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Abstract
In this paper, a nonconvex vector optimization problem with both inequality and equality constraints is considered. The

functions constituting it are not necessarily differentiable, but they are E-differentiable. The so-called E-Fritz John necessary
optimality conditions and the so-called E-Karush-Kuhn-Tucker necessary optimality conditions are established for the considered
E-differentiable multiobjective programming problems with both inequality and equality constraints. Further, the sufficient
optimality conditions are derived for such nonconvex nonsmooth vector optimization problems under (generalized) E-convexity.
The so-called vector E-Wolfe dual problem is defined for the considered E-differentiable multiobjective programming problem
with both inequality and equality constraints and several dual theorems are established also under (generalized) E-convexity
hypotheses.

Keywords: E-differentiable function, E-Fritz John necessary optimality conditions, E-Karush-Kuhn-Tucker necessary optimality
conditions, E-Wolfe duality, E-convex function.

2010 MSC: 90C26, 90C29, 90C30, 90C46, 90C47.
c©2019 All rights reserved.

1. Introduction

During the last few years, multiobjective optimization (also referred to as multiobjective program-
ming, vector optimization, and multicriteria optimization) has received great interest from the authors
in the areas of optimization theory. This is a consequence of the fact that multiobjective optimization
is applied in many mathematical disciplines and it is known as a useful mathematical model in or-
der to investigate many real world problems with conflicting objectives, arising from human decision
making, engineering, mechanics, economics, logistics, optimization and information technology. Nec-
essary optimality conditions for various classes of nonlinear differentiable and nondifferentiable mul-
tiobjective programming problems have been studied extensively in the literature (see, for example,
[7, 14, 17, 9, 10, 19, 21, 25, 27, 33, 29], and others). The theory and applications of vector optimization prob-
lems have been closely tied with convex analysis. In recent years, however, there has been an increasing
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interest in developing sufficient optimality conditions and duality results for various classes of nonconvex
vector optimization problems (see, for instance, [1, 2, 3, 4, 5, 6, 8, 12, 18, 9, 23, 24, 30, 32, 34, 22, 43], and
others).

Classes of nonconvex sets and nonconvex functions, called E-convex sets and E-convex functions,
respectively, were introduced and studied by Youness [40]. This kind of generalized convexity is based on
the effect of an operator E : Rn → Rn on the sets and the domains of functions. However, some results and
proofs presented by Youness [40] were incorrect as it was pointed out by Yang [39]. Further, Chen [11]
introduced a new class of semi-E-convex functions and discussed its basic properties. Youness and Emam
[44] derived new concepts of a strongly E-convex set and a strongly E-convex function and presented some
properties of these classes of nonconvex sets and functions. Soleimani-damaneh [37] established some
properties of E-convex and generalized E-convex functions. Megahed et al. [30] introduced a combined
interactive approach for solving generalized E-convex multiobjective nonlinear problems. Megahed et al.
[29] presented the concept of an E-differentiable convex function which transforms a (not necessarily)
differentiable convex function to a differentiable function based on the effect of an operator E : Rn → Rn.

In this paper, a nonconvex vector optimization problem with both inequality and equality constraints
is considered. The functions constituting it are not necessarily differentiable, but they are E-differentiable.
The so-called E-Fritz John necessary optimality conditions are established for the considered E-differen-
tiable vector optimization problem. Further, under the introduced E-Abadie constraint qualification, the
E-Karush-Kuhn-Tucker necessary optimality conditions are also proved for such not necessarily differen-
tiable vector optimization problems, in which all involved functions are E-differentiable. It is also given
an example of such a vector optimization problems with E-differentiable functions for which the E-Abadie
constraint qualification does not hold. It turns out that the E-Karush-Kuhn-Tucker necessary optimality
conditions established for such a nonsmooth vector optimization problem are not satisfied in this case.
Furthermore, the sufficient optimality conditions are derived for the considered E-differentiable vector
optimization problem under (generalized) E-convexity.

Furthermore, for the considered E-differentiable vector optimization problem with both inequality and
equality constraints, its vector dual problem in the sense of Wolfe, called Wolfe vector E-dual problem,
is defined. Then various duality theorems between the considered E-differentiable vector optimization
problem and its Wolfe vector E-dual problem are established also under (generalized) E-convexity hy-
potheses.

2. Preliminaries

Throughout this paper the following conventions vectors x=(x1, x2, · · · , xn)
T and y=(y1,y2, · · · ,yn)

T

in Rn will be followed:

(i) x = y if and only if xi = yi for all i = 1, 2, · · · ,n;

(ii) x > y if and only if xi > yi for all i = 1, 2, · · · ,n;

(iii) x = y if and only if xi = yi for all i = 1, 2, · · · ,n;

(iv) x > y if and only if xi = yi for all i = 1, 2, · · · ,n but x 6= y;

(v) x ≯ y is the negation of x > y.

The definition of an E-convex set and the definition of an E-convex function were introduced by
Youness [40]. Now, for convenience, we recall these definitions.

Definition 2.1 ([40]). A set M ⊆ Rn is said to be an E-convex set (with respect to an operator E : Rn → Rn)
if and only if, the following relation

E (u) + λ (E (x) − E (u)) ∈M

holds for all x,u ∈M and any λ ∈ [0, 1].
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Note that every convex set is E-convex (if E is the identity map), but the converse is not true. If
M ⊆ Rn is an E-convex set, then E (M) ⊆M. If E (M) is a convex set and E (M) ⊆M, then M is E-convex
(see, Youness [42]).

