Fixed point theorems for Θ-contractions in left K-complete T_{1}-quasi metric space

Durdana Lateef ${ }^{\mathrm{a}}$, Jamshaid Ahmad ${ }^{\mathrm{b}, *}$

${ }^{b}$ Department of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia.

Abstract

The aim of this paper is to define $\Theta_{\beta}^{u}=\left\{v \in \mathcal{J} u: \Theta(\varrho(u, v)) \leq[\Theta(\varrho(u, \mathcal{J} u))]^{\beta}\right\}$ and establish some new fixed point theorems in the setting of left K-complete T_{1}-quasi metric space. Our theorems generalize, extend, and unify several results of literature.

Keywords: Θ-contractions, property P, property Q, fixed points. 2010 MSC: 47H10, 54H25.
© 2019 All rights reserved.

1. Introduction and preliminaries

Definition 1.1 ([7]). Let $\mathcal{E} \neq \varnothing$. A function $\varrho: \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{R}^{+}$is said to be a quasi-pseudo metric so that $\forall u, v, w \in \mathcal{E}$:

- $\varrho(u, v)=0 ;$
- $\varrho(u, v) \leq \varrho(u, w)+\varrho(w, v)$.

If it satisfies:

- $\varrho(u, v)=\varrho(v, u)=0 \Rightarrow u=v$,
then ϱ is called T_{1}-quasi metric.
Remark 1.2 ([7]).
(i) Each metric is a T_{1}-quasi metric.
(ii) Each T_{1}-quasi metric is a quasi metric.
(iii) Each quasi metric is a quasi-pseudo metric.

[^0]Definition 1.3 ([7]). Assume that a quasi-pseudo metric space (\mathcal{E}, ϱ). Given $u_{0} \in \mathcal{E}$ as centre and $\epsilon>0$ as radius, then

$$
B_{\varrho}\left(u_{0}, \epsilon\right)=\left\{v \in \mathcal{E}: \varrho\left(u_{0}, r\right)<\epsilon\right\}
$$

denotes the open ball and

$$
\bar{B}_{\varrho}\left(u_{0}, \epsilon\right)=\left\{v \in \mathcal{E}: \varrho\left(u_{0}, r\right) \leq \epsilon\right\}
$$

denotes the closed ball.
Every quasi-pseudo metric ϱ on \mathcal{E} originate a topology τ_{ϱ} on \mathcal{E}. If ϱ is a quasi metric on \mathcal{E}, then the originated topology τ_{ϱ} must be T_{0}. If ϱ is a T_{1}-quasi metric, then the generated topology τ_{ρ} is a T_{1}.

If ϱ is a quasi-pseudo metric on \mathcal{E}, then define $\varrho^{-1}, \varrho^{s}$, and ϱ_{+}as

$$
\varrho^{-1}(u, v)=\varrho(v, u), \quad \varrho^{s}(u, v)=\max \left\{\varrho(u, v), \varrho^{-1}(u, v)\right\}, \quad \text { and } \quad \varrho_{+}(u, v)=\varrho(u, v)+\varrho^{-1}(u, v) .
$$

All these metrics are also quasi-pseudo metrics on \mathcal{E}. Moreover, if ϱ satisfies

$$
u \neq v \Longrightarrow \varrho(u, v)+\varrho^{-1}(u, v)>0
$$

then $\varrho_{+}\left(\right.$and also $\left.\varrho^{s}\right)$ is a metric on \mathcal{E}. Here $\operatorname{cl}_{\varrho}(A), \operatorname{cl}_{\varrho^{-1}}(A)$, and $\operatorname{cl}_{\varrho^{s}}(A)$ denote the closure of A in \mathcal{E} with respect to $\tau_{\varrho}, \tau_{Q^{-1}}$, and $\tau_{Q^{s}}$, respectively.

We give the following examples in which the mapping $\varrho: \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{R}^{+}$is a quasi metric but not a T_{1}-quasi metric.

