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Abstract
This paper is concerned with the higher order nonlinear neutral differential equation

[a(t)(x(t) + b(t)x(τ(t))) ′](n−1) + f(t, x(g1(t)), . . . , x(gk(t))) = c(t), t > t0.

By dint of the Leray-Schauder nonlinear alternative, Rothe fixed point theorem and some new techniques, we prove the exis-
tence of uncountably many bounded positive solutions for the equation. Several nontrivial examples are given to illustrate the
applications and advantages of the results presented in this paper.

Keywords: Higher order nonlinear neutral differential equation, uncountably many bounded positive solutions,
Leray-Schauder nonlinear alternative theorem, Rothe fixed point theorem.

2010 MSC: 34K40, 35G20.
c©2019 All rights reserved.

1. Introduction

Recently, many results have been obtained on the oscillation, nonoscillation and existence of solutions
for some neutral differential equations, see for example, [1–7] and the references cited therein.

Zhang et al. [4] discussed the existence of a bounded positive solution for the second order nonlinear
neutral differential equation

[x(t) − p(t)x(τ(t))] ′′ + f1(t, x(σ1(t))) − f2(t, x(σ2(t))) = g(t), t > t0. (1.1)

Zhou [5] obtained some new sufficient conditions for the existence of a nonoscillatory solution for the
second order nonlinear neutral differential equation

[r(t)(x(t) + p(t)x(t− τ)) ′] ′ +

m∑
i=1

qi(t)fi(x(t− σi)) = 0, t > t0. (1.2)
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Zhou et al. [7] proved the existence of a nonoscillatory solution for the forced higher order nonlinear
neutral functional differential equation

[x(t) + p(t)x(t− τ)](n) +

m∑
i=1

qi(t)fi(x(t− σi)) = g(t), t > t0. (1.3)

Recently, Zhou and Yu [6] investigated the oscillatory behavior of the higher order nonlinear neutral
forced differential equation with oscillating coefficients

[x(t) − p(t)x(τ(t))](n) +

m∑
i=1

qi(t)fi(x(σi(t))) = s(t), t > t0. (1.4)

Liu et al. [3] studied the existence and Mann iterative approximations of nonoscillatory solutions for the
nth order neutral delay differential equation

[x(t) + px(t− τ)](n) + (−1)n+1f(t, x(t− σ1), . . . , x(t− σk)) = g(t), t > t0. (1.5)

Motivated by the results in [1–7], in this paper we investigate the existence and multiplicity of bounded
positive solutions for the higher order nonlinear neutral delay differential equation

[a(t)(x(t) + b(t)x(τ(t))) ′](n−1) + f(t, x(g1(t)), . . . , x(gk(t))) = c(t), t > t0, (1.6)

where

(C1) k ∈N,n ∈N \ {1}, and t0 ∈ R are constants;
(C2) a,b, c, τ,gj ∈ C

(
[t0,+∞), R

)
, f ∈ C

(
[t0,+∞)×Rk, R

)
and

a([t0,+∞)) ⊆ R \ {0}, lim
t→+∞ τ(t) = +∞, lim

t→+∞gj(t) = +∞, j ∈ Jk;

(C3) τ is strictly increasing in [t0,+∞);
(C4) τ(t) < t, t ∈ [t0,+∞).

It is clear that Eqs. (1.1)-(1.5) are special cases of Eq. (1.6). By using the Leray-Schauder nonlinear
alternative, Rothe fixed point theorem and a few new techniques, we establish several sufficient conditions
for the existence of uncountably many bounded positive solutions of Eq. (1.6) under certain conditions.
The results presented in this paper extend, improve and unify all results in [3–5]. Five nontrivial examples
are presented to illuminate our results.

2. Preliminaries

Throughout this paper, we assume that R = (−∞,+∞), R+ = [0,+∞), N stands for the sets of all
positive integers,

Jk = {1, 2, . . . , k}, β0 = min
{
t0, inf

t>t0
τ(t), inf

t>t0
gj(t) : j ∈ Jk

}
.

For each β ∈ R, CB
(
[β,+∞), R

)
denotes the Banach space of all continuous and bounded functions on

[β,+∞) with norm ‖x‖ = supt>β |x(t)|, and

V(N) = {x ∈ CB
(
[β,+∞), R

)
: x(t) > N, t > β},

U(M) = {x ∈ V(N) : ‖x‖ < M},
B(M,N) = {x ∈ CB

(
[β,+∞), R

)
: ‖x−M‖ < N}

for any M > N > 0. It is easy to see that V(N) is a closed convex subset of CB
(
[β,+∞), R

)
, U(M) is a

bounded open subset of V(N) and B(M,N) is a bounded open convex subset of CB
(
[β,+∞), R

)
.
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By a solution of Eq. (1.6), we mean a function x ∈ C
(
[β,+∞), R

)
for some β > |t0|+ |β0| such that

x(t) + b(t)x(τ(t)) is continuously differentiable and a(t)(x(t) + b(t)x(τ(t))) ′ is n− 1 times continuously
differentiable on [β,+∞) and such that Eq. (1.6) is satisfied for all t > β.

The following lemmas play important roles in this paper.

Lemma 2.1 (Leray-Schauder nonlinear alternative theorem, [1]). Let U be an open subset of a closed convex
set K in a Banach space E with p∗ ∈ U. Let f : U → K be a continuous, condensing mapping with f(U) bounded.
Then either

(a) f has a fixed point in U; or
(b) there exist an x ∈ ∂U and a λ ∈ (0, 1) such that x = (1 − λ)p∗ + λfx.

Lemma 2.2 ([2, Rothe fixed point theorem]). Let D be a bounded convex open subset of a Banach space E and
A : D→ E be a continuous, condensing mapping, and A(∂D) ⊂ D. Then A has a fixed point in D.

Lemma 2.3. Let τ : [t0,+∞) → R be continuous, limt→+∞ τ(t) = +∞ and (C3) and (C4) hold. Then for each
t ∈ [τ(t0),+∞)

{τ−n(t)}n∈N is strictly increasing and lim
n→∞ τ−n(t) = +∞, (2.1)

where τ−1 denotes the inverse function of τ, τ−n = τ−n+1(τ−1) for each n ∈N and τ0 is the identity function.

Proof. Since τ is continuous, it follows from (C3) that the inverse function τ−1 of τ exists and τ−1 is contin-
uous and strictly increasing in [τ(t0),+∞). Let t ∈ [τ(t0),+∞). Now we show that limn→∞ τ−n(t) = +∞.
It follows from (C3) and (C4) that

τ(t0) 6 t < τ
−1(t) < τ−2(t) < · · · < τ−n(t) < · · · . (2.2)

Suppose that {τ−n(t)}n∈N is bounded. In view of (2.2) we know that there exists a constant A satisfying

lim
n→∞ τ−n(t) = A. (2.3)

Using the continuity of τ−1 and (2.3), we get that

τ−1(A) = τ−1( lim
n→∞ τ−n(t)

)
= lim
n→∞ τ−n−1(t) = A,

which together with (C4) yields that
A = τ(A) < A,

which is a contradiction. Consequently, {τ−n(t)}n∈N is unbounded, which together with (2.2) yields that
(2.1) holds. This completes the proof.

3. Main results

Now we use the Leray-Schauder nonlinear alternative theorem to show the existence and multiplicity
of bounded positive solutions of Eq. (1.6).

