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Abstract
This gives new results on stable fixed points related to several kinds of strong perturbations in references. It is shown that

a strong stable set of fixed points has a robust stable property. For a robust stable fixed point set of a correspondence, in its
neighborhood, there is a strong stable set for any small perturbation of the correspondence. There exists a robust stable set for a
correspondence, if there is at least one fixed point for the correspondence. These generalize the corresponding results in recent
references and give an application in the existence of strong stable economy equilibria.
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1. Introduction

Essential stability of fixed points of functions and correspondences is originally from the early sem-
inal research in [7, 13, 14, 19]. Essential fixed points for correspondences attract many attentions for
applications [3, 18]. Employing the stability implied by essential fixed points, essential solutions become
important concepts in many nonlinear fields and are applied into noncooperative games [8, 26, 31, 34],
cooperative games and population games [30, 32], and other equilibrium problems [6, 12, 17]. Hence,
there are close relation between fixed points and game equilibria. It is known that one can obtain the
existence of Nash equilibria from Kakutani and Brouwer fixed point theorems, the versus is also true, see
[35].

Essential stabilities are closely related to the perturbation of mappings. Kohlberg and Mertens, using
homeomorphism methods, reveal the essential stable structure of Nash equilibria of a finite game [16],
where essential stable equilibria can resist the perturbation of a payoff. Essential stable equilibria, in
[13, 23, 32], can resist the perturbation of a mapping. Similar to essential fixed points, an essential
mapping has the ability to resist its homotopic perturbations [9], and this is deeply extended to a larger
class of mappings in [1, 2].

For strong stable equilibria, the existence condition and discreteness is studied in [15], where a strong
stable equilibrium is more stable than an essential equilibrium. Recently, Xiang et al. introduce a strong
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perturbation class of correspondences and obtain strong stable sets for fixed points and Nash equilibira
in [27], and further results are obtained in [28]. A strong stable set of fixed points can resist a larger
perturbation of correspondences than an essential fixed point set.

Very recently, stability of equilibria is studied further by enlarging the perturbation of a mapping or
correspondence to the range including the perturbation of domains, see strongly essential sets of Ky Fan’s
points by Xiang et al. [29], essential components of fixed points by Song et al. [22], essential equilibria in
normal–form games by Carbonell-Nicolau [5]. On the other hand, the existence of stability equilibria for
games, in relation to resisting perturbations, is extended from continuous games to discontinuous games
(see the results by Scalzo [21] and Carbonell-Nicolau [5]).

On the basis of recent studies related to the strong perturbation of correspondences and games, this
paper aims to make a further study on the strong stability of fixed points for correspondences in a
normed linear space by considering both the strong perturbation of correspondences and the perturbation
of their domains. It obtains that a robust stable set of fixed points exists for a correspondence if the
correspondence has at least one fixed point. The existence of stable component under some condition can
also be guaranteed. These induce the existence of a strong stable set for economy equilibria.

2. Preliminaries and motivations

Let X be a convex and compact subset of a normed linear space E with norm ‖ · ‖. Given a set A ⊂ E,
K(A) denotes the collection of all closed and convex subsets of A. A kind of useful correspondence in
applications has upper semi–continuity. Denote Uc(X) the collection of correspondences on X as

Uc(X) = {F : X→ 2X | F is upper semi–continuous with nonempty and closed values},

and let Uco(X) ⊂ Uc(X) be the collection as the following

Uco(X) = {F ∈ Uc(X) | F has convex values}.

For each F ∈ Uc(X), let fix(F) be the fixed point set of F on X. Clearly, if fix(F) 6= ∅, then fix(F) is closed. A
classic metric of any two correspondences F and G in Uc(X) is ρX(F,G) with

ρX(F,G) = sup
x∈X

h(F(x),G(x)),

where h(A,B) is the Hausdorff distance between the sets A and B which induced by the norm on E.
Another usual metric is ρg(F,G) such that

ρg(F,G) = h(gr(F),gr(G)),

where gr(H) is the graph of H ∈ Uc(X). These induce two δ (δ > 0) neighbors of a correspondence
F ∈ Uc(X), which are given below:

NX(F, δ) = {G ∈ Uc(X) | ρX(F,G) < δ},

and
Ng(F, δ) = {G ∈ Uc(X) | ρg(F,G) < δ}.

For the deep study of strong stability of fixed point set fix(F) for a correspondence F ∈ Uco(X), in the
papers [27] and [28], Xiang et al. introduce an interesting δ neighbor of F as the following:

N(F, δ) = {G ∈ Uco(X) |G(x) ∈ co(F(x+Bδ(0)) +Bδ(0)),∀x ∈ X},

where co(A) is the convex hull of the set A, and Bδ(0) = {x ∈ E : ‖x‖ < δ}. The papers [27] and [28]
prove some strong stable results related to the subsets of fix(F), and show that a strong stable subset of
fix(F) can eliminate some abnormal fixed points. If we only consider correspondences in Uco(X), from
the references, it holds that
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NX(F, δ)∩Uco(X) ⊆ Ng(F, δ)∩Uco(X) ⊆ N(F, δ),

for each F ∈ Uco(X) and each δ > 0. A subset S of fix(F), which can resist the strong perturbation of F in
the range of N(F, δ), is more stable than the subsets which can resist the perturbation in Ng(F, δ)∩Uco(X)
or NX(F, δ)∩Uco(X). For each x ∈ X, if there is no confusion, denote co(F(x+Bδ(0)) +Bδ(0)) by coFbδ(x)
and F(x+Bδ(0)) +Bδ(0) by Fbδ(x), respectively.

