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Abstract
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1. Introduction and preliminaries

A popular tool in nonlinear analysis is the fixed point theory. The Banach contraction principle [2] is
the first important result on fixed points for contractive-type mappings. This principle states that, if (X,d)
is a complete metric space and T : X → X is a Banach contraction (i.e., there exists k ∈ [0, 1) such that
d(Tx, Ty) 6 kd(x,y) for all x,y ∈ X), then T has a unique fixed point. According to its importance and
simplicity, there are a lot of generalizations of Banach contraction principle and metric spaces. Wardowski
[13] suggested the concept of F-contraction and obtained a fixed point result which is a generalization
of the Banach contraction principle. Afterward, Hunwisai and Kumam [4] introduced the concept of
multivalued fuzzy F-contraction mappings in b-metic spaces and gave some fixed point results. Moreover,
the notion of generalized F-Suzuki-contractions as a generalization of the concept of F-contractions was
introduced by Piri and Kumam [9].

The notion of b-metric spaces as a generalization of metric spaces was introduced by Bakhtin [1]. In
1993, Czerwik [3] extended results related to the b-metric spaces. Since then, many authors have studied
fixed point theorems for single-valued and multi-valued operators in b-metric spaces. Roshana et al. [10]
suggested the concept of b-rectangular metric spaces as a generalization of b-metric spaces. In addition,
Sookprasert et al. [12] extended results related to the b-rectangular metric spaces. On the other hand,
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the study of fixed points in partial metric spaces as a generalization of metric spaces was introduced by
Matthews [7] in 1994.

After that, Shukla [11] presented the notion of partial b-metric spaces, which is a generalization of
partial metric spaces and b-metric spaces as follows:

Definition 1.1 ([11]). Let X be a nonempty set and s > 1 be a given real number. A function pb : X×X→
R+ is called a partial b-metric if for all x,y, z ∈ X the following properties hold:

(pb1) x = y if and only if pb(x, x) = pb(x,y) = pb(y,y);

(pb2) pb(x, x) 6 pb(x,y);

(pb3) pb(x,y) = pb(y, x);

(pb4) pb(x,y) 6 s[pb(x, z) + pb(y, z)] − pb(z, z).

The pair (X,pb) is called a partial b-metric space.

The class of partial b-metric spaces is larger than the class of partial metric spaces, since a partial
metric space is a special case of a partial b-metric space with the coefficient s = 1. Also, the class of
partial b-metric spaces is larger than the class of b-metric spaces since a b-metric space is a special case
of a partial b-metric space with the same coefficient and the self distance pb(x, x) = 0.

The following example shows that a partial b-metric space need not be a partial metric space nor a
b-metric space.

Example 1.2 ([11]). Let X = R+ and q > 1 be a constant. Define a function pb : X×X→ R+ by

pb(x,y) = [max{x,y}]q + |x− y|q for all x,y ∈ X.

Then (X,pb) is a partial b-metric space with the coefficient s = 2q−1 > 1, but it is neither a partial metric
space nor a b-metric space.

Proposition 1.3 ([11]). Let X be a nonempty set, p be a partial metric and d be a b-metric with the coefficient s > 1
on X. Then the function pb : X× X → R+, defined by pb(x,y) = p(x,y) + d(x,y) for all x,y ∈ X, is a partial
b-metric with the coefficient s.

Proposition 1.4 ([11]). Let (X,p) be a partial metric space and q > 1. Then (X,pb) is a partial b-metric space
with the coefficient s = 2q−1, where pb : X×X→ R+ is defined by pb(x,y) = [p(x,y)]q.

Mustafa et al. [8] introduced a modified version of Definition 1.1 in order to get that each partial
b-metric pb generates a b-metric dpb .

Definition 1.5 ([8]). Let X be a nonempty set and s > 1 be a given real number. A function pb : X×X→
R+ is called a partial b-metric if for all x,y, z ∈ X the following properties hold:

(pb1) x = y if and only if pb(x, x) = pb(x,y) = pb(y,y);

(pb2) pb(x, x) 6 pb(x,y);

(pb3) pb(x,y) = pb(y, x);

(pb4 ′) pb(x,y) 6 s(pb(x, z) + pb(y, z) − pb(z, z)) + ( 1−s
2 )(pb(x, x) + pb(y,y)).

The pair (X,pb) is called a partial b-metric space.