Theorem 3.1. Let (C1) and (C2) hold. Assume that there exist four constants N,M,b∗ and b∗ and a function
p ∈ C

(
[t0,+∞), R+

)
satisfying

|f(t,u1,u2, . . . ,uk)| 6 p(t), (t,uj) ∈ [t0,+∞)× [N,M], j ∈ Jk; (3.1)∫+∞
t0

∫+∞
µ

sn−2

|a(µ)|
max{p(s), |c(s)|}dsdµ < +∞, (3.2)

and

0 < N <
(
1 − b∗ − b

∗)M, b∗ > 0, b∗ > 0, b∗ + b∗ < 1, and − b∗ 6 b(t) 6 b
∗, eventually. (3.3)

Then Eq. (1.6) has uncountably many bounded positive solutions.
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Proof. Let L ∈ (b∗M+N, (1 − b∗)M). Now we prove that there exists a mapping SL : U(M)→ V(N) such
that it has a fixed point x ∈ U(M), which is also a bounded positive solution of Eq. (1.6). It follows from
(3.2), (3.3), and (C2) that there exist two sufficiently large numbers T and β satisfying

T > β > max{|t0|+ |β0|, 1}, −b∗ 6 b(t) 6 b
∗, t > β and τ(t) > β, t > T ; (3.4)

1
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min{L− b∗M−N, (1 − b∗)M− L}. (3.5)

Put p∗ =M− ε∗, where ε∗ ∈
(
0, min

{
L− b∗M−N, (1 − b∗)M− L, M−N

2

})
is enough small and

1
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min{L− b∗M−N, (1 − b∗)M− L}− ε∗. (3.6)

Obviously, p∗ ∈ U(M). Define a mapping SL : U(M)→ CB
(
[β,+∞), R

)
by

(SLx)(t) = (S1Lx)(t) + (S2Lx)(t), β 6 t < +∞, x ∈ U(M), (3.7)

where the mappings S1L,S2L : U(M)→ CB
(
[β,+∞), R

)
are defined by

(S1Lx)(t) =

{
L− b(t)x(τ(t)), t > T ,
(S1Lx)(T), β 6 t < T ,

(3.8)

and

(S2Lx)(t) =

{
(−1)n+1

(n−2)!

∫+∞
t

∫+∞
µ

(s−µ)n−2

a(µ) [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > T ,

(S2Lx)(T), β 6 t < T ,
(3.9)

for each x ∈ U(M). It follows from (3.1), (3.4), and (3.6)-(3.9) that for any x ∈ U(M) and t > T

SLx(t) = (S1Lx)(t) + (S2Lx)(t)

= L− b(t)x(τ(t))

+
(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

> L− b∗M−
1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

> L− b∗M−
1

(n− 2)!

∫+∞
T

∫+∞
µ

(s− µ)n−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

> L− b∗M−
1

(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

> L− b∗M− min{L− b∗M−N, (1 − b∗)M− L}+ ε∗

> N+ ε∗ > N,

which yields that SL(U(M)) ⊆ V(N).
Next we show that S2L : U(M)→ CB

(
[β,+∞), R

)
is a continuous and relatively compact mapping.

Let {xm}m∈N ⊆ U(M) and x ∈ U(M) with limm→∞ xm = x. By virtue of (3.1), (3.6), (3.9), and the
continuity of f, we infer that

∥∥S2Lxm − S2Lx
∥∥ = sup

t>β

∣∣∣∣ (−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, xm(g1(s)), . . . , xm(gk(s)))
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− f(s, x(g1(s)), . . . , x(gk(s)))
]
dsdµ

∣∣∣∣
6

1
(n− 2)!

∫+∞
T

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ

6
1

(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ, m ∈N,∫+∞

µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣ds

6 2
∫+∞
µ

sn−2

|a(µ)|
p(s)ds, µ ∈ [β,+∞)

and ∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣→ 0 as m→∞, s ∈ [β,+∞),

which together with the Lebesgue dominated convergence theorem yield that

lim
m→∞ ‖S2Lxm − S2Lx

∥∥ = 0,

that is, S2L is continuous in U(M).
In light of (3.1), (3.6), and (3.9), we deduce that for all x ∈ U(M)

∥∥S2Lx
∥∥ = sup

t>β
|S2Lx(t)| = sup

t>T

∣∣∣∣(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6

1
(n− 2)!

∫+∞
T

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6
1

(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

< min{L− b∗M−N, (1 − b∗)M− L}− ε∗ < M,

which means that S2L(U(M)) is uniformly bounded in [β,+∞).
Let ε > 0. Notice that (3.2) ensures that there exists T∗ > T satisfying

1
(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ <

ε

2
,

which together with (3.1) and (3.9) yields that for all x ∈ U(M) and t2 > t1 > T∗

∣∣(S2Lx)(t2) − (S2Lx)(t1)
∣∣ = ∣∣∣∣(−1)n+1

(n− 2)!

∫+∞
t2

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
(−1)n+1

(n− 2)!

∫+∞
t1

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6

1
(n− 2)!

[ ∫+∞
t2

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ (3.10)

+

∫+∞
t1

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
6

2
(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < ε.
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Put

M1 = max
{ 1
(n− 2)!

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]ds : T 6 µ 6 T∗

}
and δ =

ε

1 +M1
.

It follows from (3.1) and (3.9) that for all x ∈ U(M) and t1, t2 ∈ [T , T∗] with t1 6 t2 < t1 + δ∣∣(S2Lx)(t2) − (S2Lx)(t1)
∣∣

=

∣∣∣∣(−1)n+1

(n− 2)!

∫+∞
t2

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
(−1)n+1

(n− 2)!

∫+∞
t1

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6

1
(n− 2)!

∫t2

t1

∫+∞
µ

(s− µ)n−2

|a(µ)|
|f(s, x(g1(s)), . . . , x(gk(s))) − c(s)|dsdµ

6
1

(n− 2)!

∫t2

t1

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6M1|t2 − t1| < ε.

(3.11)

By virtue of (3.9), we get that for all x ∈ U(M) and t1, t2 ∈ [β, T ]∣∣(S2Lx)(t2) − (S2Lx)(t1)
∣∣ = ∣∣(S2Lx)(T) − (S2Lx)(T)

∣∣ = 0 < ε. (3.12)

It follows from (3.10)-(3.12) that S2L(U(M)) is equicontinuous in [β,+∞). Thus S2L(U(M)) is relatively
compact. In view of (3.4) and (3.8), we infer that for all x, y ∈ U(M) and t > T

|(S1Lx)(t) − (S1Ly)(t)| = |b(t)||x(τ(t)) − y(τ(t))| 6
(
b∗ + b

∗)‖x− y‖,
which yields that

‖S1Lx− S1Ly‖ 6
(
b∗ + b

∗)‖x− y‖,
that is, S1L is a contraction mapping in U(M) and ‖S1L(U(M))‖ 6 2M

(
b∗+b

∗). Hence SL is a continuous,
condensing mapping and SL(U(M)) is bounded. Put

P = {x ∈ CB([β,+∞), R) : N 6 x(t) 6M, t > β and ‖x‖ =M} (3.13)

and

Q = {x ∈ CB([β,+∞), R) : N 6 x(t) 6M, t > β and there exists t∗ > β satisfying x(t∗) = N}. (3.14)

It is easy to see that ∂U(M) = P ∪Q. Suppose that there exist x ∈ ∂U(M) and λ ∈ (0, 1) with

x = (1 − λ)p∗ + λSLx. (3.15)

Now we consider two possible cases as follows:

Case 1. Let x ∈ P. It follows from (3.4), (3.6)-(3.9), (3.13), and (3.15) that

x(t) = (1 − λ)p∗ + λSLx(t)

= (1 − λ)p∗ + λ

[
L− b(t)x(τ(t)) +

(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ
]

6 (1 − λ)(M− ε∗) + λ

[
L+ b∗M+

1
(n− 2)!

∫+∞
T

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
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< (1 − λ)(M− ε∗) + λ
[
L+ b∗M+ min{L− b∗M−N, (1 − b∗)M− L}− ε∗

]
6M− ε∗, t > T ,

which implies that
M = ‖x‖ = sup

t>β
|x(t)| 6M− ε∗ < M,

which is a contradiction;

Case 2. Let x ∈ Q. It follows from (3.4), (3.6)-(3.9), (3.14), and (3.15) that

N = x(t∗) = (1 − λ)p∗ + λSLx(t
∗)

= (1 − λ)p∗ + λ

[
L− b(t∗)x(τ(t∗)) +

(−1)n+1

(n− 2)!