For analysis of fixed points of a correspondence restricted on a subset of X, we write Γc, Γco and Γ ′co
as

Γc = {(F,A) | F ∈ Uc(X),A ∈ K(X)},

Γco = {(F,A) | F ∈ Uco(X),A ∈ K(X)},

and
Γ ′co = {(F,A) ∈ Uco(X)×K(X) | F(x) ⊆ A,∀x ∈ A}.

Clearly, it holds that Γ ′co ⊂ Γco ⊂ Γc. For convenience, we denote each (F,A) ∈ Γc as FA.
A fixed point x of a correspondence FA ∈ Γc means both x ∈ F(x) and x ∈ A. Furthermore, the set of

fixed points of FA is denoted by fix(FA). fix(FA) only considers the fixed points included in A ⊆ X. It is
found that fix(FA) 6= ∅ if FA ∈ Γ ′co, while fix(FA) may be empty if FA ∈ Γco ⊂ Γc.

The paper [22] introduces the following metric ρs to analyze the perturbation of correspondences in
Γ ′co (inwhere it only considers FA ∈ Γ ′co satisfying A ∈ K(intX) and X ⊆ Rn). Here, the distance of any
two FA and GD in Γ ′co, is written as ρs(FA,GD) with

ρs(FA,GD) = sup
x∈X

h(F(x),G(x)) + h(A,D).

The convergence of a sequence {Fn} ⊂ Uc(X) with Fn
ρX−→ F does not necessarily mean that FnAn

ρs→ FA for
some {An} ⊂ K(X) and A ∈ K(X). Conversely, it is true. The metric ρs also induces a δ neighbor for each
FA ∈ Γco as

Ns(FA, δ) = {GD ∈ Γ ′co | ρs(FA,GD) < δ}.

Inspired by the above the strong perturbation of correspondences and restriction of domains, this
paper considers three δ neighbors of a correspondence FA ∈ Γc as:

Nc(FA, δ) = {GD ∈ Γc |G(x) ∈ Fbδ(x), ∀x ∈ X;h(A,D) < δ},
Nco(FA, δ) = {GD ∈ Γc |G(x) ∈ coFbδ(x),∀x ∈ X;h(A,D) < δ},

and

N ′co(FA, δ) = {GD ∈ Γ ′co |G(x) ∈ coFbδ(x),∀x ∈ X;h(A,D) < δ}.

Let FA ∈ Γc, it is clear that
Ns(FA, δ) ⊂ N ′co(FA, δ) ⊂ Nco(FA, δ), (2.1)

and
Ns(FA, δ) ⊂ Nc(FA, δ) ⊂ Nco(FA, δ), (2.2)

if we do not consider the perturbation of A, we have

P(Ns(FA, δ)) ⊂ NX(F, δ) ⊂ P(Nc(FA, δ)) ⊂ P(Nco(FA, δ)), (2.3)

and
N(F, δ) ⊂ P(N ′co(FA, δ)) ⊂ P(Nco(FA, δ)), (2.4)

where P(Q) denotes the projection of Q onto Uc(X) with Q ⊆ Γc.
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Definition 2.1. Let FA ∈ Γc. A nonempty closed subset S of fix(FA) is called a strong stable set with
respect to Nc (Nco or N ′co) if for each ε > 0, there exists δ > 0 such that fix(GD) ∩ (fix(FA) + Bε(0)) 6= ∅
for any GD ∈ Nc(FA, δ) (Nco(FA, δ) or N ′co(FA, δ)) with fix(GD) 6= ∅. If a strong stable set is a minimal
element in the collection of all strong stable sets (ordered by set inclusion) in fix(FA), it is called a minimal
strong stable set.

Definition 2.2. A strong stable set S of fix(FA) for FA ∈ Γc is called a robust stable set with respect to Nc
(Nco or N ′co) if for each ε > 0, there is δ > 0 such that there exists a strong stable set C in fix(GD) with
C ⊆ S+Bε(0) for any GD ∈ Nc(FA, δ) (Nco(FA, δ) or N ′co(FA, δ)). If a minimal strong stable set is robust
stable, then it is called a minimal robust stable set.

For each FA ∈ Γc, it is known that the fixed point set fix(FA) can be decomposed as fix(FA) = ∪α∈ΛCα,
where each Cα is a connected component (for short, component) and any two Cα and Cβ are disjointed.