Since s > 1, by (pb4 ′), we obtain that

pb(x,y) 6 s(pb(x, z) + pb(z,y) − pb(z, z)) 6 s(pb(x, z) + pb(z,y)) − pb(z, z).

Thus, a partial b-metric in the sense of Definition 1.5 is also a partial b-metric in Definition 1.1.
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In a partial b-metric space (X,pb), if pb(x,y) = 0 implies pb(x, x) = pb(x,y) = pb(y,y) = 0, then
x = y, but if x = y, then pb(x,y) may not be 0. It is clear that every partial metric space is a partial
b-metric space with the coefficient s = 1 and every b-metric space is a partial b-metric space with the
same coefficient and the self distance pb(x, x) = 0, but the converse of these facts may not hold.

The following example shows that a partial b-metric space (Definition 1.5) need not to be a partial
metric space nor a b-metric space.

Example 1.6 ([8]). Let (X,d) be a metric space and pb : X×X→ R+ defined by

pb(x,y) = d(x,y)q + a for all x,y ∈ X,

where q > 1 and a > 0. Then pb is a partial b-metric with s = 2q−1, but it is neither a partial metric nor
b-metric.

Proposition 1.7 ([8]). Every partial b-metric pb defines a b-metric dpb , where

dpb(x,y) = 2pb(x,y) − pb(x, x) − pb(y,y) for all x,y ∈ X.

Definition 1.8 ([8]). Let {xn} be a sequence in a partial b-metric space (X,pb).

(i) A sequence {xn} is pb-convergent to a point x ∈ X if lim
n→∞pb(x, xn) = pb(x, x).

(ii) A sequence {xn} is a pb-Cauchy sequence if lim
n,m→∞pb(xn, xm) exists (and is finite).

(iii) A partial b-metric space (X,pb) is said to be pb-complete if every pb-Cauchy sequence {xn} in X
pb-converges to a point x ∈ X such that lim

n,m→∞pb(xn, xm) = lim
n→∞pb(xn, x) = pb(x, x).

Lemma 1.9 ([8]).

(1) A sequence {xn} is a pb-Cauchy sequence in a partial b-metric space (X,pb) if and only if it is a b-Cauchy
sequence in the b-metric space (X,dpb).

(2) A partial b-metric space (X,pb) is pb-complete if and only if a b-metric space (X,dpb) is b-complete. More-
over, lim

n→∞dpb(x, xn) = 0 if and only if

lim
n→∞pb(x, xn) = lim

n,m→∞pb(xn, xm) = pb(x, x).

Definition 1.10 ([8]). Let (X,pb) and (X ′,p ′b) be two partial b-metric spaces and let f : (X,pb) → (X ′,p ′b)
be a mapping. Then f is said to be pb-continuous at a point a ∈ X if for a given ε > 0, there exists δ > 0
such that x ∈ X and pb(a, x) < δ+ pb(a,a) imply that p ′b(f(a), f(x)) < ε+ p

′
b(f(a), f(a)). The mapping f

is pb-continuous on X if it is pb-continuous at all a ∈ X.

Proposition 1.11 ([8]). Let (X,pb) and (X ′,p ′b) be two partial b-metric spaces. Then a mapping f : X → X

is pb-continuous at a point x ∈ X if and only if it is pb-sequentially continuous at x, that is, whenever {xn} is
pb-convergent to x, {f(xn)} is p ′b-convergent to f(x).

Recently, the notion of JS-quasi-contractions was introduced by Li and Jiang [6]. They proved some
fixed point results for JS-quasi-contractions in complete metric spaces.

Following Hussain et al. [5], Li and Jiang [6] denoted Ψ by the set of all nondecreasing functions
ψ : [0,+∞)→ [1,+∞) satisfying the following conditions:

(Ψ1) ψ(t) = 1 if and only if t = 0;

(Ψ2) for each sequence {tn} ⊂ (0,+∞), lim
n→∞ψ(tn) = 1 if and only if lim

n→∞ tn = 0;
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(Ψ3) there exist r ∈ (0, 1) and l ∈ (0,+∞] such that lim
t→0+

ψ(t) − 1
tr

= l;

(Ψ4) ψ(t+ s) 6 ψ(t)ψ(s) for all t, s > 0.