∫+∞
max{t∗,T}

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ
]

> (1 − λ)(M− ε∗) + λ

[
L− b∗M−

1
(n− 2)!

∫+∞
max{t∗,T}

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
> (1 − λ)(M− ε∗) + λ

[
L− b∗M− min{L− b∗M−N, (1 − b∗)M− L}+ ε∗

]
> (1 − λ)(M− ε∗) + λ(N+ ε∗)

> min{M− ε∗,N+ ε∗} = N+ ε∗,

which is absurd. Thus Lemma 2.1 ensures that there exists x ∈ U(M) satisfying SLx = S1Lx+ S2Lx = x,
that is,

x(t) = L− b(t)x(τ(t)) +
(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > T ,

which means that

a(t)(x(t) + b(t)x(τ(t))) ′ =
(−1)n

(n− 2)!

∫+∞
t

(s− t)n−2[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]ds, t > T ,

which yields that

(n−2) = (−1)2
∫+∞
t

[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]ds, t > T

and
[a(t)(x(t) + b(t)x(τ(t))) ′](n−1) = −f(t, x(g1(t)), . . . , x(gk(t))) + c(t), t > T ,

that is, x is a bounded positive solution of Eq. (1.6) in U(M).
Finally we show that Eq. (1.6) has uncountably many bounded positive solutions in U(M). Let

L1,L2 ∈ (b∗M +N, (1 − b∗)M) and L1 6= L2. Similarly we infer that for each θ ∈ {1, 2}, there exists
a mapping SLθ : U(M) → V(N) satisfying (3.4)-(3.9), where L,β, T ,S1L,S2L, and SL are replaced by
Lθ,βθ, TLθ ,S1Lθ ,S2Lθ , and SLθ , respectively, and the mapping SLθ has a fixed point xθ ∈ U(M), which is
a bounded positive solution of Eq. (1.6) in U(M), that is,

xθ(t) = Lθ − b(t)x
θ(τ(t)) +

(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, xθ(g1(s)), . . . , xθ(gk(s))) − c(s)]dsdµ, t > TLθ .
(3.16)
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It follows from (3.2) that there exists T∗ > max{TL1 , TL2} satisfying

1
(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ <

|L1 − L2|

4
. (3.17)

In order to prove that the set of bounded positive solutions of Eq. (1.6) is uncountable, it is sufficient to
verify that x1 6= x2. In terms of (3.1), (3.16), and (3.17), we deduce that for t > T∗∣∣x1(t) − x2(t)

∣∣ = ∣∣∣∣L1 − L2 − b(t)x
1(τ(t)) + b(t)x2(τ(t)) +

(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x1(g1(s)), . . . , x1(gk(s))) − f(s, x2(g1(s)), . . . , x2(gk(s)))]dsdµ

∣∣∣∣
> |L1 − L2|− |b(t)|

∣∣x1(τ(t)) − x2(τ(t))
∣∣− 1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

|a(µ)|

×
[∣∣f(s, x1(g1(s)), . . . , x1(gk(s)))

∣∣+ ∣∣f(s, x2(g1(s)), . . . , x2(gk(s)))
∣∣]dsdµ

> |L1 − L2|−
(
b∗ + b

∗)∥∥x1 − x2∥∥− 2
(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ

>
1
2
|L1 − L2|−

(
b∗ + b

∗)∥∥x1 − x2∥∥,

which means that ∥∥x1 − x2∥∥ > |L1 − L2|

2
(
1 + b∗ + b∗

) > 0,

that is, x1 6= x2. This completes the proof.

Theorem 3.2. Let (C1), (C2), and (C3) hold. Assume that there exist four constants N,M,b∗ and b∗ and a
function p ∈ C

(
[t0,+∞), R+

)
satisfying (3.1), (3.2), and

0 < Nb∗b∗ < M(b2
∗ − b

∗), 1 < b∗ 6 b(t) 6 b∗ < b2
∗, eventually. (3.18)

Then Eq. (1.6) has uncountably many bounded positive solutions.

Proof. Let L ∈ (b
∗

b∗
M+ b∗N,b∗M). First of all we prove that there exists a mapping SL : U(M) → V(N)

such that it has a fixed point x ∈ U(M), which is also a bounded positive solution of Eq. (1.6). Note that
(C2) and (C3) imply that the inverse function τ−1 of τ is strictly increasing and continuous in [τ(t0),+∞)
and limt→+∞ τ−1(t) = +∞. It follows from (3.2) and (3.18) that there exist constants T and β satisfying

min
{
τ−1(T), T

}
> β > max{1, |t0|+ |β0|, |τ(t0)|}, 1 < b∗ 6 b(t) 6 b∗ < b2

∗, t > β; (3.19)

1
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min

{
b∗M− L,

b∗L

b∗
−M− b∗N

}
. (3.20)

Let p∗ =M− ε∗, where ε∗ ∈
(
0, min

{
b∗M− L, b∗Lb∗ −M− b∗N, b∗(M−N)

1+b∗

})
is enough small and

1
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min

{
b∗M− L,

b∗L

b∗
−M− b∗N

}
− ε∗. (3.21)

Clearly p∗ ∈ U(M). Define a mapping SL : U(M) → CB
(
[β,+∞), R

)
by (3.7), where the mappings

S1L,S2L : U(M)→ CB
(
[β,+∞), R

)
are defined by

(S1Lx)(t) =

{
L

b(τ−1(t))
−
x(τ−1(t))
b(τ−1(t))

, t > T ,

(S1Lx)(T), β 6 t < T ,
(3.22)
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and

(S2Lx)(t) =

{
(−1)n+1

b(τ−1(t))(n−2)!

∫+∞
τ−1(t)

∫+∞
µ

(s−µ)n−2

a(µ) [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > T ,

(S2Lx)(T), β 6 t < T ,
(3.23)

for each x ∈ U(M). In view of (3.1), (3.7), (3.19), and (3.21)-(3.23), we infer that for any x ∈ U(M) and
t > T

SLx(t) = (S1Lx)(t) + (S2Lx)(t)

=
L

b(τ−1(t))
−
x(τ−1(t))

b(τ−1(t))
+

(−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

>
L

b∗
−
M

b∗
−

1
b∗(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

(s− µ)n−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

>
L

b∗
−
M

b∗
−

1
b∗(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

>
L

b∗
−
M

b∗
−

1
b∗

min
{
b∗M− L,

b∗L

b∗
−M− b∗N

}
+
ε∗

b∗

> N+
ε∗

b∗
> N,

which implies that SL(U(M)) ⊆ V(N).
Secondly we prove that S2L : U(M) → CB

(
[β,+∞), R

)
is a continuous and relatively compact map-

ping.
Let {xm}m∈N ⊆ U(M) and x ∈ U(M) with limm→∞ xm = x. It follows from (3.1), (3.19), (3.21), (3.23),

and the continuity of f that

∥∥S2Lxm − S2Lx
∥∥ = sup

t>β

∣∣∣∣ (−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
]
dsdµ

∣∣∣∣
6

1
b∗(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xn(g1(s)), . . . , xn(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ

6
1

b∗(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xn(g1(s)), . . . , xn(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ, m ∈N,∫+∞

µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣ds

6 2
∫+∞
µ

sn−2

|a(µ)|
p(s)ds, µ ∈ [β,+∞)

and ∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣→ 0 as m→∞, s ∈ [β,+∞),

which together with the Lebesgue dominated convergence theorem yield that

lim
m→∞ ‖S2Lxm − S2Lx

∥∥ = 0,
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that is, S2L is continuous in U(M).
By virtue of (3.1), (3.19), (3.21), and (3.23), we get that for all x ∈ U(M)

∥∥S2Lx
∥∥ = sup

t>β

∣∣∣∣ (−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6

1
b∗(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6
1

b∗(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6
1
b∗

(
min
{
b∗M− L,

b∗L

b∗
−M− b∗N

}
− ε∗

)
< M,

which gives that S2L(U(M)) is uniformly bounded in [β,+∞).
Let ε > 0. It follows from (3.2) that there exist two constants T1 and T2 with min

{
τ−1(T2), T2

}
> T1 >

max{T , τ(T)} satisfying
1

(n− 2)!