Let M be a nonempty E-convex subset of Rn.

Definition 2.2 ([40]). A real-valued function f :M→ R is said to be E-convex (with respect to an operator
E : Rn → Rn) on M if and only if, the following inequality

f (λE (x) + (1 − λ)E (u)) 5 λf (E (x)) + (1 − λ) f (E (u))

holds for all x,u ∈M and any λ ∈ [0, 1].

It is clear that every convex function is E-convex (if E is the identity map).

Definition 2.3. A real-valued function f :M→ R is said to be strictly E-convex (with respect to an operator
E : Rn → Rn) on M if and only if, the following inequality

f (λE (x) + (1 − λ)E (u)) < λf (E (x)) + (1 − λ) f (E (u))

holds for all x,u ∈M, E(x) 6= E(u), and any λ ∈ (0, 1).

Definition 2.4 ([42]). A function f : M → R is said to be quasi-E-convex (with respect to an operator
E : Rn → Rn) on M if and only if, the following inequality

f (λE (x) + (1 − λ)E (u)) 5 max{(f ◦ E)(x), (f ◦ E)(u)}

holds for all x,u ∈M and any λ ∈ [0, 1].

Note that every E-convex function is quasi-E-convex and every convex function is quasi-E-convex (if
E is the identity map).

Example 2.5. Let f : R→ R be defined by f(x) =

{
1 if x = 0,
0 otherwise,

and an operator E : R→ R be defined by

E(x) =

{
0 if x = 0,
3 otherwise

. Note that f is neither convex nor quasi-convex. Indeed, if we set x = 1, u = −1,

and λ = 1
2 , then we have

f(λx+ (1 − λ)u) = 1 > λf(x) + (1 − λ)f(u) = max{f(x), f(u)} = 0.

But f is both E-convex and quasi-E-convex. In order to prove this result, let x,u ∈ R and λ ∈ (0, 1). Then,
we consider the following cases:

(a) If x = u = 0, then f(λE(x) + (1 − λ)E(u)) = λf(E(x)) + (1 − λ)f(E(u)) = 1.
(b) If x 6= 0 and u 6= 0, then f(λE(x) + (1 − λ)E(u)) = λf(E(x)) + (1 − λ)f(E(u)) = 0.
(c) If x = 0 and u 6= 0, then f(λE(x) + (1 − λ)E(u)) = 0 < λf(E(x)) + (1 − λ)f(E(u)) = λ.
(d) If x 6= 0 and u = 0, then f(λE(x) + (1 − λ)E(u)) = 0 < λf(E(x)) + (1 − λ)f(E(u)) = 1 − λ.

Therefore, we have that, in all considered cases, the following inequalities

f(λE(x) + (1 − λ)E(u)) 5 λf(E(x)) + (1 − λ)f(E(u)) 5 max{f(E(x)), f(E(u))}

hold for all x,u ∈ R and any λ ∈ [0, 1]. Hence, by Definitions 2.2 and 2.4, the function f is both E-convex
and quasi-E-convex.
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Definition 2.6 ([30]). Let E : Rn → Rn, M be an open E-convex set, f : M → R be a (not necessarily)
differentiable function at a given point u. It is said that f is an E-differentiable function at u if and only
if, f ◦ E is a differentiable function at u (in the usual sense) and, moreover,

(f ◦ E) (x) = (f ◦ E) (u) +∇ (f ◦ E) (u) (x− u) + θ (u, x− u) ‖x− u‖ ,

where θ (u, x− u)→ 0 as x→ u.

If f is E-differentiable at x̄, then there exists only one gradient vector of f ◦ E at x̄ and it is given by

∇(f ◦ E)(x̄) =
(
∂(f ◦ E)(x̄)

∂x1
, · · · ,

∂(f ◦ E)(x̄)
∂xn

)
.

Proposition 2.7. Let E : Rn → Rn, M be an E-convex subset of Rn, f :M→ R be an E-convex (strictly E-convex)
function on M and u ∈M. Further, assume that f is E-differentiable at u. Then, the following inequality

f (E (x)) − f (E (u)) = ∇f (E (u)) (E (x) − E (u)) , (>) (2.1)

holds for all x ∈M.

Proof. Assume that M is an E-convex set, f : M → R is an E-convex function on M and u ∈ M. By
Definition 2.2, it follows that the inequality

f (λE (x) + (1 − λ)E (u)) 5 λf (E (x)) + (1 − λ) f (E (u))

holds for all x,u ∈M and any λ ∈ [0, 1]. Thus, the above inequality yields,

f (E (x)) − f (E (u)) =
f (E (u) + λ (E (x) − E (u))) − f (E (u))

λ
.

Letting λ→ 0, we obtain the inequality (2.1).

Now, we give the necessary condition for an E-differentiable function.

Proposition 2.8. Let E : Rn → Rn, M be an E-convex subset of Rn, f :M→ R be an E-convex (strictly E-convex)
function on M and x, u ∈ M. Further, assume that f is E-differentiable on an open set M. Then, the following
inequality

∇f (E (x)) −∇f (E (u)) (E (x) − E (u)) = 0 (>)

holds for all x, u ∈M.

