mathcal{E})$. If $\exists \alpha \in (0, 1)$ such that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J}u) > 0$ and $v \in \Theta^u_\beta$ satisfying

$$\Theta(\varrho(v,\mathcal{J}v)) \leq [\Theta(\varrho(u,v))]^{\alpha},$$

then $u^* \in \mathcal{J}u^*$ provided that $\alpha < \beta$ and $u \rightarrow \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding τ_{ϱ} .

Proof. Let $u^* \notin \mathcal{J}u^*$. Now, $\forall u \in \mathcal{E}$ we get $\varrho(u, \mathcal{J}u) > 0$. (Note that if $\varrho(u, \mathcal{J}u) = 0$, then since $\mathcal{J}u \in A_{\varrho}(\mathcal{E})$, there exists $a \in \mathcal{J}u$ such that

$$\varrho(u,a)=\varrho(u,\mathcal{J}u)=0.$$

So, $a = u \in \mathcal{J}u$ because ϱ is a T_1 -quasi metric). Now, since $\mathcal{J}u \in A_{\varrho}(\mathcal{E})$ for every $u \in \mathcal{E}$, so the set Θ_{β}^u is nonempty. Let $u_0 \in \mathcal{E}$, be an arbitrary initial point, then $\exists u_1 \in \Theta_{\beta}^{u_0}$ so that

$$\Theta(\varrho(u_1, \mathcal{J}u_1)) \leq [\Theta(\varrho(u_0, u_1))]^{\alpha},$$

and for $u_1 \in \mathcal{E}$, $\exists u_2 \in \Theta_{\beta}^{u_1}$ satisfying

$$\Theta(\varrho(u_2, \mathcal{J}u_2)) \leq [\Theta(\varrho(u_1, u_2))]^{\alpha}$$

Pursuing in this way, we have a sequence $\{u_n\}$, where $u_{n+1} \in \Theta_{\beta}^{u_n}$ and

$$\Theta(\varrho(u_{n+1}, \mathcal{J}u_{n+1})) \le [\Theta(\varrho(u_n, u_{n+1}))]^{\alpha}.$$
(2.1)

Now, we will prove that $\{u_n\}$ is a left *K*-Cauchy sequence. As $u_{n+1} \in \Theta_{\beta}^{u_n}$, we have

$$\Theta(\varrho(u_n, u_{n+1})) \le [\Theta(\varrho(u_n, \mathcal{J}u_n))]^{\beta}.$$
(2.2)

From (2.1) and (2.2), we have

and

$$\Theta(\varrho(u_{n+1}, u_{n+2})) \leq [\Theta(\varrho(u_n, u_{n+1}))]^{\alpha\beta}.$$

 $\Theta(\varrho(u_{n+1}, \mathcal{J}u_{n+1})) \leq [\Theta(\varrho(u_n, \mathcal{J}u_n))]^{\alpha\beta},$

By this way we can obtain

$$\Theta(\varrho(u_n, u_{n+1})) \le [\Theta(\varrho(u_0, u_1))]^{(\alpha\beta)^n},$$
(2.3)

and

$$\Theta(\varrho(u_n, \mathcal{J}u_n)) \le [\Theta(\varrho(u_0, \mathcal{J}u_0))]^{(\alpha\beta)^n}.$$
(2.4)

By $n \to \infty$ in (2.3), we have

 $\lim_{n\to\infty}\Theta(\varrho(u_n,u_{n+1}))=1,$

which implies that

$$\lim_{n\to\infty}\varrho(u_n,u_{n+1})=0$$

by (Θ_2). From the condition (Θ_3), $\exists 0 < k < 1$ and $l \in (0, \infty]$ so that

$$\lim_{n \to \infty} \frac{\Theta(\varrho(u_n, u_{n+1})) - 1}{\varrho(u_n, u_{n+1})^k} = l.$$