∫+∞
T1

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ <

b∗ε

2
,

which together with (3.1) and (3.21) yields that for all x ∈ U(M) and t2 > t1 > T2

∣∣(S2Lx)(t2) − (S2Lx)(t1)
∣∣ = 1

(n− 2)!

∣∣∣∣ 1
b(τ−1(t2))

∫+∞
τ−1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s)))

− c(s)]dsdµ

−
1

b(τ−1(t1))

∫+∞
τ−1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6

1
b∗(n− 2)!

[ ∫+∞
τ−1(t2)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+

∫+∞
τ−1(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
6

2
b∗(n− 2)!

∫+∞
τ−1(T2)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6
2

b∗(n− 2)!

∫+∞
T1

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < ε;

(3.24)

In view of (C2), (C3), and (3.2), we conclude that there exist positive constants A1 and M2 satisfying

A1 = min
{
|a(t)| : t ∈ [τ−1(T), τ−1(T2)]

}
and

M2 =
1

(n− 2)!

[
1

A1b∗

∫+∞
τ−1(T)

sn−2[p(s) + |c(s)|]ds+
1
b2
∗

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
. (3.25)

According to (C2), we infer that τ−1 and b(τ−1) are continuous on [T , T2], which mean that there exists
δ > 0 satisfying

sup
{∣∣b(τ−1(t1)) − b(τ

−1(t2))
∣∣, ∣∣τ−1(t1) − τ

−1(t2)
∣∣ t1, t2 ∈ [T , T2], |t1 − t2| < δ

}
<

ε

M2
. (3.26)
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By (3.1), (3.23), (3.25), and (3.26), we obtain that for all t1, t2 ∈ [T , T2] with |t1 − t2| < δ∣∣(S2Lx)(t2) − (S2Lx)(t1)
∣∣

=
1

(n− 2)!

∣∣∣∣ 1
b(τ−1(t2))

∫+∞
τ−1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
1

b(τ−1(t1))

∫+∞
τ−1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
=

1
(n− 2)!

∣∣∣∣ 1
b(τ−1(t2))

∫+∞
τ−1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
1

b(τ−1(t2))

∫+∞
τ−1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

+
1

b(τ−1(t2))

∫+∞
τ−1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
1

b(τ−1(t1))

∫+∞
τ−1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6

1
(n− 2)!

[
1

b(τ−1(t2))

∣∣∣∣ ∫τ−1(t2)

τ−1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
+

∣∣∣∣ 1
b(τ−1(t2))

−
1

b(τ−1(t1))

∣∣∣∣ ∫+∞
τ−1(t1)

∫+∞
µ

(s− µ)n−2

|a(µ)|

× |f(s, x(g1(s)), . . . , x(gk(s))) − c(s)|dsdµ
]

6
1

b∗(n− 2)!

[
1
A1

∫+∞
τ−1(T)

sn−2[p(s) + |c(s)|]ds
∣∣τ−1(t1) − τ

−1(t2)
∣∣

+
1
b∗

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

∣∣b(τ−1(t1)) − b(τ
−1(t2))

∣∣]
6

1
(n− 2)!

[
1

A1b∗

∫+∞
τ−1(T)

sn−2[p(s) + |c(s)|]ds+
1
b2
∗

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
× sup

{∣∣b(τ−1(t1)) − b(τ
−1(t2))

∣∣, ∣∣τ−1(t1) − τ
−1(t2)

∣∣ t1, t2 ∈ [T , T2], |t1 − t2| < δ
}

< M2 ·
ε

M2
= ε.

(3.27)

By means of (3.23), we infer that for all x ∈ U(M) and t1, t2 ∈ [β, T ]∣∣(S2Lx)(t2) − (S2Lx)(t1)
∣∣ = ∣∣(S2Lx)(T) − (S2Lx)(T)

∣∣ < ε. (3.28)

It follows from (3.24), (3.27), and (3.28) that S2L(U(M)) is equicontinuous in [β,+∞). Hence S2L(U(M))
is relatively compact.

It follows from (3.19) and (3.22) that for all x, y ∈ U(M) and t > T

|(S1Lx)(t) − (S1Ly)(t)| =
1

b(τ−1(t))
|x(τ(t)) − y(τ(t))| 6

1
b∗
‖x− y‖,

which gives that

‖S1Lx− S1Ly‖ 6
1
b∗
‖x− y‖,

that is, S1L is a contraction mapping in U(M) and ‖S1L(U(M))‖ 6 2M
b∗

. Hence SL is a continuous,
condensing mapping and SL(U(M)) is bounded.
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Let P and Q are defined by (3.13) and (3.14). It is clear that ∂U(M) = P ∪Q. Suppose that there exist
x ∈ ∂U(M) and λ ∈ (0, 1) satisfying (3.15). Now we consider two possible cases as follows:
Case 1. Let x ∈ P. It follows from (3.1), (3.13), (3.15), (3.19), and (3.21)-(3.23) that

x(t) = (1 − λ)p∗ + λSLx(t)

= (1 − λ)p∗ + λ

[
L

b(τ−1(t))
−
x(τ−1(t))

b(τ−1(t))
+

(−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ
]

6 (1 − λ)(M− ε∗) + λ

[
L

b∗
−
N

b∗
+

1
b∗(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
6 (1 − λ)(M− ε∗) + λ

[
L

b∗
−
N

b∗
+

1
b∗

min
{
b∗M− L,

b∗L

b∗
−M− b∗N

}
−
ε∗

b∗

]
6 max

{
M− ε∗,M−

N

b∗
−
ε∗

b∗

}
, t > T ,

which yields that

M = ||x|| = sup
t>β

|x(t)| 6 max
{
M− ε∗,M−

N

b∗
−
ε∗

b∗

}
< M,

which is a contradiction.

Case 2. Let x ∈ Q. It follows from (3.7), (3.14), (3.15), (3.19), and (3.21)-(3.23) that

N = x(t∗) = (1 − λ)p∗ + λSLx(t
∗)

= (1 − λ)p∗ + λ

[
L

b(τ−1(t∗))
−
x(τ−1(t∗))

b(τ−1(t∗))
+

(−1)n+1

b(τ−1(t∗))(n− 2)!

×
∫+∞

max{τ−1(t∗),τ−1(T)}

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

]
> (1 − λ)(M− ε∗) + λ

[
L

b∗
−
M

b∗
−

1
b∗(n− 2)!

×
∫+∞

max{τ−1(t∗),τ−1(T)}

∫+∞
µ

(s− µ)n−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
> (1 − λ)(M− ε∗) + λ

[
L

b∗
−
M

b∗
−

1
b∗

min
{
b∗M− L,

b∗L

b∗
−M− b∗N

}
+
ε∗

b∗

]
> (1 − λ)(M− ε∗) + λ

(
N+

ε∗

b∗

)
> min

{
M− ε∗,N+

ε∗

b∗

}
= N+

ε∗

b∗
,

which is impossible. Thus it follows from Lemma 2.1 that there exists x ∈ U(M) satisfying SLx =
S1Lx+ S2Lx = x, that is,

x(t) =
L

b(τ−1(t))
−
x(τ−1(t))

b(τ−1(t))
+

(−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > max
{
τ−1(T), T

}
,

which gives that

x(τ(t)) =
L

b(t)
−
x(t)

b(t)
+

(−1)n+1

b(t)(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > max
{
τ−1(T), T

}
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and

x(t) + b(t)x(τ(t)) = L+
(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > max
{
τ−1(T), T