Now, we give the definitions of E-differentiable generalized E-convex functions.

Definition 2.9. Let E : Rn → Rn, M be a nonempty E-convex subset of Rn and f : M → R be an E-
differentiable function at u ∈ M. f is said to be a pseudo E-convex function at u on M if the following
relation

(f ◦ E) (x) < (f ◦ E) (u) =⇒ ∇ (f ◦ E) (u) (E (x) − E (u)) < 0 (2.2)

holds for all x ∈M. If (2.2) is satisfied for each u ∈M, then f is said to be a pseudo E-convex function on
M.

Definition 2.10. Let E : Rn → Rn, M be a nonempty E-convex subset of Rn and f : M → R be an E-
differentiable function at u ∈ M. f is said to be a strictly pseudo E-convex function at u on M if the
following relation

(f ◦ E) (x) 5 (f ◦ E) (u) =⇒ ∇ (f ◦ E) (u) (E (x) − E (u)) < 0 (2.3)

holds for all x,u ∈M, E (x) 6= E (u). If (2.3) is satisfied for each u ∈M, x 6= u, then f is said to be a strictly
pseudo E-convex function on M.
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Note that every E-differentiable E-convex function is pseudo E-convex, but the converse is not true.
Also, every strictly pseudo E-convex function is pseudo E-convex and every differentiable convex function
is pseudo E-convex (if E is identity map). Every E-differentiable strictly E-convex function is strictly
pseudo E-convex, but the converse is not true.

Now, we present an example of such an E-differentiable pseudo E-convex function which is not E-
convex.

Example 2.11. Let f : [0, π2 ] → R be defined by f(x) = sin x and E : [0, π2 ] → [0, π2 ] be an operator defined
by E(x) = π

2 − x. Further, assume that (f ◦ E) (x) < (f ◦ E) (u). Thus, we have

(f ◦ E) (x) = cos x < cosu = (f ◦ E) (u) .

This implies that x < u for all x,u ∈ [0, π2 ]. Hence, we have

∇ (f ◦ E) (u) (E (x) − E (u)) = − sinu(u− x) < 0.

Therefore, by Definition 2.9, f is E-differentiable pseudo E-convex on [0, π2 ]. Considering x = 0, u = π
2 ,

and λ = 1
2 , we have

f (λE (x) + (1 − λ)E (u)) =
1√
2
> λf (E (x)) + (1 − λ) f (E (u)) =

1
2

.

Hence, by Definition 2.2, it follows that f is not E-convex on [0, π2 ].

Definition 2.12. Let E : Rn → Rn, M be a nonempty E-convex subset of Rn and f : M → R be an
E-differentiable function at u ∈ M. f is said to be quasi-E-convex function at u on M if the following
relation

(f ◦ E) (x) 5 (f ◦ E) (u) =⇒ ∇ (f ◦ E) (u) (E (x) − E (u)) 5 0 (2.4)

holds for all x ∈ M. If (2.4) is satisfied for each u ∈ M, then f is said to be a quasi E-convex function on
M.

Now, we present an example of a nondifferentiable function, which is both E-differentiable pseudo
E-convex and quasi E-convex on R.

Example 2.13. Let f : R → R be a nondifferentiable function at x = −2 defined by f(x) = (x+ 2)
1
3 and

E : R→ R be an operator such that E(x) = (x+ 2)9 − 2. The function (f ◦ E) (x) = (x+ 2)3 is a differentiable
function at x = −2, thus f is an E-differentiable function at x = −2.

Now we show that f is pseudo E-convex on R. Let x,u ∈ R and λ ∈ [0, 1], and assume that

(f ◦ E) (x) < (f ◦ E) (u) .

We have
(f ◦ E) (x) = (x+ 2)3 < (u+ 2)3 = (f ◦ E) (u) .

This inequality implies that x < u. Hence, we have

∇ (f ◦ E) (u) (E (x) − E (u)) = 3(u+ 2)2((x+ 2)9 − (u+ 2)9) < 0.

Therefore, by Definition 2.9, f is pseudo E-convex on R.
Further, it can be shown that f is also quasi E-convex on R. Assume that (f ◦ E) (x) 5 (f ◦ E) (u). We

have (f ◦ E) (x) = (x+ 2)3 5 (u+ 2)3 = (f ◦ E) (u). This inequality implies that x 5 u. Hence, we have

∇ (f ◦ E) (u) (E (x) − E (u)) = 3(u+ 2)2((x+ 2)9 − (u+ 2)9) 5 0.

Therefore, by Definition 2.12, f is quasi E-convex on R.
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3. E-differentiable multiobjective programming

Consider the following (not necessarily differentiable) multiobjective programming problem (VP) with
both inequality and equality constraints:

minimize f(x) = (f1 (x) , · · · , fp (x))

subject to gj(x) 5 0, j ∈ J = {1, · · · ,m} ,

ht(x) = 0, t ∈ T = {1, · · · ,q} ,
(VP) (3.1)

where fi : Rn → R, i ∈ I = {1, · · · ,p}, gj : Rn → R, j ∈ J, ht : Rn → R, t ∈ T , are real-valued functions
defined on Rn. We shall write g := (g1, · · · ,gm) : Rn → Rm and h := (h1, · · · ,hq) : Rn → Rq for
convenience.