Li and Jiang [6] set the following symbols:

Φ1 = {ψ : (0,+∞)→ (1,+∞) : ψ is a nondecreasing function satisfying (Ψ2) and (Ψ3)};

Φ2 = {ψ : (0,+∞)→ (1,+∞) : ψ is a nondecreasing continuous function};

Φ3 = {ψ : [0,+∞)→ [1,+∞) : ψ is a nondecreasing continuous function satisfying (Ψ1)};

Φ4 = {ψ : [0,+∞)→ [1,+∞) : ψ is a nondecreasing continuous function satisfying (Ψ1) and (Ψ4)}.

They [6] presented the following examples for illustrating the relationship among the above sets.

Example 1.12 ([6]). Let f(t) = ete
t

for t > 0. Then f ∈ Φ2 ∩Φ3, but f /∈ Ψ∪Φ1 ∪Φ4 since lim
t→0+

ete
t
− 1
tr

= 0

for each r ∈ (0, 1) and e(t+s)e
(t+s)

> ese
s
ete

t
for all s, t > 0.

Example 1.13 ([6]). Let g(t) = et
a

for t > 0, where a > 0. When a ∈ (0, 1), g ∈ Ψ ∩Φ1 ∩Φ2 ∩Φ3 ∩Φ4.

When a = 1, g ∈ Φ2 ∩Φ3 ∩Φ4, but g /∈ Ψ ∪Φ1 since lim
t→0+

et − 1
tr

= 0 for each r ∈ (0, 1). When

a > 1, g ∈ Φ2 ∩Φ3, but g /∈ Ψ ∪Φ1 ∪Φ4 since lim
t→0+

et
a
− 1
tr

= 0 for each r ∈ (0, 1) and e(t+s)
a
> et

a
es
a

for all s, t > 0.

They [6] introduced the concept of JS-quasi-contractions and assure the existence of the fixed point
theorems for such mappings in complete metric spaces.

Definition 1.14 ([6]). Let (X,d) be a metric space. A mapping T : X→ X is said to be a JS-quasi-contraction
if there exist a function ψ : (0,+∞)→ (1,+∞) and λ ∈ (0, 1) such that

ψ(d(Tx, Ty)) 6 ψ(Md(x,y))λ for all x,y ∈ X with Tx 6= Ty,

where Md(x,y) = max{d(x,y),d(x, Tx),d(y, Ty), d(x,Ty)+d(y,Tx)
2 }.

Remark 1.15 ([6]). Let T : X→ X and ψ : [0,+∞)→ [1,+∞) be such that

ψ(d(Tx, Ty)) 6 ψ(d(x,y))k1ψ(d(x, Tx))k2ψ(d(y, Ty))k3ψ(
d(x, Ty) + d(y, Tx)

2
)2k4 for all x,y ∈ X, (1.1)

where k1,k2,k3,k4 are nonnegative numbers with k1 + k2 + k3 + 2k4 < 1. Then T is a JS-quasi-contraction
with λ = k1 + k2 + k3 + 2k4, provided that (Ψ2) is satisfied.

Theorem 1.16 ([6]). Let (X,d) be a complete metric space and T : X→ X be a JS-quasi-contraction with ψ ∈ Φ2.
Then T has a unique fixed point in X.

Theorem 1.17 ([6]). Let (X,d) be a complete metric space and T : X → X. Assume that there exist ψ ∈ Φ3 and
nonnegative numbers k1,k2,k3,k4 with k1 + k2 + k3 + 2k4 < 1 such that (1.1) is satisfied. Then T has a unique
fixed point in X.

In this paper, we introduce a concept of generalized JS-quasi-contractions and obtain sufficient con-
ditions for the existence of fixed points of such mappings on pb-complete partial b-metric spaces. Our
results extend the results in the literature. In addition, an example is given to illustrate and support our
main result.
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2. Main result

We now introduce the concept of generalized JS-quasi-contractions on partial b-metric spaces.

Definition 2.1. Let (X,pb) be a partial b-metric space with the coefficient s > 1. We say that a mapping
T : X → X is a generalized JS-quasi-contraction if there exist a function ψ : (0,+∞) → (1,+∞) and
λ ∈ (0, 1) such that

ψ(spb(Tx, Ty)) 6 ψ(Ms(x,y))λ for all x,y ∈ X with Tx 6= Ty, (2.1)

where Ms(x,y) = max{pb(x,y),pb(x, Tx),pb(y, Ty), pb(x,Ty)+pb(y,Tx)
2s }.

The following example shows that a generalized JS-quasi-contraction need not to be pb-continuous.