}
,

which means that

[a(t)(x(t) + b(t)x(τ(t))) ′](n−1) = (−1)[f(t, x(g1(t)), . . . , x(gk(t))) − c(t)], t > max
{
τ−1(T), T

}
,

that is, x is a bounded positive solution of Eq. (1.6) in U(M).
Lastly we show that Eq. (1.6) has uncountably many bounded positive solutions in U(M). Let L1,L2 ∈

(b
∗

b∗
M+ b∗N,b∗M) and L1 6= L2. Analogously, we deduce that for each θ ∈ {1, 2}, there exist constants

TLθ ,βθ and a mapping SLθ : U(M) → V(N) satisfying (3.7) and (3.19)-(3.23), where L,β, T ,S1L,S2L, and
SL are replaced by Lθ,βθ, TLθ ,S1Lθ ,S2Lθ , and SLθ , respectively, and the mapping SLθ has a fixed point
xθ ∈ U(M), which is a bounded positive solution of Eq. (1.6) in U(M), that is,

xθ(t) =
Lθ

b(τ−1(t))
−
xθ(τ−1(t))

b(τ−1(t))
+

(−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, xθ(g1(s)), . . . , xθ(gk(s))) − c(s)]dsdµ, t > TLθ .
(3.29)

It follows from (3.2) that there exists a constant T∗ with min
{
T∗, τ−1(T∗)

}
> max{TL1 , TL2} satisfying

1
(n− 2)!

∫+∞
τ−1(T∗)

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ <

b∗|L1 − L2|

4b∗
. (3.30)

In order to prove that the set of bounded positive solutions of Eq. (1.6) is uncountable, it is sufficient to
prove that x1 6= x2. From (3.1), (3.29), and (3.30), we get that for t > T∗∣∣x1(t) − x2(t)

∣∣ = ∣∣∣∣ L1

b(τ−1(t))
−

L2

b(τ−1(t))
−
x1(τ−1(t))

b(τ−1(t))
+
x2(τ−1(t))

b(τ−1(t))
+

(−1)n+1

b(τ−1(t))(n− 2)!

×
∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x1(g1(s)), . . . , x1(gk(s)))

− f(s, x2(g1(s)), . . . , x2(gk(s)))]dsdµ

∣∣∣∣
>

1
b∗

|L1 − L2|−
1
b∗

∣∣x1(τ−1(t)) − x2(τ−1(t))
∣∣− 1

b∗(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

|a(µ)|

×
[∣∣f(s, x1(g1(s)), . . . , x1(gk(s)))

∣∣+ ∣∣f(s, x2(g1(s)), . . . , x2(gk(s)))
∣∣]dsdµ

>
1
b∗

|L1 − L2|−
1
b∗

∥∥x1 − x2∥∥− 2
b∗(n− 2)!

∫+∞
τ−1(T∗)

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ

>
1

2b∗
|L1 − L2|−

1
b∗

∥∥x1 − x2∥∥,

which means that ∥∥x1 − x2∥∥ > b∗|L1 − L2|

2b∗
(
1 + b∗

) > 0,

that is, x1 6= x2. This completes the proof.

Theorem 3.3. Let (C1), (C2), and (C3) hold. Assume that there exist four constants N,M,b∗ and b∗ and a
function p ∈ C

(
[t0,+∞), R+

)
satisfying (3.1), (3.2), and(

1 + b∗
)
M <

(
1 + b∗

)
N < 0, b∗ 6 b(t) 6 b

∗ < −1, eventually. (3.31)

Then Eq. (1.6) has uncountably many bounded positive solutions.
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Proof. Let L ∈
(
(1+ b∗)M, (1+ b∗)N

)
. Now we show that there exists a mapping SL : U(M)→ V(N) such

that it has a fixed point x ∈ U(M), which is also a bounded positive solution of Eq. (1.6). (C2) and (C3)
mean that τ−1 is strictly increasing and continuous in [τ(t0),+∞) and limt→+∞ τ−1(t) = +∞. It follows
from (3.2) and (3.31) that there exist two constants β and T satisfying

min
{
T , τ−1(T)

}
> β > max{1, |t0|+ |β0|, |τ(t0)|},b∗ 6 b(t) 6 b∗ < −1, t > β, (3.32)

1
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min

{
L−

(
1 + b∗

)
M,

b∗

b∗

[
N(1 + b∗) − L

]}
.

Let p∗ =M− ε∗, where ε∗ ∈
(
0, min

{
L−

(
1 + b∗

)
M, b

∗

b∗

[
N(1 + b∗) − L, b

∗(M−N)
b∗−1

]})
is enough small and

1
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min

{
L−

(
1 + b∗

)
M,

b∗

b∗

[
N(1 + b∗) − L

]}
− ε∗. (3.33)

Obviously, p∗ ∈ U(N,M). Define a mapping SL : U(M) → CB
(
[β,+∞), R

)
by (3.7), where the mappings

S1L,S2L : U(M)→ CB
(
[β,+∞), R

)
are defined by (3.22) and (3.23), respectively.

By virtue of (3.1), (3.7), (3.22), (3.23), (3.32), and (3.33), we get that for any x ∈ U(M) and t > T

(SL)(x) = (S1Lx)(t) + (S2Lx)(t)

=
L

b(τ−1(t))
−
x(τ−1(t))

b(τ−1(t))
+

(−1)n+1

b(τ−1(t))(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

a(µ)

× [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

>
L

b∗
−
N

b∗
+

1
b∗(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

>
L

b∗
−
N

b∗
+

1
b∗(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

>
L

b∗
−
N

b∗
+

1
b∗

min
{
L−

(
1 + b∗

)
M,

b∗

b∗

[
N(1 + b∗) − L

]}
−

1
b∗
ε∗

> N−
1
b∗
ε∗ > N,

which gives that SL(U(M)) ⊆ V(N). The rest of the proof is similar to that of Theorems 3.2, and is
omitted. This completes the proof.

Next we employ the Rothe fixed point theorem to prove the existence and multiplicity of bounded
positive solutions of Eq. (1.6).

Theorem 3.4. Let (C1), (C2), (C3), and (C4) hold. Assume that there exist two constants M and N with M >

N > 0 and a function p ∈ C
(
[t0,+∞), R+

)
satisfying (3.1), (3.2), and

b(t) = 1, eventually. (3.34)

Then Eq. (1.6) has uncountably many bounded positive solutions.

Proof. Let L ∈ (M − N,M + N). First of all we prove that there exists a mapping SL : B(M,N) →
CB
(
[β,+∞), R

)
with SL(∂B(M,N)) ⊆ B(M,N) such that SL has a fixed point x ∈ B(M,N), which is also

a bounded positive solution of Eq. (1.6). It follows from (3.2), (3.34), (C3), and (C4) that there exist two
constants T and β satisfying

τ−1(T) > T > β > max{1, |t0|+ |β0|, |τ(t0)|}, b(t) = 1, t > β; (3.35)
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2
(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min{M+N− L,N−M+ L}. (3.36)

Define a mapping SL : B(M,N)→ CB
(
[β,+∞), R

)
as follows:

(SLx)(t) =

{
L+

(−1)n+1

(n−2)!
∑∞
j=1
∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s−µ)n−2

a(µ) [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > T ,

(SLx)(T), β 6 t < T ,
(3.37)

for each x ∈ B(M,N). It follows from (3.1), (3.13), (3.14), (3.27), (3.28), and Lemma 2.3 that for any
x ∈ ∂B(M,N) ⊆ B(M,N) and t > T

|(SLx)(t) −M| =

∣∣∣∣∣L−M+
(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
6 |L−M|+

1
(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6 |L−M|+
1

(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6 |L−M|+
1

(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

< |L−M|+
1
2

min{M+N− L,N−M+ L} < N,

which yields that SL(∂B(M,N)) ⊆ B(M,N).
Now we assert that SL is a continuous, condensing mapping in B(M,N). Let {xm}m∈N ⊆ B(M,N) and

x ∈ B(M,N) with limm→∞ xm = x. By virtue of (3.1), (3.36), (3.37), and the continuity of f and Lemma
2.3, we infer that for each m ∈N

∥∥SLxm − SLx
∥∥ = sup

t>T

∣∣∣∣∣(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s− µ)n−2

a(µ)

[
f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
]
dsdµ

∣∣∣∣∣
6

1
(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ

6
1

(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ,∫+∞

µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣ds

6 2
∫+∞
µ

sn−2

|a(µ)|
p(s)ds, µ ∈ [β,+∞),

and ∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣→ 0 as m→∞, s ∈ [β,+∞),
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which together with the Lebesgue dominated convergence theorem give that

lim
m→∞SLxm = SLx,

that is, SL is continuous in B(M,N).
In light of (3.1), (3.36), (3.37), and Lemma 2.3, we get that for any x ∈ B(M,N)

∥∥SLx∥∥ =

∣∣∣∣∣L+ (−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
6 L+

1
(n− 2)!