For the purpose of simplifying our presentation, we will next introduce some notation which will be
used frequently throughout this paper. Let

Ω :=
{
x ∈ Rn : gj(x) 5 0, j ∈ J, ht(x) = 0, t ∈ T

}
be the set of all feasible solutions of (VP) (3.1). Further, by J (x), we denote the set of inequality constraint
indices that are active at a feasible solution x, that is, J (x) =

{
j ∈ J : gj(x) = 0

}
.

For such multicriterion optimization problems, the following concepts of (weak) Pareto optimal solu-
tions are defined as follows:

Definition 3.1. A feasible point x is said to be a weak Pareto (weakly efficient) solution for (VP) (3.1) if
and only if there is no another feasible solution x such that

f(x) < f(x).

Definition 3.2. A feasible point x is said to be a Pareto (efficient) solution for (VP) (3.1) if and only if there
is no another feasible solution x such that

f(x) 6 f(x).

Let E : Rn → Rn be a given one-to-one and onto operator. Throughout the paper, we shall assume
that the functions constituting the considered multiobjective programming problem (VP) (3.1) are E-
differentiable at any feasible solution.

Now, for the considered multiobjective programming problem (VP) (3.1), we define its associated
differentiable vector optimization problem as follows:

minimize (f ◦ E) (x) = ((f1 ◦ E) (x) , · · · , (fp ◦ E) (x))

subject to
(
gj ◦ E

)
(x) 5 0, j ∈ J = {1, · · · ,m} ,

(ht ◦ E) (x) = 0, t ∈ T = {1, · · · ,q} .
(VPE) (3.2)

We call the problem (VPE) (3.2) an E-vector optimization problem. Let

ΩE :=
{
x ∈ Rn :

(
gj ◦ E

)
(x) 5 0, j ∈ J, (ht ◦ E) (x) = 0, t ∈ T

}
be the set of all feasible solutions of (VPE) (3.2). Since the functions constituting the problem (VP) (3.1)
are assumed to be E-differentiable at any feasible solution of (VP) (3.1), by Definition 2.6, the functions
constituting the E-vector optimization problem (VPE) (3.2) are differentiable at any its feasible solution
(in the usual sense). Further, by JE (x), the set of inequality constraint indices that are active at a feasible
solution x, that is, JE (x) =

{
j ∈ J :

(
gj ◦ E

)
(x) = 0

}
.

Before proving the optimality conditions for (weakly) efficiency of the problem (VPE) (3.2) and, thus,
(weakly) efficiency for the problem (VP) (3.1), we establish some useful results.
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Lemma 3.3. Let E : Rn → Rn be a one-to-one and onto and

ΩE =
{
z ∈ Rn :

(
gj ◦ E

)
(z) 5 0, j ∈ J, (ht ◦ E) (z) = 0, t ∈ T

}
.

Then E (ΩE) = Ω.

Proof. Let x ∈ E (ΩE). By assumption, E is an one-to-one and onto operator. Then, by the definition of
ΩE, there exists z ∈ ΩE such that x = E (z). We proceed by contradiction. Suppose that x /∈ Ω. Then there
exists at least one j ∈ J such that gj(x) > 0 or at least one t ∈ T such that ht(x) 6= 0. Hence, by x = E (z),
we have for at least one j ∈ J that

(
gj ◦ E

)
(z) > 0 or for at least one t ∈ T that (ht ◦ E) (z) 6= 0, which

contradicting z ∈ ΩE. Thus, E (ΩE) ⊂ Ω.
On the other hand, let x ∈ Ω. We proceed by contradiction. Suppose that x /∈ E (ΩE). By assumption,

this means that E−1 (x) /∈ ΩE. By the definition of ΩE, it follows that there exists at least one j ∈ J such
that

(
gj ◦ E

)
(E−1 (x)) > 0 or at least one t ∈ T such that (ht ◦ E) (E−1 (x)) 6= 0. This means that there exists

at least one j ∈ J such that gj(x) > 0 or at least one t ∈ T such that ht(x) 6= 0, contradicting x ∈ Ω. Thus,
Ω ⊂ E (ΩE). By E (ΩE) ⊂ Ω and Ω ⊂ E (ΩE), we conclude that E (ΩE) = Ω.

Now, we prove the relationship between (weak) Pareto optimal solutions in both vector optimization
problems (VP) (3.1) and (VPE) (3.2).

Lemma 3.4. Let x ∈ Ω be a weak Pareto solution (Pareto solution) of the considered multiobjective programming
problem (VP) (3.1). Then, there exists z ∈ ΩE such that x = E (z) and z is a weak Pareto (Pareto) solution of the
E-vector optimization problem (VPE) (3.2).

Proof. Let x ∈ Ω be a weak Pareto solution for the considered E-differentiable multiobjective programming
problem (VP) (3.1). By Lemma 3.3, it follows that there exists z ∈ ΩE such that x = E (z). Now, we
prove that z is a weak Pareto solution of the E-vector optimization problem (VPE) (3.2). By means of
contradiction, suppose that z is not a weak Pareto solution of the E-vector optimization problem (VPE)
(3.2). Then, by Definition 3.1, there exists z̃ ∈ ΩE such that (f ◦ E) (z̃) < (f ◦ E) (z). By Lemma 3.3, we have
that there exists x̃ ∈ Ω such that x̃ = E (z̃). Hence, the inequality above implies that f(x̃) < f(x), which is
a contradiction to weakly efficiency of x for the problem (VP) (3.1). The proof in the case when x ∈ Ω is a
Pareto solution of the problem (VP) (3.1) is similar.