Example 2.2. Let X = [0,+∞) with the partial b-metric pb : X×X→ R+ defined by

pb(x,y) = [max{x,y}]2

for all x,y ∈ X. Obviously, (X,pb) is a pb-complete partial b-metric space with s = 2. Define the mapping
T : X→ X by

Tx =

{ 2
3 , x ∈ [0, 1),
x−1
2x , otherwise.

We will show that T is a generalized JS-quasi-contraction with ψ(t) = et ∈ Φ2. In fact, it suffices to show
that there exists λ ∈ (0, 1) such that, for all x,y ∈ X with Tx 6= Ty,

2pb(Tx, Ty)
Ms(x,y)

6 λ.

Let x,y ∈ Xwith Tx 6= Ty. Without loss of generality, we may assume that x < y. It follows that 1 6 x < y.
Therefore,

pb(Tx, Ty) = [max{
x− 1

2x
,
y− 1

2y
}]2 =

y2 − 2y+ 1
4y2 ,

and

Ms(x,y) = max{y2, x2,y2,
[max{x, y−1

2y }]2 + y2

2s
} = y2.

This implies that
2pb(Tx, Ty)
Ms(x,y)

=
y2 − 2y+ 1

2y4 6
1
32

.

This shows that T is a generalized JS-quasi-contraction with ψ(t) = et ∈ Φ2 and λ ∈ [
1
32

, 1).

On the other hand, T is not pb-continuous because there exists a sequence { 1
n+1 } such that

lim
n→∞pb(1, xn) = lim

n→∞[max{1, xn}]2 = 1 = pb(1, 1),

but

lim
n→∞pb(T1, Txn) = [max{0,

2
3
}]2 =

4
9
6= 0 = pb(T1, T1).

The following example shows that a pb-continuous mapping need not to be a generalized JS-quasi-
contraction.
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Example 2.3. Let X = {0, 1, 2} with the partial b-metric pb : X×X→ R+ defined by

pb(x,y) = |x− y|2

for all x,y ∈ X. Obviously, (X,pb) is a pb-complete partial b-metric space with s = 2. Define the mapping
T : X→ X by T0 = T1 = 0 and T2 = 1. Then T is pb-continuous.

We will show that T is not a generalized JS-quasi-contraction with ψ(t) = ete
t ∈ Φ2. In fact, it suffices

to show that for all λ ∈ (0, 1), there exist x,y ∈ X with Tx 6= Ty such that

2pb(Tx, Ty)e2pb(Tx,Ty)−Ms(x,y)

Ms(x,y)
> λ.

Let λ ∈ (0, 1), for x = 1 and y = 2, we have pb(T1, T2) = 1 and Ms(1, 2) = 1. Therefore,

2pb(T1, T2)e2pb(T1,T2)−Ms(1,2)

Ms(1, 2)
= 2(1)e2−1 = 2e > λ,

which implies that T is not a generalized JS-quasi-contraction.

Remark 2.4. As in [6], we obtain the following statements in a partial b-metric space (X,pb) :

(i) Let T : X→ X and λ ∈ (0, 1) such that

spb(Tx, Ty) 6 λMs(x,y) for all x,y ∈ X.

Then T is a generalized JS-quasi-contraction with ψ(t) = et.

(ii) Let T : X→ X and ψ : (0,+∞)→ (1,+∞) be such that

ψ(spb(Tx, Ty)) 6 ψ(pb(x,y))λ for all x,y ∈ X with Tx 6= Ty, (2.2)

where λ ∈ (0, 1). Then T is a generalized JS-quasi-contraction.

(iii) Let T : X→ X and ψ : [0,+∞)→ [1,+∞) be such that

ψ(spb(Tx, Ty)) 6 ψ(pb(x,y))k1ψ(pb(x, Tx))k2ψ(pb(y, Ty))k3ψ(
pb(x, Ty) + pb(y, Tx)

2s
)2k4 (2.3)

for all x,y ∈ X, where k1,k2,k3,k4 are nonnegative numbers with k1 + k2 + k3 + 2k4 < 1. Then T is a
generalized JS-quasi-contraction with λ = k1 + k2 + k3 + 2k4, provided that (Ψ1) is satisfied.