∫+∞
τ−1(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6 L+
1

(n− 2)!

∫+∞
β

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

< L+
1
2

min{M+N− L,N−M+ L} 6
M+N+ L

2
,

which implies that SL(B(M,N)) is uniformly bounded in [β,+∞).
Let ε > 0. Notice that (3.2) ensures that there exists T∗ > τ−1(T) satisfying

1
(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ <

ε

4
, (3.38)

which together with (3.1), (3.37), and Lemma 2.3 yields that for all x ∈ B(M,N) and t2 > t1 > T∗∣∣(SLx)(t2) − (SLx)(t1)
∣∣

=

∣∣∣∣∣(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t2)

τ−2j+1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t1)

τ−2j+1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
6

1
(n− 2)!

[ ∫+∞
τ−1(t2)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+

∫+∞
τ−1(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

]
6

2
(n− 2)!

∫+∞
τ−1(T∗)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6
2

(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < ε.

(3.39)

Notice that (3.2), (C2)-(C4), and Lemma 2.3 guarantee that there exists H ∈N satisfying τ−2H+1(T) > T∗.
Put

A2 = min{|a(t)| : t ∈ [τ−j(T), τ−j(T∗)], 1 6 j 6 2H}

and

M3 = 1 +
1

(n− 2)!A2

∫+∞
τ−1(T)

sn−2[p(s) + |c(s)|]ds. (3.40)
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Since τ−j is uniformly continuous in [T , T∗] for 1 6 j 6 2H, it follows that there exists δ > 0 satisfying

sup
{∣∣τ−j(t1) − τ

−j(t2)
∣∣ : 1 6 j 6 2H, t1, t2 ∈ [T , T∗], |t2 − t1| < δ

}
<

ε

4HM3
,

which together with (3.1), (3.37), (3.38), and (3.40) that for all t1, t2 ∈ [T , T∗] with t1 6 t2 < t1 + δ and all
x ∈ B(M,N)∣∣(SLx)(t2) − (SLx)(t1)

∣∣
=

∣∣∣∣∣(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t2)

τ−2j+1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t1)

τ−2j+1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
=

1
(n− 2)!

∣∣∣∣∣
H∑
j=1

∫τ−2j(t2)

τ−2j+1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−

H∑
j=1

∫τ−2j(t1)

τ−2j+1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

+

∞∑
j=H+1

∫τ−2j(t2)

τ−2j+1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−

∞∑
j=H+1

∫τ−2j(t1)

τ−2j+1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
6

1
(n− 2)!

{∣∣∣∣∣
H∑
j=1

∫τ−2j(t2)

τ−2j(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

+

H∑
j=1

∫τ−2j(t1)

τ−2j+1(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ (3.41)

−

H∑
j=1

∫τ−2j(t1)

τ−2j+1(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
+

∞∑
j=H+1

∫τ−2j(t2)

τ−2j+1(t2)

∫+∞
µ

(s− µ)n−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+

∞∑
j=H+1

∫τ−2j(t1)

τ−2j+1(t1)

∫+∞
µ

(s− µ)n−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

}

6
1

(n− 2)!

{
H∑
j=1

∫τ−2j(t2)

τ−2j(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+

H∑
j=1

∫τ−2j+1(t2)

τ−2j+1(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+

∫+∞
τ−2H+1(t2)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ+

∫+∞
τ−2H+1(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

}

6
1

(n− 2)!

{
2H∑
j=1

∫τ−j(t2)

τ−j(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ
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+ 2
∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

}
6 2HM3 sup

{∣∣τ−j(t1) − τ
−j(t2)

∣∣ : 1 6 j 6 2H, t1, t2 ∈ [T , T∗], |t2 − t1| < δ
}
+
ε

2
< ε.

In view of (3.37), we infer that for all x ∈ B(M,N) and t1, t2 ∈ [β, T ]∣∣(SLx)(t2) − (SLx)(t1)
∣∣ = ∣∣(SLx)(T) − (SLx)(T)

∣∣ < ε. (3.42)

It follows from (3.39), (3.41), and (3.42) that SL(U(M)) is equicontinuous in [β,+∞). Hence SL(B(M,N))
is relatively compact, that is, SL is condensing in B(M,N).

Thus Lemma 2.2 ensures that there exists x ∈ B(M,N) such that SLx = x, which means that

x(t) = L+
(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > τ−1(T),

which together with Lemma 2.3 implies that

x(t) + x(τ(t)) = 2L+
(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+2(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

= 2L+
(−1)n+1

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > τ−1(T),

which leads that

a(t)(x(t) + b(t)x(τ(t))) ′ =
(−1)n

(n− 2)!

∫+∞
t

(s− t)n−2[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]ds, t > τ−1(T),

which guarantees that

[a(t)(x(t) + x(τ(t))) ′](n−1) = (−1)[f(t, x(g1(t)), . . . , x(gk(t))) − c(t)], t > τ−1(T),

which together with (3.35) gives that x is a bounded positive solution in B(M,N).
Next we show that Eq. (1.6) has uncountably many bounded positive solutions in B(M,N). Let

L1,L2 ∈ (M−N,M+N) and L1 6= L2. For every θ ∈ {1, 2}, we infer similarly that there exist constants
TLθ ,βθ and a mapping SLθ satisfying (3.35)-(3.37), where L,β, T and SL are replaced by Lθ,βθ, TLθ and
SLθ , respectively, and the mapping SLθ has a fixed point x ∈ B(M,N), which is a bounded positive
solution of Eq. (1.6) in B(M,N), that is,

xθ(t) = Lθ +
(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, xθ(g1(s)), . . . , xθ(gk(s))) − c(s)]dsdµ, t > TLθ . (3.43)

In terms of (3.2), we get that there exists T∗ with τ−1(T∗) > T∗ > max{TL1 , TL2} satisfying

1
(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ <

|L1 − L2|

4
. (3.44)

In order to prove that the set of bounded positive solutions of Eq. (1.6) is uncountable, it is sufficient to
verify that x1 6= x2. On account of (3.1), (3.43), and (3.44), we infer that for t > T∗

∣∣x1(t) − x2(t)
∣∣ = ∣∣∣∣∣L1 − L2 +

(−1)n+1

(n− 2)!

∞∑
j=1

∫τ−2j(t)

τ−2j+1(t)

∫+∞
µ

(s− µ)n−2

a(µ)
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× [f(s, x1(g1(s)), . . . , x1(gk(s))) − f(s, x2(g1(s)), . . . , x2(gk(s)))]dsdµ

∣∣∣∣∣
> |L1 − L2|−

1
(n− 2)!

∫+∞
τ−1(t)

∫+∞
µ

(s− µ)n−2

|a(µ)|

×
[∣∣f(s, x1(g1(s)), . . . , x1(gk(s)))

∣∣+ ∣∣f(s, x2(g1(s)), . . . , x2(gk(s)))
∣∣]dsdµ

> |L1 − L2|−
2

(n− 2)!

∫+∞
τ−1(T∗)

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ

> |L1 − L2|−
2

(n− 2)!