Example 1.4 ([7]).
(i) Let $\mathcal{E}=\mathbb{R}$. Define $\varrho: \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{R}^{+}$as follows

$$
\varrho(u, v)=\max \{v-u, 0)\}
$$

$\forall u, v \in \mathcal{E}$.
(ii) Let $\mathcal{E}=\mathbb{R}$ and

$$
\varrho(u, v)= \begin{cases}0, & u=v \\ |v|, & u \neq v,\end{cases}
$$

$\forall u, v \in \mathcal{E}$.
We give the following example in which the mapping $\varrho: \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{R}^{+}$is a T_{1}-quasi metric although not a metric on \mathcal{E}.

Example 1.5 ([7]). Let $\mathcal{E}=\mathbb{R}$ and

$$
\varrho(u, v)= \begin{cases}v-u, & u \leq v, \\ 1, & u>v,\end{cases}
$$

$\forall u, v \in \mathcal{E}$.
Let (\mathcal{E}, ϱ) be a quasi metric space, B a nonempty subset of \mathcal{E}, and $u \in \mathcal{E}$. Then

$$
u \in \operatorname{cl}_{\varrho}(A) \Longleftrightarrow \varrho(u, B)=\inf \{\varrho(u, a): a \in B\}=0
$$

Likewise,

$$
u \in \operatorname{cl}_{\varrho^{-1}}(A) \Longleftrightarrow \varrho(B, u)=\inf \{\varrho(a, u): a \in B\}=0
$$

If B is compact subset of \mathcal{E} and (\mathcal{E}, ϱ) is a metric space, then for each $u \in \mathcal{E}, \exists a \in B$ so that

$$
\varrho(u, a)=\varrho(u, B) .
$$

But this property does not hold in a quasi metric space (\mathcal{E}, ϱ).
However, if (\mathcal{E}, ϱ) is a quasi metric space and A is a $\tau_{\varrho^{-1}}$-compact subset of \mathcal{E}, then this property holds. Let (\mathcal{E}, ϱ) be a quasi metric space and $u \in \mathcal{E}$. A sequence $\left\{u_{n}\right\}$ converges to u regarding τ_{ϱ} is said to be ϱ-convergence and denoted by $u_{n} \xrightarrow[\rightarrow]{\varrho} u$ and is defined by

$$
\varrho\left(u, u_{n}\right) \rightarrow 0,
$$

as $n \rightarrow \infty$. Similarly, the convergence of $\left\{u_{n}\right\}$ to u regarding $\tau_{\varrho^{-1}}$ is said to be ϱ^{-1}-convergence and denoted by $u_{n} \xrightarrow{\varrho^{-1}} u$ and is defined by

$$
\varrho^{-1}\left(u_{n}, u\right) \rightarrow 0,
$$

as $n \rightarrow \infty$. Finally, the convergence of $\left\{u_{n}\right\}$ to u regarding $\tau_{\varrho^{s}}$ is said to be ϱ^{s}-convergence and denoted by $u_{n} \xrightarrow{\varrho^{s}} u$ and is defined by

$$
\varrho^{s}\left(u_{n}, u\right) \rightarrow 0,
$$

as $n \rightarrow \infty$. It is clear that $u_{n} \xrightarrow{\varrho^{s}} u \Longleftrightarrow u_{n} \xrightarrow{\varrho} u$ and $u_{n} \xrightarrow{\varrho^{-1}} u$.
Definition 1.6 ([7]). Assume that (\mathcal{E}, ϱ) is a quasi metric space (QMS).
(i) If $\forall \epsilon>0, \exists n_{0} \in \mathbb{N}$ so that

$$
\forall n, k, n \geq k \geq n_{0}, \varrho\left(u_{k}, u_{n}\right)<\epsilon
$$ then $\left\{u_{n}\right\}$ in \mathcal{E} is called a left K-Cauchy.

(ii) If $\forall \epsilon>0, \exists n_{0} \in \mathbb{N}$ so that

$$
\forall n, k, n \geq k \geq n_{0}, \varrho\left(u_{n}, u_{k}\right)<\epsilon
$$

then $\left\{u_{n}\right\}$ in \mathcal{E} is called a right K-Cauchy.
(iii) If $\forall \epsilon>0, \exists n_{0} \in \mathbb{N}$ so that

$$
\forall n, k \geq n_{0}, \varrho\left(u_{n}, u_{k}\right)<\epsilon,
$$

then $\left\{u_{n}\right\}$ in \mathcal{E} is said to be ϱ^{s}-Cauchy.
Definition 1.7 ([7]). Assume that (\mathcal{E}, ϱ) be a QMS.