(iv) Let T : X→ X and ψ : [0,+∞)→ [1,+∞) be such that

ψ(spb(Tx, Ty)) 6 ψ(pb(x,y))k1ψ(pb(x, Tx))k2ψ(pb(y, Ty))k3ψ(
pb(x, Ty) + pb(y, Tx)

s
)k4 (2.4)

for all x,y ∈ X. Suppose that ψ is a nondecreasing function such that (Ψ4) is satisfied. It follows
that

ψ(
pb(x, Ty) + pb(y, Tx)

s
)k4 6 ψ(

pb(x, Ty) + pb(y, Tx)
2s

)2k4 for all x,y ∈ X,

and so (2.3) holds. Moreover, if (Ψ1) is satisfied, then it follows from (iii) that T is a generalized
JS-quasi-contraction with λ = k1 + k2 + k3 + 2k4. Therefore, T is a generalized JS-quasi-contraction
with ψ ∈ Φ4 or ψ ∈ Ψ.

We now prove the existence of a unique fixed point for a generalized JS-quasi-contraction.
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Theorem 2.5. Let (X,pb) be a pb-complete partial b-metric space with the coefficient s > 1. Let T : X → X be a
generalized JS-quasi-contraction with ψ ∈ Φ2 and be pb-continuous. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X. Define a sequence {xn} in X by xn = Tnx0 for all n ∈ N. If there exists n ∈ N such
that xn = xn+1 then xn is a fixed point of T and the proof is finished. So we may assume that for every
n ∈N,

xn 6= xn+1. (2.5)

From (2.1), (2.5), and ψ is nondecreasing, we have

ψ(pb(xn, xn+1)) 6 ψ(spb(xn, xn+1)) 6 ψ(Ms(xn−1, xn))λ

for all n ∈N, where

Ms(xn−1, xn) = max{pb(xn−1, xn),pb(xn−1, Txn−1),pb(xn, Txn),
pb(xn−1, Txn) + pb(xn, Txn−1)

2s
}

= max{pb(xn−1, xn),pb(xn−1, xn),pb(xn, xn+1),
pb(xn−1, xn+1) + pb(xn, xn)

2s
}

6 max{pb(xn−1, xn),pb(xn, xn+1)

,
s(pb(xn−1, xn) + pb(xn, xn+1)) − pb(xn, xn) + pb(xn, xn)

2s
}

= max{pb(xn−1, xn),pb(xn, xn+1),
pb(xn−1, xn) + pb(xn, xn+1)

2
}

= max{pb(xn−1, xn),pb(xn, xn+1)}.

This implies that

ψ(pb(xn, xn+1)) 6 ψ(spb(xn, xn+1)) 6 ψ(max{pb(xn−1, xn),pb(xn, xn+1)})
λ (2.6)

for all n ∈N. If there exists some n ∈N such that pb(xn, xn+1) > pb(xn−1, xn), then

ψ(pb(xn, xn+1)) 6 ψ(pb(xn, xn+1))
λ < ψ(pb(xn, xn+1)),

which is a contradiction. It follows that

pb(xn, xn+1) 6 pb(xn−1, xn)

for all n ∈ N. So the sequence {pb(xn, xn+1)} is a nonincreasing sequence of real numbers which is
bounded from below and thus there exists α > 0 such that

lim
n→∞pb(xn, xn+1) = α and pb(xn, xn+1) > α. (2.7)

Suppose that α > 0. From (2.6), (2.7), and ψ being nondecreasing, we obtain that

1 < ψ(α) 6 ψ(pb(xn, xn+1)) 6 ψ(pb(xn−1, xn))λ 6 · · · 6 ψ(pb(x0, x1))
λn (2.8)

for all n ∈ N. Letting n → ∞ in (2.8), we have 1 < ψ(α) 6 1, which is a contradiction. Thus α = 0 and
this yields

lim
n→∞pb(xn, xn+1) = 0. (2.9)

Now, we show that {xn} is a pb-Cauchy sequence in (X,pb) which is equivalent to show that {xn} is a
b-Cauchy sequence in (X,dpb). Suppose not, that is, there exist ε > 0 and two subsequences {xmk

} and
{xnk} of {xn} such that nk is the smallest index with nk > mk > k for which

dpb(xmk
, xnk) > ε (2.10)
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and
dpb(xmk

, xnk−1) < ε. (2.11)

This implies that

ε 6 dpb(xmk
, xnk) 6 sdpb(xmk

, xnk−1) + sdpb(xnk−1, xnk) < sε+ sdpb(xnk−1, xnk). (2.12)