∫+∞
T∗

∫+∞
µ

sn−2

|a(µ)|
p(s)dsdµ >

|L1 − L2|

2
,

that is, x1 6= x2. This completes the proof.

Theorem 3.5. Let (C1), (C2), (C3), and (C4) hold. Assume that there exist two constants M and N with M >

N > 0 and a function p ∈ C
(
[t0,+∞), R+

)
satisfying (3.1) and

∞∑
j=1

∫+∞
τ−j(t0)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < +∞, (3.45)

b(t) = −1, eventually. (3.46)

Then Eq. (1.6) has uncountably many bounded positive solutions.

Proof. Let L∈(M−N,M+N). Now we prove that there exists a mapping SL : B(M,N)→CB
(
[β,+∞), R

)
with SL(∂B(M,N)) ⊂ B(M,N) such that SL has a fixed point x ∈ B(M,N), which is also a bounded
positive solution of Eq. (1.6). It follows from (3.45), (3.46), (C3), and (C4) that there exist two constants T
and β satisfying

τ−1(T) > T > β > max{1, |t0|+ |β0|, |τ(t0)|}, b(t) = −1, t > β, (3.47)

2
(n− 2)!

∞∑
j=1

∫+∞
τ−j(β)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < min{N+M− L,N−M+ L}. (3.48)

Define a mapping SL : B(M,N)→ CB
(
[β,+∞), R

)
as follows:

(SLx)(t) =

{
L+

(−1)n+1

(n−2)!
∑∞
j=1
∫+∞
τ−j(t)

∫+∞
µ

(s−µ)n−2

a(µ) [f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > T ,

(SLx)(T), β 6 t < T ,
(3.49)

for each x ∈ B(M,N). By (3.1), (3.13), (3.14), (3.48), and (3.49), we obtain that for any x ∈ ∂B(M,N) ⊂
B(M,N) and t > T

|(SLx)(t) −M| =

∣∣∣∣∣L−M+
(−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
6 |L−M|+

1
(n− 2)!

∞∑
j=1

∫+∞
τ−j(t)

∫+∞
µ

(s− µ)n−2

|a(µ)|

[
|f(s, x(g1(s)), . . . , x(gk(s)))|+ |c(s)|

]
dsdµ

6 |L−M|+
1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6 |L−M|+
1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(β)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

< |L−M|+
1
2

min{N+M− L,N−M+ L} < N,

which means that SL(∂B(M,N)) ⊆ B(M,N).
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We claim that SL is a continuous, condensing mapping in B(M,N). Put {xm}m∈N ⊆ B(M,N) and
x ∈ B(M,N) with limm→∞ xm = x. Using (3.1), (3.48), (3.49), and the continuity of f, we infer that

∥∥SLxm − SLx
∥∥ = sup

t>T

∣∣∣∣∣(−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t)

∫+∞
µ

(s− µ)n−2

a(µ)

[
f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
]
dsdµ

∣∣∣∣∣
6

1
(n− 2)!

∞∑
j=1

∫+∞
τ−j(T)

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ

6
1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(β)

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s)))

− f(s, x(g1(s)), . . . , x(gk(s)))
∣∣dsdµ, m ∈N,

∫+∞
µ

sn−2

|a(µ)|

∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣ds

6 2
∫+∞
µ

sn−2

|a(µ)|
p(s)ds, µ ∈ [τ−1(β),+∞)

and ∣∣f(s, xm(g1(s)), . . . , xm(gk(s))) − f(s, x(g1(s)), . . . , x(gk(s)))
∣∣→ 0 as m→∞, s ∈ [τ−1(β),+∞),

which together with the Lebesgue dominated convergence theorem gives that

lim
m→∞SLxm = SLx,

that is, SL is continuous in B(M,N).
By virtue of (3.1), (3.48), and (3.49), we deduce that for any x ∈ B(M,N)

∥∥SLx∥∥ = sup
t>T

|SLx(t)| =

∣∣∣∣L+ (−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣
6 L+

1
(n− 2)!

∞∑
j=1

∫+∞
τ−j(T)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

6 L+
1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(β)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

< L+
1
2

min{N+M− L,N−M+ L} 6
N+M+ L

2
,

which implies that SL(B(M,N)) is uniformly bounded in [β,+∞).
Let ε > 0. Notice that (3.45) ensures that there exists T∗ > T satisfying

1
(n− 2)!

∞∑
j=1

∫+∞
τ−j(T∗)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ <

ε

4
. (3.50)
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It follows from (3.1), (3.49), and (3.50) that for all x ∈ U(M) and t2 > t1 > T∗∣∣(SLx)(t2) − (SLx)(t1)
∣∣

=

∣∣∣∣∣ (−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
(−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
6

1
(n− 2)!

{ ∞∑
j=1

∫+∞
τ−j(t2)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+

∞∑
j=1

∫+∞
τ−j(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

}

6
2

(n− 2)!

∞∑
j=1

∫+∞
τ−j(T∗)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ < ε.

(3.51)

On account of (3.2), (C2)-(C4), and Lemma 2.3, we get that there exists H ∈N satisfying τ−H(T) > T∗. Set

A3 = min{|a(t)| : t ∈ [τ−j(T), τ−j(T∗)], 1 6 j 6 H}

and

M4 = 1 +
1

(n− 2)!A3

∫+∞
T

sn−2[p(s) + |c(s)|]ds. (3.52)

Since τ−j is continuous on [T , T∗] for 1 6 j 6 H, it follows that there exists δ > 0 satisfying

sup
{∣∣τ−j(t1) − τ

−j(t2)
∣∣ : 1 6 j 6 H, t1, t2 ∈ [T , T∗], |t2 − t1| < δ

}
<

ε

4HM4
,

which together with (3.1), (3.49), (3.50), and (3.52) yields that for all t1, t2 ∈ [T , T∗], t1 6 t2 < t1 + δ and
x ∈ B(M,N) ∣∣(SLx)(t2) − (SLx)(t1)

∣∣
=

∣∣∣∣∣ (−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−
(−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
=

1
(n− 2)!

{∣∣∣∣∣
H∑
j=1

∫τ−j(t2)

τ−j(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

+

∞∑
j=H+1

∫+∞
τ−j(t1)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

−

∞∑
j=H+1

∫+∞
τ−j(t2)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ

∣∣∣∣∣
}

6
1

(n− 2)!

{
H∑
j=1

∫τ−j(t2)

τ−j(t1)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

+ 2
∞∑
j=1

∫+∞
τ−j(T∗)

∫+∞
µ

sn−2

|a(µ)|
[p(s) + |c(s)|]dsdµ

}

6 HM4 sup
{∣∣τ−j(t1) − τ−j(t2)∣∣ : 1 6 j 6 H, t1, t2 ∈ [T , T∗], |t2 − t1| < δ

}
+
ε

2
< ε.

(3.53)



G. Jiang, W. Sun, Z. An, L. Zhao, J. Nonlinear Sci. Appl., 12 (2019), 675–698 696

By means of (3.49), we infer that for all x ∈ B(M,N) and t1, t2 ∈ [β, T ]∣∣(SLx)(t2) − (SLx)(t1)
∣∣ = ∣∣(SLx)(T) − (SLx)(T)

∣∣ < ε. (3.54)

It follows from (3.51), (3.53), and (3.54) that SL(B(M,N)) is equicontinuous in [β,+∞). Thus SL(B(M,N))
is relatively compact, that is, SL is condensing in B(M,N).

It follows from Lemma 2.2 that SL has a fixed point x ∈ B(M,N), that is,

x(t) = L+
(−1)n+1

(n− 2)!

∞∑
j=1

∫+∞
τ−j(t)

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > τ−1(T),

which gives that

x(t) − x(τ(t)) =
(−1)n

(n− 2)!

∫+∞
t

∫+∞
µ

(s− µ)n−2

a(µ)
[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > τ−1(T),

which means that

a(t)(x(t) − x(τ(t))) ′ =
(−1)n+1

(n− 2)!