- If each left (right) K-Cauchy sequence is ϱ-convergent then (\mathcal{E}, ϱ) is called a left (right) K-complete.
- If each left (right) K-Cauchy sequence is ϱ^{-1}-convergent then (\mathcal{E}, ϱ) is called a left (right) M complete.
- If each left (right) K-Cauchy sequence is ϱ^{s}-convergent then (\mathcal{E}, ϱ) is called a left (right) Smyth complete.

Currently, Jleli and Samet [12] initiated a contemporary kind of contraction and proved a new result for this contraction in the framework of generalized metric spaces.

Definition 1.8. Let $\Theta:(0, \infty) \rightarrow(1, \infty)$ be a function satisfying:
$\left(\Theta_{1}\right) \Theta$ is nondecreasing;
$\left(\Theta_{2}\right)$ for each sequence $\left\{\alpha_{n}\right\} \subseteq R^{+}, \lim _{n \rightarrow \infty} \Theta\left(\alpha_{n}\right)=1 \Longleftrightarrow \lim _{n \rightarrow \infty}\left(\alpha_{n}\right)=0$;
$\left(\Theta_{3}\right) \exists 0<k<1$ and $l \in(0, \infty]$ such that $\lim _{a \rightarrow 0^{+}} \frac{\Theta(a)-1}{\alpha^{k}}=l$.
A mapping $\mathcal{J}: \mathcal{E} \rightarrow \mathcal{E}$ is said to be Θ-contraction if there exist the function Θ satisfying $\left(\Theta_{1}\right)-\left(\Theta_{3}\right)$ and $\alpha \in(0,1)$ so that $\forall u, v \in \mathcal{E}$,

$$
\varrho(\mathcal{J} u, \mathcal{J} v) \neq 0 \Longrightarrow \Theta(\varrho(\mathcal{J} u, \mathcal{J} v)) \leq[\Theta(\varrho(u, v))]^{\alpha} .
$$

Theorem 1.9 ([12]). If \mathcal{J} be a Θ-contraction on be a complete metric space (\mathcal{E}, ϱ), then $u^{*}=\mathcal{J} u^{*}$.
To be consistent with Samet et al. [12], we denote by Ω the set of all functions $\Theta:(0, \infty) \rightarrow(1, \infty)$ satisfying the above conditions.

Many researchers [1-6, 9-11, 13-16] have generalized various theorems on metric space by taking the class Ω.

Subsequently Hancer et al. [8] extended the above definition and added one more condition in this way.
$\left(\Theta_{4}\right) \Theta(\inf A)=\inf \Theta(A), \forall A \subset(0, \infty)$ with $\inf A>0$.
We denote by Ω^{*} the set of all functions Θ satisfying $\left(\Theta_{1}\right)-\left(\Theta_{4}\right)$.
The purpose of this manuscript is to define a new family Θ_{β}^{u} for a multivalued mapping and obtain some fixed point theorems.

2. Main Result

Let (\mathcal{E}, ϱ) be a quasi metric space, $\mathcal{J}: \mathcal{E} \rightarrow P(\mathcal{E}), \Theta \in \Omega$, and $\beta \geq 0$. For $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J} u)>0$, define the set $\Theta_{\beta}^{u} \subseteq \mathcal{E}$ as

$$
\Theta_{\beta}^{u}=\left\{v \in \mathcal{J} u: \Theta(\varrho(u, v)) \leq[\Theta(\varrho(u, \mathcal{J} u))]^{\beta}\right\} .
$$

It is obvious that, if $\beta_{1} \leq \beta_{2}$, then $\Theta_{\beta_{1}}^{u} \subseteq \Theta_{\beta_{2}}^{u}$. Now, we explore these cases for Θ_{β}^{u}.
If $\mathcal{J}: \mathcal{E} \rightarrow A_{\varrho}(\mathcal{E})$, then it is clear that $\Theta_{\beta}^{u} \neq \varnothing, \forall \beta \geq 0$ and $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J} u)>0$.
In this section, we defined Θ-contraction with respect to a self mapping and establish a common fixed point theorem using the concept of dominating and dominated mappings.