Let $l < \infty$ and $\lambda_1 = \frac{l}{2} > 0$. By definition of the limit, $\exists n_1 \in \mathbb{N}$ so that

$$\frac{\Theta(\varrho(u_n, u_{n+1})) - 1}{\varrho(u_n, u_{n+1})^k} - l| \le \lambda_1$$

 $\forall n > n_1$, which implies that

$$\frac{\Theta(\varrho(u_n, u_{n+1})) - 1}{\varrho(u_n, u_{n+1})^k} \ge l - \lambda_1 = \frac{l}{2} = \lambda_1$$

 $\forall n > n_1$. Then

$$n\varrho(u_n, u_{n+1})^k \le \lambda_2 n[\Theta(\varrho(u_n, u_{n+1})) - 1]$$

 $\forall n > n_1$, where $\lambda_2 = \frac{1}{\lambda_1}$. Now we suppose that $l = \infty$. Let $\lambda_1 > 0$. By the definition of the limit, $\exists n_1 \in \mathbb{N}$ so that $\Theta(\rho(u_n, u_{n+1})) - 1$

$$\lambda_1 \le \frac{\Theta(\varrho(u_n, u_{n+1})) - 1}{\varrho(u_n, u_{n+1})^k}$$

 $\forall n > n_1$, which implies that

$$n\varrho(u_n, u_{n+1})^k \le \lambda_2 n[\Theta(\varrho(u_n, u_{n+1})) - 1]$$

 $\forall n > n_1$, where $\lambda_2 = \frac{1}{\lambda_1}$. Hence, in any case, $\exists \lambda_2 > 0$ and $n_1 \in \mathbb{N}$ so that

$$n\varrho(u_n, u_{n+1})^k \le \lambda_2 n[\Theta(\varrho(u_n, u_{n+1})) - 1]$$
 (2.5)

 $\forall n > n_1$. Thus by (2.3) and (2.5), we get

$$n\varrho(u_n, u_{n+1})^k \leq \lambda_2 n([\Theta(\varrho(u_0, u_1))]^{(\alpha\beta)^n} - 1).$$

Taking $n \to \infty$, we obtain

$$\lim_{n\to\infty}n\varrho(u_n,u_{n+1})^k=0$$

Hence $\exists n_2 \in \mathbb{N}$ so that

$$\varrho(u_n,u_{n+1})\leq \frac{1}{n^{1/k}}$$

 $\forall n > n_2$. Now for $m > n > n_2$ we get

$$\varrho(u_n, u_m) \le \varrho(u_n, u_{n+1}) + \varrho(u_{n+1}, u_{n+2}) + \dots + \varrho(u_{m-1}, u_m)$$

= $\sum_{i=n}^{m-1} \varrho(u_i, u_{i+1}) \le \sum_{i=n}^{\infty} \varrho(u_i, u_{i+1}) \le \sum_{i=n}^{\infty} \frac{1}{i^{1/k}}.$

Since, 0 < k < 1 and $\sum_{i=1}^{\infty} \frac{1}{i^{1/k}}$ is convergent. So taking $n \to \infty$, we have $\varrho(u_n, u_m) \to 0$. Hence $\{u_n\}$ is left *K*-Cauchy in (\mathcal{E}, ϱ) . As (\mathcal{E}, ϱ) is a left *K*-complete, so $\exists u^* \in \mathcal{E}$ such that $\{u_n\}$ is ϱ -convergent to u^* , that is, $\varrho(u^*, u_n) \to 0$ as $n \to \infty$.

On the other hand, from (2.4) and (Θ_2) we have

$$\lim_{n\to\infty}\varrho(u_n,\mathcal{J}u_n)=0.$$

Since $u \to \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding τ_{ϱ} , then

$$0 < \varrho(u^*, \mathcal{J}u^*) \leq \lim_{n \to \infty} \inf \varrho(u_n, \mathcal{J}u_n) = 0,$$

which contradicts to the supposition. Thus $u^* \in \mathcal{J}u^*$.