Definition 2.3. The set of some components C with C = ∪β∈Λ ′Cβ ⊆ fix(FA) and Λ ′ ⊆ Λ for a correspon-
dence FA ∈ Γ ′co, is robust stable with respect to N ′co, if for each ε > 0, there is δ > 0 such that there exists
a component Cγ in fix(GD) with Cγ ⊆ C+Bε(0) for each GD ∈ N ′co(FA, δ).

Remark 2.4. For the above stability concepts, intuitively, a robust stable set (component) has more re-
quirements than that of a strong stable set (component). Here, the robust stability is also related to the
structural stability, robustness to bounded rationality equilibria, see [36] for further extension.

Lemma 2.5. Let F : E→ 2E be an upper semi–continuous correspondence and A ⊂ E. For each η > 0, there exists
a positive number r such that F(A+Br(0)) ⊆ F(A) +Bη(0).

Proof. Since F is upper semi–continuous on E, for each η > 0 and each x ∈ X, there is an open neighbor-
hood O(x) of x in E such that F(O(x)) ⊆ F(x) +Bη(0). Denote ∪x∈AO(x) by U, hence, we have

F(U) ⊆ F(A) +Bη(0).

Since the open U ⊃ A and A is compact, there exists a number r > 0 with A+ Br(0) ⊂ U. Therefore,
F(A+Br(0)) ⊆ F(A) +Bη(0).

Lemma 2.6. Let A,B ⊆ E. For a number η > 0, if A ⊆ B+Bη(0), then it holds that co(A) ⊆ co(B) +Bη(0).

Proof. Take a point x ∈ co(A). There are two points a1,a2 ∈ A and a number α ∈ [0, 1] such that
αa1 + (1 − α)a2 = x. Since the points a1,a2 ∈ A and A ⊆ B+ Bη(0), we have that a1,a2 ∈ B+ Bη(0).
Then, there exist two points r1, r2 ∈ Bη(0) and two points b1,b2 ∈ B such that a1 = b1 + r1 and a2 =
b2 + r2. Hence, x = αa1 + (1 − α)a2 = αb1 + (1 − α)b2 + αr1 + (1 − α)r2 ∈ co(B) + co(Bη(0)). Therefore,
x ∈ co(B) +Bη(0), because Bη(0) is convex. We obtain that co(A) ⊆ co(B) +Bη(0).

Lemma 2.7. If F : X→ 2E is upper semi–continuous, then P : X→ 2E is upper semi–continuous, where

P(x) = co(F(x+ B̄ δ
2
(0)) + B̄ δ

2
(0)), ∀ x ∈ X, and δ > 0.

Proof. For each x ∈ X and each η > 0, from the upper semi–continuity of F and Lemma 2.5, we have a
number r with 0 < r < δ

6 such that,

F(x+ B̄ δ
2
(0) +Br(0)) ⊆ F(x+ B̄ δ

2
(0)) +Bη(0).

Then,
F(x+ B̄ δ

2
(0) +Br(0)) + B̄ δ

2
(0) ⊆ F(x+ B̄ δ

2
(0)) + B̄ δ

2
(0) +Bη(0).

By Lemma 2.6, we have

co(F(x+ B̄ δ
2
(0) +Br(0)) + B̄ δ

2
(0)) ⊆ co(F(x+ B̄ δ

2
(0)) + B̄ δ

2
(0)) +Bη(0).
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That is,
P(x+Br(0)) ⊆ P(x) +Bη(0).

The following lemma is well known. We will use it to prove a new result.

Lemma 2.8. Let A be a nonempty bounded subset of E and b 6∈ intA. Let a ∈ Ā, where Ā is the closure of A.
Then there exists s ∈ L(a,b)∩ ∂A and ||b− s|| 6 ||a− b||, where ∂A is the boundary of A and

L(a,b) = {ta+ (1 − t)b : t ∈ [0, 1]}.

Lemma 2.9. Let A,D and C be non–empty, closed, bounded convex sets in E with D ⊂ int(A) and C ⊆ A. If
maxx∈∂A d(x,∂C) < minx∈∂A d(x,∂D), then D ⊆ C, where d(z,V) = minv∈V ||z− v||.

Proof. Suppose that D 6⊆ C, then, there is a point z ∈ D with z 6∈ C. It can be found a point c ∈ C such that
||z− c|| = d(z,C), because C is closed and convex. It can be guaranteed that c ∈ ∂C. If not, it holds that
c ∈ intC (the interior of C). From Lemma 2.8, there is a point c ′ ∈ L(c, z) ∩ ∂C. Let c ′ = λ1c+ (1 − λ1)z.
Clearly, λ1 > 0, then, there is a number λ2 with 0 < λ2 < λ1 such that c ′′ = λ2c+ (1 − λ2)z ∈ intC∩ L(c, z),
due to the fact that c ∈ intC. Hence, we have ||z − c ′|| < ||z − c|| = ||z − c ′|| + ||c ′ − c ′′|| + ||c ′′ − c||, a
contradiction to ||z− c|| = d(z,C). Therefore, c ∈ ∂C.