Taking the upper limit as k→∞ in (2.11), we get that

ε

s
6 lim inf

k→∞ dpb(xmk
, xnk−1) 6 lim sup

k→∞ dpb(xmk
, xnk−1) 6 ε. (2.13)

It follows from (2.12) that,
ε 6 lim sup

k→∞ dpb(xmk
, xnk) 6 sε. (2.14)

By using the triangular inequality, we have

dpb(xmk+1, xnk) 6 sdpb(xmk+1, xmk
) + sdpb(xmk

, xnk)

6 sdpb(xmk+1, xmk
) + s2dpb(xmk

, xnk−1) + s
2dpb(xnk−1, xnk)

6 sdpb(xmk+1, xmk
) + s2ε+ s2dpb(xnk−1, xnk).

Taking the upper limit as k→∞ in above inequality, we obtain that

lim sup
k→∞ dpb(xmk+1, xnk) 6 s

2ε.

Further,

dpb(xmk+1, xnk−1) 6 sdpb(xmk+1, xmk
) + sdpb(xmk

, xnk−1) 6 sdpb(xmk+1, xmk
) + sε,

and hence
lim sup
k→∞ dpb(xmk+1, xnk−1) 6 sε. (2.15)

By Proposition 1.7 and (2.9), we deduce that

lim sup
k→∞ dpb(xmk

, xnk−1) = lim sup
k→∞ (2pb(xmk

, xnk−1) − pb(xmk
, xmk

) − pb(xnk−1, xnk−1))

= 2 lim sup
k→∞ pb(xmk

, xnk−1).
(2.16)

Also, by (2.13) and (2.16), we get that

ε

2s
6 lim inf

k→∞ pb(xmk
, xnk−1) 6 lim sup

k→∞ pb(xmk
, xnk−1) 6

ε

2
. (2.17)

In analogy to (2.16), by (2.12), (2.14), and (2.15), we can prove that

lim sup
k→∞ pb(xmk

, xnk) 6
sε

2
, (2.18)

ε

2s
6 lim sup

k→∞ pb(xmk+1, xnk),

lim sup
k→∞ pb(xmk+1, xnk−1) 6

sε

2
. (2.19)

By (2.17), (2.18), and (2.19), we obtain that

lim sup
k→∞ Ms(xmk

, xnk−1) = max{lim sup
k→∞ pb(xmk

, xnk−1), lim sup
k→∞ pb(xmk

, Txmk
), lim sup

k→∞ pb(xnk−1, Txnk−1)
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, lim sup
k→∞

pb(xmk
, Txnk−1) + pb(xnk−1, Txmk

)

2s
}

6 max{lim sup
k→∞ pb(xmk

, xnk−1), 0, 0, lim sup
k→∞

pb(xmk
, xnk) + pb(xnk−1, xmk+1)

2s
}

= max{
ε

2
,
ε

2
} =

ε

2
.

We claim that xmk+1 6= xnk . If xmk+1 = xnk , then dpb(xmk+1, xnk) = 0. From (2.10) and Proposition 1.7,
we have

ε 6 dpb(xmk
, xnk) 6 sdpb(xmk

, xmk+1) + sdpb(xmk+1, xnk)
= sdpb(xmk

, xmk+1)

= s(2pb(xmk
, xmk+1) − pb(xmk

, xmk
) − pb(xmk+1, xmk+1))

6 2spb(xmk
, xmk+1).

Letting k→∞ and using (2.9), we deduce that

ε

2s
6 lim
k→∞pb(xmk

, xmk+1) = 0,

which is a contradiction. It follows from (2.1) that

ψ(
ε

2
) 6 ψ(s lim sup

k→∞ pb(xmk+1, xnk)) = lim sup
k→∞ ψ(spb(xmk+1, xnk))

6 lim sup
k→∞ ψ(Ms(xmk

, xnk−1))
λ 6 ψ(

ε

2
)λ < ψ(

ε

2
),

which is a contradiction. Thus {xn} is a b-Cauchy in b-metric space (X,dpb). Since (X,pb) is pb-complete,
then (X,dpb) is a b-complete b-metric space. So, there exists z ∈ X such that lim

n→∞dpb(xn, z) = 0. By
Lemma 1.9, we get that

lim
n→∞pb(z, xn) = pb(z, z). (2.20)