Remark 2.2. As $K_{\rho^{-1}}(\mathcal{E}) \subseteq A_{\varrho}(\mathcal{E})$, we can take $\mathcal{J}u \in K_{\rho^{-1}}(\mathcal{E})$, $\forall u \in \mathcal{E}$ in the overhead result.

Theorem 2.3. Let (\mathcal{E}, ϱ) be a left *M*-complete T_1 -quasi metric space, $\Theta \in \Omega$, and $\mathcal{J} : \mathcal{E} \to A_{\varrho}(\mathcal{E})$. If $\exists \alpha \in (0, 1)$ so that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J}u) > 0$, $\exists v \in \Theta_{\beta}^{u}$ satisfying

$$\Theta(\varrho(v,\mathcal{J}v)) \leq [\Theta(\varrho(u,v))]^{\alpha}$$

then $u^* \in \mathcal{J}u^*$ provided that $\alpha < \beta$ and $u \rightarrow \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding $\tau_{\varrho^{-1}}$.

Proof. Let $u^* \notin \mathcal{J}u^*$. Then $\varrho(u^*, \mathcal{J}u^*) > 0$. By Theorem 2.1, there exists left *K*-Cauchy sequence $\{u_n\}$. By the left *M*-completeness of (\mathcal{E}, ϱ) , $\exists u^* \in \mathcal{E}$ so that, $\varrho(u_n, u^*) \to 0$ as $n \to \infty$. As

$$\lim_{n\to\infty}\varrho(u_n,\mathcal{J}u_n)=0,$$

and $u \to \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding $\tau_{o^{-1}}$, then

$$0 < \varrho(u^*, \mathcal{J}u^*) \leq \lim_{n \to \infty} \inf \varrho(u_n, \mathcal{J}u_n) = 0,$$

which contradicts the supposition. Thus $u^* \in \mathcal{J}u^*$.

If $C_{\varrho}(\mathcal{E})$ is considered on the place of $A_{\varrho}(\mathcal{E})$ in the overhead results with the given conditions, then \mathcal{J} may not have a fixed point. But, if we consider Ω^* on the place of Ω , then the fixed point of J must exists.

Theorem 2.4. Let (\mathcal{E}, ϱ) be a left K-complete quasi metric space, $\Theta \in \Omega^*$, and $\mathcal{J} : \mathcal{E} \to C_{\varrho}(\mathcal{E})$. If $\exists \alpha \in (0, 1)$ so that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J}u) > 0$ and $v \in \Theta^u_\beta$ satisfying

$$\Theta(\varrho(v,\mathcal{J}v)) \leq [\Theta(\varrho(u,v))]^{\alpha},$$

then $u^* \in \mathcal{J}u^*$ provided that $\alpha < \beta$ and $u \rightarrow \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding τ_{ϱ} .

Proof. Let \mathcal{J} has no fixed point. Then, $\forall u \in \mathcal{E}$ we get $\varrho(u, \mathcal{J}u) > 0$. (But if $\varrho(u, \mathcal{J}u) = 0$, then $u \in C_{\varrho}(\mathcal{E}) = \mathcal{J}u$). Since $\Theta \in \Omega^*$, for every $u \in \mathcal{E}$, so the set Θ^u_β is nonempty. Let $u_0 \in \mathcal{E}$, be an arbitrary initial point, then $\exists u_1 \in \Theta^{u_0}_\beta$ so that

$$\Theta(\varrho(u_1, \mathcal{J}u_1)) \le [\Theta(\varrho(u_0, u_1))]^{\alpha}$$

Considering the condition (Θ_4), we can write

$$\Theta(\varrho(u_1, \mathcal{J}u_1)) = \inf_{v \in \mathcal{J}u_1} \Theta(\varrho(u_1, v)).$$