Since the sets A and D are bounded, there exists a number α > 0 such that b = c+ α(z− c) 6∈ A. By
Lemma 2.8, there are two points a and z ′ with a ∈ L(c,b)∩ ∂A and z ′ ∈ L(c,b)∩ ∂D such that

||b− a|| 6 ||b− z ′|| 6 ||b− z|| 6 ||b− c||.

Then,

||b− z ′||− ||b− a|| 6 ||b− z||− ||b− a|| 6 ||b− c||− ||b− a||.

Hence, ||a− z ′|| 6 ||a− z|| 6 ||a− c||. Thus, we have

minx∈∂A d(x,∂D) 6 ||a− z ′|| 6 ||a− z|| 6 ||a− c|| 6 maxx∈∂A d(x,∂C),

which contradicts to the condition maxx∈∂A d(x,∂C) < minx∈∂A d(x,∂D). Therefore, we obtain that
D ⊆ C.

Lemma 2.10 ([25]). If A and C are non–empty, closed, bounded convex sets in E, h(A,C) = h(∂A,∂C).

3. Stable sets of fixed points under strong perturbations

Theorem 3.1. For each FA ∈ Γc and each ε > 0, if the fixed point set fix(FA) 6= ∅, then, there is δ > 0 such that
fix(GD) ⊆ fix(FA) +Bε(0) for any GD ∈ Nc(FA, δ).

Proof. Since fix(FA) 6= ∅, we have that the set fix(FA) +Bε(0) is well defined. By way of contradiction, we
assume that there is a number ε̄ > 0, a sequence {δn} with δn → 0 (n → ∞) and a sequence {GnDn} ⊂
Nc(FA, δn) but there exists a point xn ∈ fix(GnDn) with xn 6∈ fix(FA) +Bε̄(0) for each n = 1, 2, · · · .

Due to the compactness of X, there is a convergent subsequence {xnk} of {xn} such that xnk → x0 (k→∞). From {GnDn} ⊂ Nc(FA, δn), we know that h(Dn,A) < δn. Since xn ∈ fix(GnDn), we have xn ∈ Dn.
Hence, the distance of the point x0 and the set A, d(x0,A), is as the following

d(x0,A) 6 d(x0, xnk) + d(xnk ,Dnk) + h(Dnk ,A)→ 0.

Then x0 ∈ A, because A is closed.
By the upper semi–continuity of FA, for any ε > 0, it can be found a number r with 0 < r < ε

2 such
that F(Br(x0)) ⊆ F(x0) +B ε2 (0). Then as k is large enough, it holds that

F(Bδnk (x0)) +Bδnk (0) ⊆ F(Br(x0)) +B ε2 (0) ⊆ F(x0) +Bε(0). (3.1)
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Note that xn ∈ fix(GnDn) and {GnDn} ⊂ Nc(FA, δn), we have

xn ∈ Gn(xn) ⊆ F(Bδn(xn)) +Bδn(0). (3.2)

Therefore, as long as k is large enough, we obtain that xnk ∈ F(x0) +Bε(0). Since ε is arbitrary, it gets that
x0 ∈ F(x0). Combing the result that x0 ∈ A, it can be asserted that x0 ∈ fix(FA), which contradicts with
the assumption xnk 6∈ fix(FA) +Bε̄(0) for each k = 1, 2, · · · . The proof is completed.

Theorem 3.2. For each FA ∈ Γco and each ε > 0, if the fixed point set fix(FA) 6= ∅, then, there is δ > 0 such that
fix(GD) ⊆ fix(FA) +Bε(0) for any GD ∈ Nco(FA, δ).

Proof. Follow the whole proof of Theorem 3.1, corresponding to the inclusion relation (3.1), it needs to
prove

co(F(Bδnk (x0)) +Bδnk (0)) ⊆ F(x0) +Bε(0).

In fact, from the fact (3.1) and Lemma 2.6, we have

co(F(Bδnk (x0)) +Bδnk (0)) ⊆ co(F(x0)) +Bε(0).

Note that FA ∈ Γco, F has convex values. Then, co(F(x0)) = F(x0).
Corresponding to the inclusion relation (3.2), from GnDn ∈ Nco(FA, δn), we have

xn ∈ Gn(xn) ⊆ co(F(Bδn(xn)) +Bδn(0)).

The other part follows the proof of Theorem 3.1.

Remark 3.3. It can be observed from Theorem 3.1 and Theorem 3.2 that, for a correspondence

FA ∈ Γc (Γco),

if fix(FA) 6= ∅, then fix(FA) itself is strong stable with respect to Nc (Nco). Furthermore, for a correspon-
dence FA ∈ Γ ′co, then fix(FA) itself is strong stable with respect to N ′co, hence, a strong stable set does
exist in this situation.