Lemma 3.5. Let z ∈ ΩE be a weak Pareto (Pareto) solution of the E-vector optimization problem (VPE) (3.2). Then
E (z) is a weak Pareto solution (Pareto solution) of the considered multiobjective programming problem (VP) (3.1).

Proof. Assume that z ∈ ΩE is a weak Pareto solution of the E-vector optimization problem (VPE) (3.2).
Note that, by Lemma 3.3, it follows that E (z) ∈ Ω. We proceed by contradiction. Suppose, contrary to the
result, that E (z) is not a weak Pareto solution for the considered multiobjective programming problem
(VP) (3.1). Then, by Definition 3.1, there exists x̃ ∈ Ω such that f(x̃) < f(E (z)). Using Lemma 3.3, there
exists z̃ ∈ ΩE such that x̃ = E (z̃). Thus, the inequality above implies that (f ◦ E) (z̃) < (f ◦ E) (z), which is
a contradiction to weakly efficiency of z for the problem (VPE) (3.2). The proof in the case when z ∈ ΩE
is a Pareto solution of the problem (VPE) (3.2) is similar.

Remark 3.6. As it follows from Lemma 3.5, if z ∈ ΩE is a weak Pareto (Pareto) solution of the E-vector
optimization problem (VPE) (3.2), then E (z) is a weak Pareto solution (Pareto solution) of the considered
multiobjective programming problem (VP) (3.1). We call E (z) a weak E-Pareto (E-Pareto) solution of the
problem (VP) (3.1).

As it follows from the above lemmas, there is some equivalence between the vector optimization
problem (VP) (3.1) and (VPE) (3.2). Therefore, if we prove optimality results for the differentiable E-
vector optimization problem (VPE) (3.2), they will be applicable also for the original nondifferentiable
multiobjective programming problem (VP) (3.1), in which the involved functions are E-differentiable.
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Now, we prove the Fritz John necessary optimality conditions for x ∈ ΩE to be a weak Pareto solution
of the differentiable E-vector optimization problem which are also the so-called E-Fritz John necessary
optimality conditions for E (x) to be a weak E-Pareto solution of the considered multiobjective program-
ming problem (VP) (3.1). Before we establish them, we recall the Motzkin’s theorem of the alternative
which we use in proving this result.

Theorem 3.7 (Motzkin’s theorem of the alternative [28]). Let A, C, D be given matrices, with A being nonva-
cuous. Then either the system

Ax < 0, Cx 5 0, Dx = 0

has a solution x, or the system

ATy1 +C
Ty2 +D

Ty3 = 0, y1 > 0, y2 = 0

has solution y1, y2 and y3, but never both.

Theorem 3.8 (E-Fritz John necessary optimality conditions for the problem (VP) (3.1)). Let E : Rn → Rn

be an one-to-one and onto operator. Let x ∈ Ω be a weak Pareto solution of the E-vector optimization problem
(VPE) (3.2) (and, thus, E (x) be a weak E-Pareto solution of the considered multiobjective programming problem
(VP) (3.1)). Further, assume that the objective functions fi, i ∈ I, and the constraint functions gj, j ∈ J, are
E-differentiable at x, the constraint functions ht, t ∈ T , are continuously E-differentiable at x. If the gradients of
equality constraints at x are linearly independent, then there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm, ξ ∈ Rq
such that ∑p

i=1 λi∇ (fi ◦ E) (x) +
∑m
j=1 µj∇

(
gj ◦ E

)
(x) +

∑q
t=1 ξt∇ (ht ◦ E) (x) = 0, (3.3)

µj
(
gj ◦ E

)
(x) = 0, j ∈ J, (3.4)

(λ,µ) > 0. (3.5)

Proof. Let x ∈ Ω be a weak Pareto solution of the E-vector optimization problem (VPE) (3.2). Then, by
Lemma 3.5, E (x) is a weak E-Pareto solution of the considered multiobjective programming problem (VP)
(3.1). Now, we prove that there does not exist d ∈ Rn, d 6= 0, satisfying the following system of relations:

∇ (fi ◦ E) (x)Td < 0, i ∈ I, (3.6)

∇
(
gj ◦ E

)
(x)Td < 0, j ∈ JE(x), (3.7)

∇ (ht ◦ E) (x)T d = 0, t ∈ T . (3.8)

We proceed by contradiction. Suppose, contrary to the result, that there exists d ∈ Rn, d 6= 0, satisfying
(3.6), (3.7), (3.8). By assumption, ht, t ∈ T , are E-differentiable at x. Hence, by Definition 2.6, we have

(ht ◦ E) (xk) = (ht ◦ E) (x) +∇ (ht ◦ E) (x) (xk − x) + θht (x, xk − x) ‖xk − x‖ , t ∈ T ,

where θht (x, xk − x)→ 0, t ∈ T , as xk → x. Using (ht ◦ E) (x) = 0 and dividing the above inequalities by
‖xk − x‖, we obtain

(ht ◦ E) (xk)
‖xk − x‖

= ∇ (ht ◦ E) (x)
xk − x

‖xk − x‖
+ θht (x, xk − x) , t ∈ T .