Thus from

$$\Theta(\varrho(u_1, \mathcal{J}u_1)) \leq [\Theta(\varrho(u_0, u_1))]^{\alpha},$$

we have

$$\inf_{v\in\mathcal{J}u_1}\Theta(\varrho(u_1,v))\leq [\Theta(\varrho(u_0,u_1))]^{\alpha}<[\Theta(\varrho(u_0,u_1))]^{\gamma},$$

where $0 < \alpha < \gamma < 1$. Therefore, $\exists u_2 \in \mathcal{J}u_1$ so that

$$\Theta(\varrho(u_1, u_2)) \leq [\Theta(\varrho(u_0, u_1))]^{\gamma}$$

Doing the same as the proof of Theorem 2.1 by considering the $\mathcal{J}u^* \in C_{\rho}(\mathcal{E})$.

Following theorem generalized the Feng-Liu's fixed point theorem.

Theorem 2.5. Let (\mathcal{E}, ϱ) be a left *M*-complete quasi metric space, $\Theta \in \Omega^*$, and $\mathcal{J} : \mathcal{E} \to C_{\varrho}(\mathcal{E})$. If $\exists \alpha \in (0, 1)$ such that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J}u) > 0$ and $v \in \Theta^u_\beta$ satisfying

$$\Theta(\varrho(v,\mathcal{J}v)) \leq [\Theta(\varrho(u,v))]^{\alpha},$$

then $u^* \in \mathcal{J}u^*$ provided that $\alpha < \beta$ and $u \rightarrow \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding $\tau_{\varrho^{-1}}$.

Proof. Let there does not exist $u^* \in \mathcal{E}$ such that $u^* \in \mathcal{J}$ u^* . From Theorem 2.4, there exists $\{u_n\}$ which is left *K*-Cauchy. As (\mathcal{E}, ϱ) is left *M*-complete, so $\exists u^* \in \mathcal{E}$ so that, $\varrho(u_n, u^*) \to 0$ as $n \to \infty$. Now as

$$\lim_{n\to\infty}\varrho(u_n,\mathcal{J}u_n)=0$$

Since $u \to \varrho(u, \mathcal{J}u)$ is lower semi-continuous regarding $\tau_{\rho^{-1}}$, then

$$0 < \varrho(u^*, \mathcal{J}u^*) \leq \lim_{n \to \infty} \inf \varrho(u_n, \mathcal{J}u_n) = 0,$$

which contradicts the supposition. Thus $u^* \in \mathcal{J}u^*$.

References

- M. Abbas, B. Ali, S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., 2013 (2013), 11 pages. 1
- [2] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 18 pages.
- [3] A. Al-Rawashdeh, J. Ahmad, Common Fixed Point Theorems for JS-Contractions, Bull. Math. Anal. Appl., 8 (2016), 12–22.
- [4] I. Altun, B. Damjanović, D. Djorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., 23 (2010), 310–316.
- [5] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133–181.
- [6] I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., 2006 (2006), 7 pages. 1
- [7] H. Dağ, G. Minak, I. Altun, Some fixed point results for multivalued F-contractions on quasi metric spaces, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 111 (2017), 177–187. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7
- [8] H. A. Hançer, G. Minak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (2017), 229–236. 1
- [9] N. Hussain, J. Ahmad, L. Ćirić, A. Azam, *Coincidence point theorems for generalized contractions with application to integral equations*, Fixed Point Theory Appl., **2015** (2015), 13 pages. 1

- [10] N. Hussain, V. Parvaneh, B. Samet, C. Vetro, *Some fixed point theorems for generalized contractive mappings in complete metric spaces*, Fixed Point Theory Appl., **2015** (2015), 17 pages.
- [11] G. S. Jeong, B. E. Rhoades, *Maps for which* $F(T) = F(T^n)$, In: Fixed Point Theory and Applications, Nova Science Publishers, **2007** (2007), 71–105. 1
- [12] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., **2014** (2014), 8 pages. 1, 1.9, 1
- [13] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261–263. 1
- [14] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771–779.
- [15] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha \psi$ contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165.
- [16] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403-410. 1