Theorem 3.4. For a correspondence FA ∈ Γc (Γco), if fix(FA) 6= ∅, then fix(FA) is robust stable with respect to
Nc (Nco). For a correspondence FA ∈ Γ ′co, fix(FA) is robust stable with respect to N ′co

Proof. For the case that FA ∈ Γc, from Theorem 3.1, for each ε > 0, there is δ > 0 such that

fix(GD) ⊂ fix(FA) +Bε(0), ∀GD ∈ Nc(FA, δ).

By Remark 3.3, the set fix(FA) is strong stable, and note that fix(GD) is also strong stable. Then, fix(FA)
is robust stable. Similarly, for the case that FA ∈ Γco or FA ∈ Γ ′co, the result follows from Theorem 3.2 and
Remark 3.3.

Remark 3.5. Theorem 3.4 shows that the robust stable set exists if the correspondence has at least one fixed
point. The following results further show the size of robust stable sets can be reduced.

The following analysis considers the perturbation in Γ ′co, which restricts the perturbation of X in itself.

Theorem 3.6. Let FX ∈ Γ ′co. If the fixed point set fix(FX) satisfies that fix(FX) ⊂ int(X), then, there is a robust
stable component in fix(FX) with respect to N ′co.

Proof. Firstly, it is clear that fix(FX) 6= ∅. If there is only one component in fix(FX), then the result follows
from Theorem 3.4. If not, take an arbitrary component Cα1 from fix(FX) = ∪α∈ΛCα. Denote fix(FA)\Cα1

by C1. Since fix(FX) is strong stable, for any ε > 0, there is δ > 0 such that for each SA ∈ Γc with
SA ∈ N ′co(FX, δ), it holds that fix(SA) ⊂ fix(FX) +Bε(0).
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Since fix(FX) ⊂ intX, there exists a special positive number ε with (Cα1 + B̄ε(0))∩ (C1 + B̄ε(0)) = ∅ and
Cα1 + B̄ε(0),C1 + B̄ε(0) ⊂ intX, where B̄ε(0) is the closure of the open ball Bε(0). Denote the boundaries of
Cα1 + B̄ε(0) and C1 + B̄ε(0) by ∂(B̄ε(Cα1)) and ∂(B̄ε(C1)), respectively. Let δα1 = minx∈∂X d(x,∂(B̄ε(Cα1)))
and δ1=minx∈∂X d(x,∂(B̄ε(C1))).

Assume that Cα1 and C1 are both not roust stable. There exists GV ∈ N ′co(FX, min{δ3 , δα1}) such
that each component CG in fix(GV) satisfies that CG 6⊂ Cα1 +Bε(0). Because any component in fix(GV) is
connected, which cannot be separated by two disjoint open sets Cα1 +Bε(0) and C1 +Bε(0). Then, by The-
orem 3.2 and Remark 3.3, we have fix(GV) ⊂ C1 +Bε(0). Similarly, there exists HD ∈ N ′co(FX, min{δ3 , δ1})
such that fix(HD) ⊂ Cα1 +Bε(0).

Since GV ∈ N ′co(FX, min{δ3 , δα1}), we have h(X,V) < δα1 . From Lemma 2.10, it holds that h(X,V) =
h(∂X,∂V). Noting that V ∈ K(X), then,

h(∂X,∂V) = maxx∈∂X d(x,∂V) < minx∈∂X d(x,∂(B̄ε(Cα1))) = δα1 ,

by Lemma 2.9, we have Cα1 + B̄ε(0) ⊆ V . Similarly, it holds that C1 + B̄ε(0) ⊆ D.
We define a correspondence T with (T ,X) ∈ Uco(X)×K(X) as the following:

T(x) =


G(x), x ∈ Cα1 +Bε(0),
H(x), x ∈ C1 +Bε(0),
co(F(x+ B̄ δ

2
(0)) + B̄ δ

2
(0))∩X, elsewhere.

It will check that (T ,X) ∈ Γ ′co. Firstly, Since G,H, F ∈ Γ ′co, for each x ∈ X, we have G(x) and H(x) are
convex and closed sets, and it is also closed and convex for the set co(F(x+ B̄ δ

2
(0)) + B̄ δ

2
(0)). Then, T(x)

is closed and convex for each x ∈ X. Secondly, it is also clear that T(x) ⊆ X for each x ∈ X.
Next, we need to prove the upper semi–continuity of T on X. Since G is upper semi–continuous on

X, then, for each x ∈ Cα1 + Bε(0) and each η > 0, there is r > 0 such that x+ Br(0) ⊆ Cα1 + Bε(0) and
G(x+ Br(0)) ⊆ G(x) + Bη(0), that is, T(x+ Br(0)) ⊆ T(x) + Bη(0). Hence, T is upper semi–continuous on
Cα1 +Bε(0). Similarly, it can be checked that T is also upper semi–continuous on C1 +Bε(0).