By Proposition 1.7, (2.9), (2.20), and condition (pb2), we have

lim
n→∞pb(z, xn) = lim

n→∞pb(xn, xn) = 0. (2.21)

Suppose that z 6= Tz implies that pb(z, Tz) > 0 and dpb(z, Tz) > 0. It follows from (2.9) and (2.21) that
there exists a positive integer n0 such that

pb(xn, z) 6
pb(z, Tz)

2
and pb(xn, xn+1) 6

pb(z, Tz)
2

for all n > n0. This implies that

Ms(xn, z) = max{pb(xn, z),pb(xn, xn+1),pb(z, Tz),
pb(xn, Tz) + pb(z, xn+1)

2s
}

6 max{
pb(z, Tz)

2
,
pb(z, Tz)

2
,pb(z, Tz),pb(z, Tz)} = pb(z, Tz)

(2.22)

for all n > n0. Since T is pb-continuous and (2.20), we obtain that

lim
n→∞pb(xn+1, Tz) = pb(Tz, Tz). (2.23)

By the triangle inequality, we deduce that

pb(z, Tz) 6 spb(z, xn+1) + spb(xn+1, Tz)



P. Lohawech, A. Kaewcharoen, J. Nonlinear Sci. Appl., 12 (2019), 728–739 737

for all n ∈N. So by taking limit as n→∞ and using (2.23), we have

pb(z, Tz) 6 s lim
n→∞pb(z, xn+1) + s lim

n→∞pb(xn+1, Tz) = spb(Tz, Tz). (2.24)

If there are infinitely many n ∈N such that xn+1 = Tz, then dpb(xn+1, Tz) = 0. This implies that

dpb(z, Tz) 6 sdpb(z, xn+1) + sdpb(xn+1, Tz) = sdpb(z, xn+1).

Letting n→∞, we get that dpb(z, Tz) 6 s lim
n→∞dpb(z, xn+1) = 0, which is a contradiction. This implies

that there exists n1 ∈ N such that xn+1 6= Tz for all n > n1. Choose N = max{n0,n1}. Thus, by (2.1) and
(2.22), for each n > N, we get that

ψ(spb(xn+1, Tz)) 6 ψ(Ms(xn, z))λ 6 ψ(pb(z, Tz))λ.

Letting n→∞ in this inequality, using the continuity of ψ, (2.23), and (2.24), we obtain that

ψ(pb(z, Tz)) 6 ψ(spb(Tz, Tz)) = lim
n→∞ψ(spb(xn+1, Tz)) 6 ψ(pb(z, Tz))λ < ψ(pb(z, Tz)),

which is a contradiction. Hence Tz = z. Thus z is a fixed point of T . Let x be another fixed point of T
with x 6= z. It follows from (2.1) that

ψ(pb(x, z)) 6 ψ(spb(Tx, Tz))

6 pb(Ms(x, z))λ

= ψ(max{pb(x, z),pb(x, Tx),pb(z, Tz),
pb(x, Tz) + pb(z, Tx)

2s
})λ

= ψ(max{pb(x, z),pb(x, x),pb(z, z),
pb(x, z) + pb(z, x)

2s
})λ

= ψ(max{pb(x, z),pb(x, x),pb(z, z),
pb(x, z)
s

})λ

6 ψ(max{pb(x, z),pb(x, z),pb(x, z),
pb(x, z)
s

})λ

= ψ(pb(x, z))λ

< ψ(pb(x, z)),

which is a contradiction. So x = z. Hence T has a unique fixed point.

We illustrate the following example for supporting our result.

Example 2.6. Let X = {0, 1, 2} with the partial b-metric pb : X×X→ R+ defined by

pb(x,y) = [max{x,y}]2

for all x,y ∈ X. Obviously, (X,pb) is a pb-complete partial b-metric space with s = 2, but it is not a metric
on X. To see this, let x = y = 2 then pb(2, 2) = [max{2, 2}]2 = 4 6= 0. Define the mapping T : X → X by
T0 = T1 = 0 and T2 = 1.

We will show that T is a generalized JS-quasi-contraction with ψ(t) = ete
t
. In fact, it suffices to prove

that there exists λ ∈ (0, 1) such that, for all x,y ∈ X with Tx 6= Ty,

2pb(Tx, Ty)e2pb(Tx,Ty)−Ms(x,y)

Ms(x,y)
6 λ.