Since ht, t ∈ T , are continuously E-differentiable at x and ∇ (ht ◦ E) (x), t ∈ T , are linearly independent,
by [35, Proposition 2C], we have that there exists x̃k → x such that θht (x, x̃k − x) → 0, x̃k−x

‖x̃k−x‖ → d and,
moreover,

(ht ◦ E) (x̃k) = 0, ∀t ∈ T .
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By assumption, gj, j ∈ J, are E-differentiable at x. Hence, by Definition 2.6, we have(
gj ◦ E

)
(x̃k) =

(
gj ◦ E

)
(x) +∇

(
gj ◦ E

)
(x) (x̃k − x) + θgj (x, x̃k − x) ‖x̃k − x‖ , j ∈ J, (3.9)

where θgj (x, x̃k − x)→ 0, j ∈ J, as xk → x. Since
(
gj ◦ E

)
(x) = 0, j ∈ JE(x), and taking θgj (x, x̃k − x)→ 0,

j ∈ J, x̃k−x
‖x̃k−x‖ → d as x̃k → x, inequalities (3.9) yield(

gj ◦ E
)
(x̃k) < 0, j ∈ JE(x).

By assumption, the objective functions fi, i ∈ I, are E-differentiable at x. Thus, by Definition 2.6, we have

(fi ◦ E) (x̃k) = (fi ◦ E) (x) +∇ (fi ◦ E) (x)T (x̃k − x) + θi (x, x̃k − x) ‖x̃k − x‖ i ∈ I.

Using θfi (x, xk − x) → 0 and xk−x
‖xk−x‖ → d as x̃k → x together with (3.9), we get that the following

inequalities
(fi ◦ E) (x̃k) < (fi ◦ E) (x) , i ∈ I

hold, which is a contradiction to the assumption that x ∈ Ω be a weak Pareto solution of the E-vector
optimization problem (VPE) (3.2) (or, in other words, to the assumption that E (x) is a weak E-Pareto
solution of the considered multiobjective programming problem (VP) (3.1)). This means that there does
not exist any d ∈ Rn satisfying the system of relations (3.6), (3.7), (3.8). Hence, by Motzkin’s theorem of
the alternative (see Theorem 3.7), there exist λi ∈ Rp, µj, j ∈ J (E (x)), and ξ ∈ Rq such that∑p

i=1 λi∇ (fi ◦ E) (x) +
∑
j∈JE(x) µj∇

(
gj ◦ E

)
(x) +

∑q
t=1 ξt∇ (ht ◦ E) (x) = 0. (3.10)

If we set that µj = 0 for all j ∈ J\JE (x), then (3.10) implies (3.3). Further, note that also the complementary
slackness condition (3.4) is satisfied. Indeed, if gj(E (x)) < 0, then j ∈ J\JE (x) and µj = 0. The proof of
this theorem is completed.

Before we prove the Karush-Kuhn-Tucker necessary optimality conditions for the differentiable E-
vector optimization problem (VP) (3.1) and, thus, the E-Karush-Kuhn-Tucker necessary optimality condi-
tions for the considered E-differentiable vector optimization problem (VP) (3.1), we introduce the so-called
E-Abadie constraint qualification. In order to do this, for the E-vector optimization problem (VPE) (3.2),
we introduce two different linear approximations of the feasible set ΩE. Namely, the first of them is the
E-linearized cone LE (x) and the second one is the tangent cone TΩE (x).

Definition 3.9. For the E-vector optimization problem (VPE) (3.2), the E-linearized cone at x ∈ ΩE, de-
noted by LE (x), is defined as follows

LE (x) =
{
d ∈ Rn : ∇gj (E (x))d 5 0, j ∈ JE (x) , ∇ht (E (x))d = 0, t ∈ T

}
.

It is easy to see that LE (x) is a nonempty closed convex cone.
Now, for the E-vector optimization problem (VPE) (3.2), we define a linear approximation of the

feasible set ΩE by the help of tangent directions, in other words, we define the tangent cone to the
feasible set ΩE.

Definition 3.10. The tangent cone (also called contingent cone or Bouligand cone) of ΩE at x ∈ clΩE is
defined by

TΩE (x) =
{
d ∈ Rn : ∃{dn}⊂Rndn → d, ∃{tn}⊂Rtn ↓ 0 s.t. x+ tndn ∈ ΩE

}
,

or, equivalently,

TΩE (x) =
{
d ∈ Rn : ∃{βn}⊂Rβn →∞, ∃{xn}⊂ΩExn → x s.t. βn (xn − x)→ d

}
.

A vector d ∈ Rn belonging to TΩE (x) is called a tangent direction to ΩE from x ∈ clΩE.
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Remark 3.11. Note that this cone is always closed and it is convex if the original set is so.
Now, we prove that, for any x ∈ ΩE, TΩE (x) is always a subset of LE (x).

Proposition 3.12. For any x ∈ ΩE, TΩE (x) ⊂ LE (x).