For each x 6∈ (Cα1 + Bε(0)) ∪ (C1 + Bε(0)), it needs to check the upper semi–continuity of T . Let
P : X → 2X such that P(z) = co(F(z + B̄ δ

2
(0)) + B̄ δ

2
(0)),∀ z ∈ X. Let P ′(z) = P(z) ∩ X, ∀ z ∈ X. Since

F(z) ⊆ X for each z ∈ X, we know that P ′(z) 6= ∅, hence, P ′ : X → 2X is well defined and P ′ is upper
semi–continuous. From Lemma 2.7 and the upper semi–continuity of P ′, for each η > 0, there is a number
r with 0 < r < δ

6 such that,

co(F(x+Br(0) + B̄ δ
2
(0)) + B̄ δ

2
(0))∩X ⊆ co(F(x+ B̄ δ

2
(0)) + B̄ δ

2
(0))∩X+Bη(0). (3.3)

It aims to show that T(x+Br(0)) ⊂ T(x) +Bη(0).
(a) Let y be a point in the set x + Br(0). If y ∈ (x + Br(0)) ∩ (Cα1 + Bε(0)), because of the fact that
GV ∈ N ′co(FX, δ3 ), we have

T(y) = G(y) ∈ co(F(y+B δ
3
(0)) +B δ

3
(0))

⊆ co(F(y+Br(0) + B̄ δ
3
(0)) +B δ

2
(0))

⊆ co(F(y+ B̄ δ
2
(0)) + B̄ δ

2
(0)).

Note that G(y) ⊆ X, it holds that

T(y) = G(y) ⊆ co(F(y+ B̄ δ
2
(0)) + B̄ δ

2
(0))∩X. (3.4)

(b) Similarly, when y ∈ (x+Br(0))∩ (C1 +Bε(0)), then

T(y) = H(y) ∈ co(F(y+ B̄ δ
2
(0)) + B̄ δ

2
(0))∩X. (3.5)
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(c) If y ∈ x+Br(0) and y 6∈ (Cα1 +Bε(0))∪ (C1 +Bε(0)), then

T(y) = co(F(y+ B̄ δ
2
(0)) + B̄ δ

2
(0))∩X. (3.6)

Thus, we obtain that T(x+ Br(0)) ⊆ co(F(x+ Br(0) + B̄ δ
2
(0)) + B̄ δ

2
(0)) ∩ X from (3.4), (3.5) and (3.6).

Noting the fact (3.3), we have

T(x+Br(0)) ⊆ co(F(x+ B̄ δ
2
(0))) + B̄ δ

2
(0))∩X+Bη(0)

= T(x) +Bη(0).

Therefore, T is also upper semi–continuous for each x 6∈ (Cα1 + Bε(0)) ∪ (C1 + Bε(0)), hence, T is upper
semi–continuous on X. We obtain that TX ∈ Γ ′co, then, fix(TX) 6= ∅.

In addition, it is easy to check that for each x ∈ X, T(x) ∈ co(F(x + Bδ(0)) + Bδ(0)), that is, TX ∈
Nco(FX, δ). By Theorem 3.4, we know that

fix(TX) ⊆ (Cα1 +Bε(0))∪ (C1 +Bε(0)). (3.7)

For a point x ∈ fix(TX), we have x ∈ T(x) and x ∈ X. If the point x satisfies that x ∈ Cα1 + Bε(0) ⊆ V ,
then, x ∈ G(x). Hence, it is true that x ∈ fix(GV). Noting that fix(GV) ⊂ C1 + Bε(0), it holds that x ∈
C1 +Bε(0), which is a contradiction to x ∈ Cα1 +Bε(0). Similarly, if it is the case that x ∈ C1 +Bε(0), then
x ∈ H(x) = T(x), and it will deduce a contradiction between x ∈ Cα1 + Bε(0) and x ∈ C1 + Bε(0). Thus,
we get that there is no fixed point of TX which belongs to (Cα1 +Bε(0))∪ (C1 +Bε(0)), a contradiction to
the fact (3.7).

Therefore, we assert that it is false that Cα1 and C1 are both not robust stable. If Cα1 is robust stable,
the result is obtained. If not, the set C1 is robust stable, then, we can repeat the above steps by taking
a component Cα2 from C1, and denote C1\Cα2 by C2. Follow the repeat process, if the total number of
components is finite, it will stops at a robust stable component. If the number is infinite, it will lead to
two situations:

a) a component Cαi with i > 1 is robust stable;

b) there is a sequence of robust stable sets {Ci}
∞
i=1 with Cj ⊂ Ck for any j > k, where each Ci con-

sists of some components of fix(FX), furthermore, it is intersection C0 = ∩∞i=1Ci is a robust stable
component.

The proof is completed.

Theorem 3.7.

(a) Let FA ∈ Γc (Γco) with fix(FA) 6= ∅. There exists a minimal robust stable set in fix(FA) with respect to
Nc (Nco).

(b) For each FX ∈ Γ ′co, there exists a minimal robust stable set C in fix(FX) with respect to N ′co. If a minimal
robust stable set C ⊆ fix(FX) satisfies that C ⊂ intX, then C is connected.

Proof.