Theorem 2.1. Let (\mathcal{E}, ϱ) be a left K-complete T_{1}-quasi metric space, $\Theta \in \Omega$ and $\mathcal{J}: \mathcal{E} \rightarrow A_{\varrho}(\mathcal{E})$. If $\exists \alpha \in(0,1)$ such that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J} u)>0$ and $v \in \Theta_{\beta}^{u}$ satisfying

$$
\Theta(\varrho(v, \mathcal{J} v)) \leq[\Theta(\varrho(u, v))]^{\alpha},
$$

then $u^{*} \in \mathcal{J} u^{*}$ provided that $\alpha<\beta$ and $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding τ_{ρ}.
Proof. Let $u^{*} \notin \mathcal{J} u^{*}$. Now, $\forall u \in \mathcal{E}$ we get $\varrho(u, \mathcal{J} u)>0$. (Note that if $\varrho(u, \mathcal{J} u)=0$, then since $\mathcal{J} u$ $\in A_{\varrho}(\mathcal{E})$, there exists $a \in \mathcal{J} u$ such that

$$
\varrho(u, a)=\varrho(u, \mathcal{J} u)=0 .
$$

So, $a=u \in \mathcal{J} u$ because ϱ is a T_{1}-quasi metric). Now, since $\mathcal{J} u \in A_{\varrho}(\mathcal{E})$ for every $u \in \mathcal{E}$, so the set Θ_{β}^{u} is nonempty. Let $u_{0} \in \mathcal{E}$, be an arbitrary initial point, then $\exists u_{1} \in \Theta_{\beta}^{u_{0}}$ so that

$$
\Theta\left(\varrho\left(u_{1}, \mathcal{J} u_{1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{\alpha},
$$

and for $u_{1} \in \mathcal{E}, \exists u_{2} \in \Theta_{\beta}^{u_{1}}$ satisfying

$$
\Theta\left(\varrho\left(u_{2}, \mathcal{J} u_{2}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{1}, u_{2}\right)\right)\right]^{\alpha} .
$$

Pursuing in this way, we have a sequence $\left\{u_{n}\right\}$, where $u_{n+1} \in \Theta_{\beta}^{u_{n}}$ and

$$
\begin{equation*}
\Theta\left(\varrho\left(u_{n+1}, \mathcal{J} u_{n+1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)\right]^{\alpha} . \tag{2.1}
\end{equation*}
$$

Now, we will prove that $\left\{u_{n}\right\}$ is a left K-Cauchy sequence. As $u_{n+1} \in \Theta_{\beta}^{u_{n}}$, we have

$$
\begin{equation*}
\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{n}, \mathcal{J} u_{n}\right)\right)\right]^{\beta} . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we have

$$
\Theta\left(\varrho\left(u_{n+1}, \mathcal{J} u_{n+1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{n}, \mathcal{J} u_{n}\right)\right)\right]^{\alpha \beta}
$$

and

$$
\Theta\left(\varrho\left(u_{n+1}, u_{n+2}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)\right]^{\alpha \beta}
$$

By this way we can obtain

$$
\begin{equation*}
\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{(\alpha \beta)^{n}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta\left(\varrho\left(u_{n}, \mathcal{J} u_{n}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, \mathcal{J} u_{0}\right)\right)\right]^{(\alpha \beta)^{n}} \tag{2.4}
\end{equation*}
$$

By $n \rightarrow \infty$ in (2.3), we have

$$
\lim _{n \rightarrow \infty} \Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)=1
$$

which implies that

$$
\lim _{n \rightarrow \infty} \varrho\left(u_{n}, u_{n+1}\right)=0
$$

by $\left(\Theta_{2}\right)$. From the condition $\left(\Theta_{3}\right), \exists 0<k<1$ and $l \in(0, \infty]$ so that

$$
\lim _{n \rightarrow \infty} \frac{\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1}{\varrho\left(u_{n}, u_{n+1}\right)^{k}}=l
$$