Proof. Let x ∈ ΩE be given and let d be any nonzero vector belonging to TΩE (x). Then, by Definition
3.10, there exists a sequence (xk) ⊂ ΩE such that xk → x and xk−x

‖xk−x‖ → d. By assumption, all constraint
functions gj, j ∈ J and ht, t ∈ T , are E-differentiable at x. Hence, by Definition 2.6, it follows that(

gj ◦ E
)
(xk) =

(
gj ◦ E

)
(x) +∇

(
gj ◦ E

)
(x) (xk − x) + θgj (x, xk − x) ‖xk − x‖ , j ∈ J,

(ht ◦ E) (xk) = (ht ◦ E) (x) +∇ (ht ◦ E) (x) (xk − x) + θht (x, xk − x) ‖xk − x‖ , t ∈ T ,

where θgj (x, xk − x) → 0, j ∈ J, θht (x, xk − x) → 0, t ∈ T , as xk → x. Since xk ⊂ ΩE for each k ∈ N and
x ∈ ΩE, we have, respectively,

∇gj (E (x)) (xk − x) + θgj (x, xk − x) ‖xk − x‖ 5 0, j ∈ JE (x) ,

∇ht (E (x)) (xk − x) + θht (x, xk − x) ‖xk − x‖ = 0, t ∈ T .

Then, dividing the above inequalities by ‖xk − x‖, we obtain, respectively,

∇gj (E (x))
xk − x

‖xk − x‖
+ θgj (x, xk − x) 5 0, j ∈ JE (x) ,

∇ht (E (x))
xk − x

‖xk − x‖
+ θht (x, xk − x) = 0, t ∈ T .

Taking now limits θgj (x, xk − x)→ 0, j ∈ J, θht (x, xk − x)→ 0, t ∈ T , as xk → x and xk−x
‖xk−x‖ → d, we get,

respectively,
∇gj (E (x))d 5 0, j ∈ JE (x) , (3.11)

∇ht (E (x))d = 0, t ∈ T . (3.12)

By (3.11), (3.12) and Definition 3.9, it follows that d ∈ LE (x). Hence, the proof of this proposition is
completed.

Note that the converse result is not true. Namely, the sets LE (x) and TΩE (x) do not coincide in general.
In order to illustrate this fact, we present the following example of an E-differentiable vector optimization
problem for which we construct its associated E-vector optimization problem.

Example 3.13. Consider the following nondifferentiable vector optimization problem

f (x1, x2) =

(
3
√
x1 +

3
√
x2

2 , 3
√
x2

1 +
3
√
x2

)
→ min

g1 (x1, x2) = 3
√
x1 − 3

√
x2 5 0, (VP1)

h1 (x1, x2) = 3
√
x1x2 = 0.

(3.13)

Note that Ω =
{
(x1, x2) ∈ R2 : 3

√
x1 − 3

√
x2 5 0 ∧ 3

√
x1x2 = 0

}
. Let E : R2 → R2 be an operator defined by

E (x1, x2) =
(
x3

1, x3
2

)
. For the considered vector optimization problem (VP1) (3.13), we define its associated

E-vector optimization problem (VPE) (3.2) as follows

f (E (x1, x2)) =
(
x1 + x

2
2 , x2

1 + x2
)
→ min

g1 (E (x1, x2)) = x1 − x2 5 0, (VP1E)
h1 (E (x1, x2)) = x1x2 = 0.

Then, ΩE =
{
(x1, x2) ∈ R2 : x1 − x2 5 0 ∧ x1x2 = 0

}
and x = (0, 0) is a feasible solution. Then, by Defini-

tion 3.10, we have that TΩE (x) = {d ∈ R2 : d1 5 0 , d2 = 0, d1d2 = 0}. Further, by Definition 3.9, we have
that LE (x) =

{
d ∈ R2 : d1 − d2 5 0

}
. Then, LE (x) * TΩE (x).
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Proposition 3.14. Let f : Rn → R be an E-differentiable function at x ∈ ΩE. If x is a weak Pareto solution of
the E-vector optimization problem (VPE) (3.2) (and, thus, E (x) is a weak E-Pareto of the considered multiobjective
programming problem (VP) (3.1)), then ∇ (f ◦ E) (x)d ≮ 0 for each d ∈ TΩE (x). In other words, this means
that the system inequalities ∇ (fi ◦ E) (x)d < 0, i ∈ I, has no any solution d ∈ TΩE (x), that is, it is satisfied

max
i=1,··· ,p

{∇ (fi ◦ E) (x)d} = 0 for each d ∈ TΩE (x).

Proof. Let f : Rn → R be an E-differentiable function at x ∈ ΩE. Hence, by Definition 2.6, we have

(fi ◦ E) (xk) = (fi ◦ E) (x) +∇ (fi ◦ E) (x) (xk − x) + θfi (x, xk − x) ‖xk − x‖ , i ∈ I, (3.14)

where θfi (x, xk − x)→ 0, i ∈ I, as xk → x. Further, assume that x is a weak Pareto solution of the E-vector
optimization problem (VPE) (3.2). Suppose, contrary to the result, that there exists d ∈ TΩE (x), d 6= 0,
such that ∇ (f ◦ E) (x)d < 0. Then, (3.14) gives

(fi ◦ E) (xk) − (fi ◦ E) (x) < θfi (x, xk − x) ‖xk − x‖ , i ∈ I.