(a) From Theorem 3.4, fix(FA) itself is a robust stable set. In the collection of all robust stable subsets in
fix(FA), ordered by set inclusion, every decreasing chain consisting of robust stable sets has its intersection
as a lower bound. Then, there exists a minimal robust stable set C in fix(FA) by the Zorn’s Lemma.

(b) For each FX ∈ Γ ′co, we have that fix(FX) 6= ∅. Then, from the part (a), there is a minimal robust stable
set C ⊆ fix(GX) with respect to N ′co ⊆ Nco. By using C instead of fix(FX) in the proof of Theorem 3.6,
if C consists of two disjoint sets Cα1 and C1, then one of them is robust stable as the proof of Theorem
3.6, which contradicts to the fact that C is a minimal element in the collection of robust stable subsets in
fix(GX). Therefore, C is connected.
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For a correspondence FA ∈ Γc with fix(FA) 6= ∅, noting the relations (2.1) and (2.2), any strong stable
set in fix(FA) with respect to Nco is also strong stable with respect to Nc, N ′co and Ns.

Let FX ∈ Γc with fix(FX) 6= ∅. If we do not consider the perturbation of X, similar to the Definition 2.1,
we can define the strong stable set (minimal stable set) with respect to P(Nco),NX, Ng or N. Then, in
this special case of no perturbation of X, from the expressions (2.3) and (2.4), a strong stable set in fix(FX)
with respect to P(Nco) is also strong stable with respect to NX and N.

Theorem 3.8. Let F ∈ Uc and fix(F) 6= ∅ on X.

(a) If a set C with C ⊆ fix(F) is strong stable with respect to P(Nco), then C is strong stable with respect to NX
and N.

(b) If C is minimal strong stable with respect to P(Nco), then there exists a minimal strong stable set D such
that D ⊆ C with respect to NX and N.

Proof. From the relations (2.3) and (2.4), the part (a) is true. For the part (b), since C is minimal strong
stable with respect to P(Nco), by the part (a), we get that C is also strong stable with respect to NX and
N. For the collection of all strong stable sets (ordered by set inclusion) with respect to NX or N in C, each
deceasing chain has a lower bound, which is the intersection of the chain. By the Zorn’s lemma, there is
a minimal element (strong stable set) D in C.

Theorem 3.9. Let FA ∈ Γc with fix(FA) 6= ∅. If a set C ⊆ fix(FA) is strong stable with respect to Nc, then C is a
robust stable set.

Proof. Since C is strong stable, for each ε > 0, there exists a number δ > 0 such that fix(GD)∩ (C+B ε
2
(0)) 6=

∅ for any GD ∈ Nc(FA, δ) with fix(GD) 6= ∅. Take an arbitrary GD ∈ Nc(FA, δ2 ) and fix(GD) 6= ∅. Let
S = fix(GD)∩ (C+Bε(0)) ⊆ fix(GD). Next, we show that S is a strong stable set of GD.

If we assume that S is not strong stable, then there is a number ε ′ > 0 and a sequence {δn} with
δn <

δ
2 and δn → 0 (n→∞), and for each n = 1, 2, · · · , there exists HnDn ∈ Nc(GD, δn) ∈ Nc(GD, δ2 ) with

fix(HnDn) 6= ∅ but fix(HnDn)∩ (S+Bε ′(0)) = ∅. From HnDn ∈ Nc(GD, δn), we have

Hn(x) ⊆ G(x+Bδn(0)) +Bδn(0) for each x ∈ X.

Since GD ∈ Nc(FA, δ2 ), we have G(x) ⊆ F(x+B δ
2
(0)) +B δ

2
(0) for each x ∈ X. Then,

G(x+Bδn(0)) +Bδn(0) ⊆ F(x+B δ2 (0) +Bδn(0)) +B δ2 (0) +Bδn(0)

⊆ F(x+Bδ(0)) +Bδ(0).

Thus, we get that Hn(x) ⊆ F(x + Bδ(0) + Bδ(0)). In addition, since GD ∈ Nc(FA, δ2 ) and HnDn ∈
Nc(GD, δn), we have that h(Dn,D) < δn < δ

2 and h(D,A) < δ
2 , hence, h(Dn,A) < δ. Therefore,

HnDn ∈ Nc(FA, δ). So, we can find that xn ∈ Hn(xn) and xn ∈ Dn such that xn ∈ C+ B ε
2
(0). By the com-

pactness of X, without loss of generality, assume that xn → x0 (n → ∞). Combing that h(Dn,D) < δn
and xn ∈ Dn, it can be obtained that x0 ∈ D. In addition, we have x0 ∈ C+ Bε(0) from the fact that
xn ∈ C+ B ε

2
(0). Using the upper semi–continuity of GD, for each η > 0, as n is large enough, we have

that

xn ∈ Hn(xn) ⊆ G(xn +Bδn(0)) +Bδn(0) ⊆ G(x0) +Bη(0).

From the arbitrariness of η, it follows that x0 ∈ G(x0). Then, x0 ∈ fix(GD), further, x0 ∈ S. Hence, as n
tends to infinity, it holds that xn ∈ S+Bε ′(0) which contradicts to fix(HnDn)∩ (S+Bε ′(0)) = ∅.