Let $l<\infty$ and $\lambda_{1}=\frac{l}{2}>0$. By definition of the limit, $\exists n_{1} \in \mathbb{N}$ so that

$$
\left|\frac{\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1}{\varrho\left(u_{n}, u_{n+1}\right)^{k}}-l\right| \leq \lambda_{1}
$$

$\forall n>n_{1}$, which implies that

$$
\frac{\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1}{\varrho\left(u_{n}, u_{n+1}\right)^{k}} \geq l-\lambda_{1}=\frac{l}{2}=\lambda_{1}
$$

$\forall n>n_{1}$. Then

$$
n \varrho\left(u_{n}, u_{n+1}\right)^{k} \leq \lambda_{2} n\left[\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1\right]
$$

$\forall n>n_{1}$, where $\lambda_{2}=\frac{1}{\lambda_{1}}$. Now we suppose that $l=\infty$. Let $\lambda_{1}>0$. By the definition of the limit, $\exists n_{1} \in \mathbb{N}$ so that

$$
\lambda_{1} \leq \frac{\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1}{\varrho\left(u_{n}, u_{n+1}\right)^{k}}
$$

$\forall n>n_{1}$, which implies that

$$
n \varrho\left(u_{n}, u_{n+1}\right)^{k} \leq \lambda_{2} n\left[\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1\right]
$$

$\forall n>n_{1}$, where $\lambda_{2}=\frac{1}{\lambda_{1}}$. Hence, in any case, $\exists \lambda_{2}>0$ and $n_{1} \in \mathbb{N}$ so that

$$
\begin{equation*}
n \varrho\left(u_{n}, u_{n+1}\right)^{k} \leq \lambda_{2} n\left[\Theta\left(\varrho\left(u_{n}, u_{n+1}\right)\right)-1\right] \tag{2.5}
\end{equation*}
$$

$\forall n>n_{1}$. Thus by (2.3) and (2.5), we get

$$
n \varrho\left(u_{n}, u_{n+1}\right)^{k} \leq \lambda_{2} n\left(\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{(\alpha \beta)^{n}}-1\right)
$$

Taking $n \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} n \varrho\left(u_{n}, u_{n+1}\right)^{k}=0
$$

Hence $\exists n_{2} \in \mathbb{N}$ so that

$$
\varrho\left(u_{n}, u_{n+1}\right) \leq \frac{1}{n^{1 / k}}
$$

$\forall n>n_{2}$. Now for $m>n>n_{2}$ we get

$$
\begin{aligned}
\varrho\left(u_{n}, u_{m}\right) & \leq \varrho\left(u_{n}, u_{n+1}\right)+\varrho\left(u_{n+1}, u_{n+2}\right)+\cdots+\varrho\left(u_{m-1}, u_{m}\right) \\
& =\sum_{i=n}^{m-1} \varrho\left(u_{i}, u_{i+1}\right) \leq \sum_{i=n}^{\infty} \varrho\left(u_{i}, u_{i+1}\right) \leq \sum_{i=n}^{\infty} \frac{1}{i^{1 / k}} .
\end{aligned}
$$

Since, $0<k<1$ and $\sum_{i=1}^{\infty} \frac{1}{i^{1 / k}}$ is convergent. So taking $n \rightarrow \infty$, we have $\varrho\left(u_{n}, u_{m}\right) \rightarrow 0$. Hence $\left\{u_{n}\right\}$ is left K-Cauchy in (\mathcal{E}, ϱ). As (\mathcal{E}, ϱ) is a left K-complete, so $\exists u^{*} \in \mathcal{E}$ such that $\left\{u_{n}\right\}$ is ϱ-convergent to u^{*}, that is, $\varrho\left(u^{*}, u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

On the other hand, from (2.4) and $\left(\Theta_{2}\right)$ we have

$$
\lim _{n \rightarrow \infty} \varrho\left(u_{n}, \mathcal{J} u_{n}\right)=0
$$