Let x,y ∈ X with Tx 6= Ty. Therefore, x = 0,y = 2 or x = 1,y = 2. For both cases, we get pb(T0, T2) =
pb(T1, T2) = 1 and Ms(0, 2) =Ms(1, 2) = 4. This implies that

2pb(T0, T2)e2pb(T0,T2)−Ms(0,2)

Ms(0, 2)
=

2pb(T1, T2)e2pb(T1,T2)−Ms(1,2)

Ms(1, 2)
=
e−2

2
.
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This shows that T is a generalized JS-quasi-contraction with ψ(t) = ete
t

and λ ∈ [
e−2

2
, 1). By Example

1.12, we know that ete
t ∈ Φ2. Therefore, the conclusion immediately follows from Theorem 2.5 to obtain

that T has a unique fixed point which is x = 0.

Theorem 2.7. Let (X,pb) be a pb-complete partial b-metric space with the coefficient s > 1. Let T : X → X be a
pb-continuous mapping. Assume that there exist a function ψ ∈ Φ3 and nonnegative numbers k1,k2,k3,k4 with
k1 + k2 + k3 + 2k4 < 1 such that (2.3) is satisfied. Then T has a unique fixed point in X.

Proof. From Remark 2.4 (iii), we get that T is a generalized JS-quasi-contraction with λ = k1 +k2 +k3 + 2k4.
In case of 0 < λ < 1, by Theorem 2.5, the proof is completed. In case of λ = 0, by (2.1) we have

ψ(spb(Tx, Ty)) 6 ψ(Ms(x,y))0 = 1 for all x,y ∈ X.

Further, by (Ψ1) we deduce that pb(Tx, Ty) = 0 for all x,y ∈ X. Thus, for y = Tx, we have pb(Tx, T(Tx)) =
0. It follows that y = Tx is a fixed point of T . Let z be another fixed point of T . Then

pb(y, z) = pb(Ty, Tz) = 0.

Therefore, y = z and so T has a unique fixed point.

Corollary 2.8. Let (X,pb) be a pb-complete partial b-metric space with the coefficient s > 1 and T : X → X

be a pb-continuous mapping. Assume that there exist ψ ∈ Φ2 and nonnegative real numbers k1,k2,k3,k4 with
k1 + k2 + k3 + 2k4 < 1 such that (2.2) is satisfied. Then T has a unique fixed point in X.

Corollary 2.9. Let (X,pb) be a pb-complete partial b-metric space with the coefficient s > 1 and T : X → X

be a pb-continuous mapping. Assume that there exist ψ ∈ Φ4 and nonnegative real numbers k1,k2,k3,k4 with
k1 + k2 + k3 + 2k4 < 1 such that (2.4) is satisfied. Then T has a unique fixed point in X.

Corollary 2.10. Let (X,pb) be a pb-complete partial b-metric space with the coefficient s > 1, and T : X → X be
pb-continuous. Assume that there exist a > 0 and nonnegative numbers k1,k2,k3,k4 with k1 + k2 + k3 + 2k4 < 1
such that

(spb(Tx, Ty))a 6 k1pb(x,y)a + k2pb(x, Tx)a + k3pb(y, Ty)a + 2k4(
pb(x, Ty) + pb(y, Tx)

2s
)a (2.25)

for all x,y ∈ X. Then T has a unique fixed point in X.

Proof. From Example 1.13, we have ψ(t) = et
a ∈ Φ3, and so (2.3) immediately follows from (2.25). Thus,

by Theorem 2.7, T has a unique fixed point.

Corollary 2.11. Let (X,pb) be a pb-complete partial b-metric space with the coefficient s > 1, and T : X → X be
pb-continuous. Assume that there exist nonnegative numbers k1,k2,k3,k4 with k1 + k2 + k3 + 2k4 < 1 such that

(spb(Tx, Ty))a 6 k1pb(x,y)a + k2pb(x, Tx)a + k3pb(y, Ty)a + k4(
pb(x, Ty) + pb(y, Tx)

s
)a (2.26)

for all x,y ∈ X, where a =
1
n

. Then T has a unique fixed point in X.

Proof. For each a ∈ (0, 1], we obtain that

(
pb(x, Ty) + pb(y, Tx)

s
)a 6 2(

pb(x, Ty) + pb(y, Tx)
2s

)a.

Then (2.26) implies (2.25). Thus, Corollary 2.11 immediately follows from Corollary 2.10. This implies
that T has a unique fixed point.
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