Remark 3.10. From the Remark 2.4 and Theorem 3.9, a robust stable set with respect to Nc is equivalent
to a strong stable set with respect to Nc, however, the definition of a robust stable set is more meaningful
than that of a strong stable set. This reveals that a strong stable set (component) of fixed points for a given
correspondence admits a strong stable set (component) in it is neighborhood, rather than a fixed point for
any perturbation which is near the correspondence.
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4. An application to stable sets of economy equilibria

This gives an application in the stability of equilibria of Abstract Economy. For the convenience of
applications, we rewrite some signs in order to show the stability of equilibria of abstract economy.

Let I be an index set. For each i ∈ I, Xi is a nonempty, compact and convex subset in a normed linear
space Ei. Let X = ×i∈IXi ⊂ E with E = ×i∈IEi and X−i = X \ Xi. For each i ∈ I, the correspondence
Ri : X → 2Xi has nonempty, compact and convex values, and the function Ui : X → R is continuous
and quasiconcave in xi ∈ Xi. Then Ω = {Xi,Ri,Ui, i ∈ I} is an abstract economy, and it aims to find an
equilibrium x̄ ∈ X such that,

Ui(x̄) = Ui(x̄i, x̄−i) = supzi∈Ri(x̄)Ui(zi, x̄−i), ∀ i ∈ I.

For each x ∈ X and i ∈ I, let

Fi(x) = {yi ∈ Xi : Ui(yi, x−i) = supzi∈Ri(x)Ui(zi, x−i)} ⊆ Ri(x).

Denote F such that F(x) = ×i∈IFi(x), for each x ∈ X. Then, F is a correspondence on X. From [24, Theorem
4.12], F has upper semi–continuous, compact and convex values. Each equilibria of such abstract economy
Ω is equivalent to a fixed point of F on X, and fix(F) 6= ∅.

Clearly, each R and U corresponds to a correspondence F, then we can define Uco as

U ′co(X) = {F : X→ 2X | R and U satisfy the above conditions}.

The corresponding Γ ′′co and N ′′co are given below

Γ ′′co = {(F,A) ∈ U ′co(X)×K(X) | F(x) ⊆ A,∀x ∈ A},

and for a correspondence FA ∈ Γ ′′co,

N ′′co(FA, δ) = {GD ∈ Γ ′′co |G(x) ∈ coFbδ(x), ∀x ∈ X;h(A,D) < δ}.

Theorem 4.1. For each FX ∈ Γ ′′co, there exists a minimal robust stable set C with C ⊆ fix(FX) with respect to N ′′co.
Further, if C is a subset of int(X), then C is connected.

Proof. It can be found that U ′co ⊆ Uco, Γ ′′co ⊆ Γ ′co, N ′′co(FX, δ) ⊆ N ′co(FX, δ) and fix(FX) 6= ∅, ∀ FX ∈ Γ ′′co.
Then, the result follows from Theorem 3.7.

It should be pointed that a usual kind of perturbation (shaking, like that of perfect equilibria in
normal–form games) of (F,X) ∈ Uco(X)×K(X) restricts the response Fi(x) for a point x ∈ X in the range
of K(int(Xi)) due to agents’ bounded rationality and decision errors. Based on this point, we write Γint as

Γint = {(F,A) ∈ U ′co(X)×K(int(X)) | F(x) ⊆ A, ∀x ∈ A}.

Naturally, it holds that Γint ⊆ Γ ′co. Theorem 4.1 means that a minimal robust stable set C with respect
to N ′co is not only robust to shaking in Γint, but also robust to more perturbation in Γ ′co. It should also
be pointed that the abstract economy is a generalization of a normal–form noncooperation game. In a
normal–form game, it is known that the connectedness and minimality of a stable set fall into the famous
axiomatic requirements in [16], and the requirements are analyzed deeply in [10, 11].

5. Conclusion

This obtains the strong stability of fixed points for two kinds correspondences in a normed linear
space:

(1) those correspondences with upper semi–continuities and closed values;

(2) correspondences with upper semi–continuities, closed and convex values.

A conception of robust stable set in the fixed point set of a correspondence is introduced. The existence
of a robust stable set is guaranteed for the second kind of correspondence. And a roust stable set exists if
there exists at least one fixed point for the first kind of correspondence.
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The results, in relation to the existence of a minimal strong stable set in fixed point sets for corre-
spondences, generalize the corresponding results in [28] and [27] from N neighbors to Nco (Nc,N ′co)
neighbors, from the above second kind of correspondence to the first kind of correspondence, and from
no perturbation of the domain X to the perturbation set K(X). The results also generalize the correspond-
ing results from several aspects in [22] such that, the defined space is generalized from an Euclidean
space to a normed linear space; the perturbation of a correspondence is enlarged from an NX neighbor to
a strong perturbed Nco (Nc,N ′co) neighbor; the perturbation of the domain X is extended from K(int(X))
to K(X).
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