∫+∞
t

(s− t)n−2[f(s, x(g1(s)), . . . , x(gk(s))) − c(s)]dsdµ, t > τ−1(T),

and
[a(t)(x(t) − x(τ(t))) ′](n−1) = −f(t, x(g1(t)), . . . , x(gk(t))) + c(t), t > τ−1(T),

which together with (3.47) guarantees that x ∈ B(M,N) is a bounded positive solution of Eq. (1.6). The
rest of the proof is similar to that of Theorems 3.4, and is omitted. This completes the proof.

Remark 3.6. Theorems 3.1-3.5 extend and improve Theorems 2.1-2.6 in [3], Theorem 1 in [5], and Theorems
2.1-2.5 in [4], respectively. The examples in Section 4 show that our results are indeed generalizations of
the corresponding results in [3–5].

4. Examples

In this section we construct five examples to clarify the applications and superiority of the results
presented in Section 3.

Example 4.1. Consider the following higher order nonlinear neutral differential equation[
t10
(
x(t) +

(t2 − 2t+
√

1 + t) sin t
1 + 3t2 x(t−

√
t)

) ′](n−1)

+
t4x3(t2)x2(t− 1) − tx2(t+ 1)
tn+6 + (t2 + 1) cos2(3t3)

=

√
1 + t2 − t sin(3t2)

tn+3 , t > 1,

(4.1)

where n ∈N \ {1}, t0 = 1 and k = 3. Let b∗ = b∗ = 1
3 , N = 1, M = 4, β0 = 0 and

a(t) = t10, b(t) =
(t2 − 2t+

√
1 + t) sin t

1 + 3t2 , τ(t) = t−
√
t, g1(t) = t

2, g2(t) = t− 1,

g3(t) = t+ 1, c(t) =

√
1 + t2 − t sin(3t2)

tn+3 , f(t,u, v,w) =
t4u3v2 − tw2

tn+6 + (t2 + 1) cos2(3t3)
,

p(t) =
1024t3 + 16
tn+5 , (t,u, v,w) ∈ [t0,+∞)×R3.

It is easy to verify that (C1), (C2), and (3.1)-(3.3) are satisfied. Hence Theorem 3.1 implies that Eq. (4.1)
has uncountably many bounded positive solutions. But the results in [3–5] are not applicable for Eq. (4.1).
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Example 4.2. Consider the following higher order nonlinear neutral differential equation[
t4 ln(1 + t2)

(
x(t) +

5 + 12 ln3 t

1 + ln3 t

)
x

(
t−

1
2t

)) ′](n−1)

+
t3x2(t2 − t)x(

√
t) +

√∣∣tx(t3

2 )
∣∣

tn+5 + sin2 t
=
t2 ln(1 +

√
t3 + 1)

1 + tn+4 , t > 1,

(4.2)

where n ∈N \ {1}, t0 = 1 and k = 3. Let b∗ = 5, b∗ = 12, N = 1, M = 13, β0 = 0 and

a(t) = t4 ln(1 + t2), b(t) =
5 + 12 ln3 t

1 + ln3 t
, τ(t) = t−

1
2t

, g1(t) = t
2 − t, g2(t) =

√
t,

g3(t) =
t3

2
, c(t) =

t2 ln(1 +
√
t3 + 1)

1 + tn+4 , f(t,u, v,w) =
t3u2v+

√
|tw|

tn+5 + sin2 t
,

p(t) =
2197t3 +

√
13t

tn+5 , (t,u, v,w) ∈ [t0,+∞)×R3.

It is obvious that (C1)-(C3), (3.1), (3.2), and (3.18) are satisfied. Thus Theorem 3.2 ensures that Eq. (4.2)
has uncountably many bounded positive solutions. But the results in [3–5] are not valid for Eq. (4.2).

Example 4.3. Consider the following higher order nonlinear neutral differential equation[(
t3 + 1

)(
x(t) − (5 − cos t)x(

√
t)
) ′](n−1)

+
t4x3(t2 ln t) + (t5 − 3)x2(t3 − 1)
tn−2(1 + t)8

√
1 + x2(t2 − t)

=
t3 − sin

√
4t5 − t

tn+4[3 + cos(t+
√
t)]

, t > 1,

(4.3)

where n ∈N \ {1}, t0 = 1 and k = 3. Let b∗ = −6, b∗ = −4, N = 1, M = 3, β0 = 0 and

a(t) = t3 + 1, b(t) = −5 + cos t, τ(t) =
√
t, g1(t) = t

2 ln t, g2(t) = t
3 − 1,

g3(t) = t
2 − t, c(t) =

t3 − sin
√

4t5 − t

tn+4[3 + cos(t+
√
t)]

, f(t,u, v,w) =
t4u3 + (t5 − 3)v2

tn−2(1 + t)8
√

1 +w2
,

p(t) =
9t5 + 27t4 + 27
tn−2(1 + t)8 , (t,u, v,w) ∈ [t0,+∞)×R3.

It is clear that (C1)-(C3), (3.1), (3.2), and (3.31) are satisfied. Therefore Theorem 3.3 means that Eq. (4.3)
has uncountably many bounded positive solutions. But the results in [3–5] are inapplicable for Eq. (4.3).

Example 4.4. Consider the following higher order nonlinear neutral differential equation[
− t4

(
x(t) + x

(
t

2

)) ′](n−1)

+
x(t2 + 1)x2(t3 ln(1 + t))

tn+2 −
(t− 1)x2(t2 + 1)

tn+2(1 + t)(2 + sin t)

=
t2 + (1 − 3t3) cos(t2 + t)

tn+5(t+ 1)(t+ 2)
, t > 2,

(4.4)

where n ∈N \ {1}, t0 = 2 and k = 2. Let N = 1, M = 2, β0 = 1 and

a(t) = −t4, b(t) = 1, τ(t) =
t

2
, g1(t) = t

2 + 1, g2(t) = t
3 ln(1 + t),

c(t) =
t2 + (1 − 3t3) cos(t2 + t)

tn+5(t+ 1)(t+ 2)
, f(t,u, v) =

uv2

tn+2 −
(t− 1)u2

tn+2(1 + t)(2 + sin t)
,

p(t) =
12
tn+2 , (t,u, v) ∈ [t0,+∞)×R2.

It is easy to see that (C1)-(C4), (3.1), (3.2), and (3.34) are satisfied. Therefore Theorem 3.4 guarantees that
Eq. (4.4) has uncountably many bounded positive solutions. But the results in [3–5] are not valid for Eq.
(4.4).
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Example 4.5. Consider the following higher order nonlinear neutral differential equation

[(
t5 + 1

) 3
2
(
x(t) − x(ln t)

) ′](n−1)
+

x2(t2 + ln t)x(t+
√

1 + t2)

(1 + t
9
2 )tn−2[1 + ln(1 + x2(t2 + ln t))]

=
1 + t3 sin(t2)

tn+5[(1 + t4)
4
3 + ln t]

, t > 2,
(4.5)

where n ∈N \ {1}, t0 = 2 and k = 2. Let N = 1, M = 3, β0 = ln 2 and

a(t) =
(
t5 + 1

) 3
2 , b(t) = −1, τ(t) = ln t, g1(t) = t

2 + ln t, g2(t) = t+
√

1 + t2,

c(t) =
1 + t3 sin(t2)

tn+5[(1 + t4)
4
3 + ln t]

, f(t,u, v) =
u2v

(1 + t
9
2 )tn−2[1 + ln(1 + u2)]

,

p(t) =
27

(1 + t
9
2 )tn−2

, (t,u, v) ∈ [t0,+∞)×R2.

It is easy to verify that (C1)-(C4), (3.1), (3.45), and (3.46) are satisfied. Thus Theorem 3.5 yields that Eq.
(4.5) has uncountably many bounded positive solutions. But the results in [3–5] are inapplicable for Eq.
(4.5).
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