Since $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding τ_{ϱ}, then

$$
0<\varrho\left(u^{*}, \mathcal{J} u^{*}\right) \leq \lim _{n \rightarrow \infty} \inf \varrho\left(u_{n}, \mathcal{J} u_{n}\right)=0
$$

which contradicts to the supposition. Thus $u^{*} \in \mathcal{J} u^{*}$.
Remark 2.2. As $K_{\varrho^{-1}}(\mathcal{E}) \subseteq A_{\varrho}(\mathcal{E})$, we can take $\mathcal{J} u \in K_{\varrho^{-1}}(\mathcal{E}), \forall u \in \mathcal{E}$ in the overhead result.
Theorem 2.3. Let (\mathcal{E}, ϱ) be a left M-complete T_{1}-quasi metric space, $\Theta \in \Omega$, and $\mathcal{J}: \mathcal{E} \rightarrow A_{\varrho}(\mathcal{E})$. If $\exists \alpha \in(0,1)$ so that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J} u)>0, \exists v \in \Theta_{\beta}^{u}$ satisfying

$$
\Theta(\varrho(v, \mathcal{J} v)) \leq[\Theta(\varrho(u, v))]^{\alpha},
$$

then $u^{*} \in \mathcal{J} u^{*}$ provided that $\alpha<\beta$ and $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding $\tau_{\varrho^{-1}}$.
Proof. Let $u^{*} \notin \mathcal{J} u^{*}$. Then $\varrho\left(u^{*}, \mathcal{J} u^{*}\right)>0$. By Theorem 2.1, there exists left K-Cauchy sequence $\left\{u_{n}\right\}$. By the left M-completeness of $(\mathcal{E}, \varrho), \exists u^{*} \in \mathcal{E}$ so that, $\varrho\left(u_{n}, u^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. As

$$
\lim _{n \rightarrow \infty} \varrho\left(u_{n}, \mathcal{J} u_{n}\right)=0
$$

and $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding $\tau_{\varrho^{-1}}$, then

$$
0<\varrho\left(u^{*}, \mathcal{J} u^{*}\right) \leq \lim _{n \rightarrow \infty} \inf \varrho\left(u_{n}, \mathcal{J} u_{n}\right)=0
$$

which contradicts the supposition. Thus $u^{*} \in \mathcal{J} u^{*}$.
If $C_{\varrho}(\mathcal{E})$ is considered on the place of $A_{\varrho}(\mathcal{E})$ in the overhead results with the given conditions, then \mathcal{J} may not have a fixed point. But, if we consider Ω^{*} on the place of Ω, then the fixed point of J must exists.
Theorem 2.4. Let (\mathcal{E}, ϱ) be a left K-complete quasi metric space, $\Theta \in \Omega^{*}$, and $\mathcal{J}: \mathcal{E} \rightarrow C_{\varrho}(\mathcal{E})$. If $\exists \alpha \in(0,1)$ so that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J} u)>0$ and $v \in \Theta_{\beta}^{u}$ satisfying

$$
\Theta(\varrho(v, \mathcal{J} v)) \leq[\Theta(\varrho(u, v))]^{\alpha}
$$

then $u^{*} \in \mathcal{J} u^{*}$ provided that $\alpha<\beta$ and $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding τ_{ρ}.
Proof. Let \mathcal{J} has no fixed point. Then, $\forall u \in \mathcal{E}$ we get $\varrho(u, \mathcal{J} u)>0$. (But if $\varrho(u, \mathcal{J} u)=0$, then u $\left.\in C_{\varrho}(\mathcal{E})=\mathcal{J} u\right)$. Since $\Theta \in \Omega^{*}$, for every $u \in \mathcal{E}$, so the set Θ_{β}^{u} is nonempty. Let $u_{0} \in \mathcal{E}$, be an arbitrary initial point, then $\exists u_{1} \in \Theta_{\beta}^{u_{0}}$ so that

$$
\Theta\left(\varrho\left(u_{1}, \mathcal{J} u_{1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{\alpha}
$$

Considering the condition $\left(\Theta_{4}\right)$, we can write

$$
\Theta\left(\varrho\left(u_{1}, \mathcal{J} u_{1}\right)\right)=\inf _{v \in \mathcal{J} u_{1}} \Theta\left(\varrho\left(u_{1}, v\right)\right)
$$

Thus from

$$
\Theta\left(\varrho\left(u_{1}, \mathcal{J} u_{1}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{\alpha}
$$

we have

$$
\inf _{v \in \mathcal{J} u_{1}} \Theta\left(\varrho\left(u_{1}, v\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{\alpha}<\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{\gamma}
$$

where $0<\alpha<\gamma<1$. Therefore, $\exists u_{2} \in \mathcal{J} u_{1}$ so that

$$
\Theta\left(\varrho\left(u_{1}, u_{2}\right)\right) \leq\left[\Theta\left(\varrho\left(u_{0}, u_{1}\right)\right)\right]^{\gamma}
$$

Doing the same as the proof of Theorem 2.1 by considering the $\mathcal{J} u^{*} \in C_{\varrho}(\mathcal{E})$.
Following theorem generalized the Feng-Liu's fixed point theorem.
Theorem 2.5. Let (\mathcal{E}, ϱ) be a left M-complete quasi metric space, $\Theta \in \Omega^{*}$, and $\mathcal{J}: \mathcal{E} \rightarrow C_{\varrho}(\mathcal{E})$. If $\exists \alpha \in(0,1)$ such that for any $u \in \mathcal{E}$ with $\varrho(u, \mathcal{J} u)>0$ and $v \in \Theta_{\beta}^{u}$ satisfying

$$
\Theta(\varrho(v, \mathcal{J} v)) \leq[\Theta(\varrho(u, v))]^{\alpha}
$$

then $u^{*} \in \mathcal{J} u^{*}$ provided that $\alpha<\beta$ and $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding $\tau_{\varrho^{-1}}$.
Proof. Let there does not exist $u^{*} \in \mathcal{E}$ such that $u^{*} \in \mathcal{J} u^{*}$. From Theorem 2.4, there exists $\left\{u_{n}\right\}$ which is left K-Cauchy. As (\mathcal{E}, ϱ) is left M-complete, so $\exists u^{*} \in \mathcal{E}$ so that, $\varrho\left(u_{n}, u^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. Now as

$$
\lim _{n \rightarrow \infty} \varrho\left(u_{n}, \mathcal{J} u_{n}\right)=0
$$

Since $u \rightarrow \varrho(u, \mathcal{J} u)$ is lower semi-continuous regarding $\tau_{\varrho^{-1}}$, then

$$
0<\varrho\left(u^{*}, \mathcal{J} u^{*}\right) \leq \lim _{n \rightarrow \infty} \inf \varrho\left(u_{n}, \mathcal{J} u_{n}\right)=0
$$

which contradicts the supposition. Thus $u^{*} \in \mathcal{J} u^{*}$.

References

[1] M. Abbas, B. Ali, S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., 2013 (2013), 11 pages. 1
[2] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 18 pages.
[3] A. Al-Rawashdeh, J. Ahmad, Common Fixed Point Theorems for JS-Contractions, Bull. Math. Anal. Appl., 8 (2016), 12-22.
[4] I. Altun, B. Damjanović, D. Djorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., 23 (2010), 310-316.
[5] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133-181.
[6] I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., 2006 (2006), 7 pages. 1
[7] H. Dağ, G. Minak, I. Altun, Some fixed point results for multivalued F-contractions on quasi metric spaces, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 111 (2017), 177-187. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7
[8] H. A. Hançer, G. Minak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (2017), 229-236. 1
[9] N. Hussain, J. Ahmad, L. Ćirić, A. Azam, Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl., 2015 (2015), 13 pages. 1
[10] N. Hussain, V. Parvaneh, B. Samet, C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 17 pages.
[11] G. S. Jeong, B. E. Rhoades, Maps for which $F(T)=F\left(T^{n}\right)$, In: Fixed Point Theory and Applications, Nova Science Publishers, 2007 (2007), 71-105. 1
[12] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8 pages. 1, 1.9, 1
[13] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261-263. 1
[14] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779.
[15] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha-\psi$ contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165.
[16] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403-410. 1

[^0]: *Corresponding author
 Email addresses: drdurdanamaths@gmail.com (Durdana Lateef), jkhan@uj .edu.sa (Jamshaid Ahmad) doi: 10.22436/jnsa.012.10.05
 Received: 2019-01-01 Revised: 2019-04-03 Accepted: 2019-04-30