Taking now limits θfi (x, xk − x)→ 0, i ∈ I, as xk → x, we get that the inequalities

(fi ◦ E) (xk) − (fi ◦ E) (x) < 0, i ∈ I

hold for k large enough, which is a contradiction to the assumption that x is a weak Pareto solution of
the E-vector optimization problem (VPE) (3.2).

Now, we prove the Karush-Kuhn-Tucker necessary optimality conditions for the differentiable E-vector
optimization problem (VPE) (3.2) and, thus, the so-called E-Karush-Kuhn-Tucker necessary optimality
conditions for not necessarily differentiable multiobjective programming problem (VP) (3.1) in which the
involved functions are E-differentiable.

In order to prove the E-Karush-Kuhn-Tucker necessary optimality conditions for a weak E-Pareto
solution of the E-differentiable multiobjective programming problem (VP) (3.1), we introduce the so-called
E-Abadie constraint qualification for the differentiable vector optimization problem (VPE) (3.2) with both
inequality and equality constraints.

Definition 3.15. It is said that the so-called E-Abadie constraint qualification (ACQE) holds at x ∈ ΩE for
the differentiable E-vector optimization problem (VPE) (3.2) with both inequality and equality constraints
if

TΩE (x) = LE (x) . (3.15)

Theorem 3.16 (E-Karush-Kuhn-Tucker necessary optimality conditions). Let x ∈ ΩE be a weak Pareto solu-
tion of the E-vector optimization problem (VPE) (3.2) (and, thus, E (x) be a weak E-Pareto solution of the considered
multiobjective programming problem (VP) (3.1)). Further, let the objective functions fi, i ∈ I, the constraint func-
tions gj, j ∈ J, and ht, t ∈ T , be E-differentiable at x and the E-Abadie constraint qualification (ACQE) be satisfied
at x. Then there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm and ξ ∈ Rq such that

p∑
i=1

λi∇ (fi ◦ E) (x) +
m∑
j=1

µj∇
(
gj ◦ E

)
(x) +

q∑
t=1

ξt∇ (ht ◦ E) (x) = 0, (3.16)

µj
(
gj ◦ E

)
(x) = 0, j ∈ J, (3.17)

λ > 0, µ = 0. (3.18)

Proof. Let x ∈ Ω be a weak Pareto solution of the differentiable E-vector optimization problem (VPE) (3.2)
(and, thus, E (x) be a weak E-Pareto solution of the considered multiobjective programming problem (VP)
(3.1)). We show that the system

∇ (fi ◦ E) (x)Td < 0, i ∈ I, (3.19)
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∇
(
gj ◦ E

)
(x)Td 5 0, j ∈ JE(x), (3.20)

∇ (ht ◦ E) (x)T d = 0, t ∈ T (3.21)

has no any solution d ∈ Rn. Suppose, contrary to the result, that the system (3.19), (3.20), (3.21) has
a solution d ∈ Rn. By assumption, the E-Abadie constraint qualification (ACQE) is satisfied at x.
Then, by (3.15), it follows that d ∈ TΩE (x). By Proposition 3.14, it follows that the following relation

max
i=1,··· ,p

{∇ (fi ◦ E) (x)d} = 0 holds for each d ∈ TΩE (x), which contradicting (3.19). Since the system

(3.19), (3.20), (3.21) has no any solution d ∈ Rn, by Motzkin theorem (Theorem 3.7), there exist Lagrange
multipliers λ ∈ Rp, µ ∈ Rm and ξ ∈ Rq such that the conditions (3.16), (3.17), (3.18) are fulfilled by setting
µj = 0 for all j ∈ J\JE (x). Thus, the proof of this theorem is completed.

In order to illustrate the above result, we present an example of such a nondifferentiable vector op-
timization problem for which the E-Abadie constraint qualification is not satisfied. Note that, in such a
case, Lagrange multiplier λ corresponding to the objective function f can be equal 0.

Example 3.17. We consider again the nondifferentiable vector optimization problem (VP1) (3.13) consid-
ered in Example 3.13. Note that x = (0, 0) is a Pareto solution of the E-vector optimization problem
constructed and, thus, it is also a E-Pareto solution of the nondifferentiable multiobjective programming
problem (VP1) (3.13). However, as it follows from Example 3.13, the E-Abadie constraint qualification
(ACQE) does not hold at x ∈ ΩE. Now, we show that E-Karush-Kuhn-Tucker necessary optimality con-
ditions are not satisfied at such a case. Indeed, as it follows from the conditions (3.16), (3.17), (3.18), the
following equations λ1 + µ1 = 0 and λ2 − µ1 = 0 are fulfilled only in the case when λ1 = 0 and λ2 = 0,
what is impossible.

Definition 3.18.
(
x, λ,µ, ξ

)
∈ ΩE × Rp × Rm × Rq is said to be a Karush-Kuhn-Tucker point for the vector

optimization problem (VPE) (3.2) if the Karush-Kuhn-Tucker necessary optimality conditions (3.16), (3.17),
(3.18) are satisfied at x with Lagrange multiplier λ, µ, ξ.

Now, we prove the sufficiency of the E-Karush-Kuhn-Tucker necessary optimality conditions for the
considered E-differentiable vector optimization problem (VP) (3.1) under E-convexity hypotheses.

Theorem 3.19. Let
(
x, λ,µ, ξ

)
∈ Ω× Rp× Rm× Rq be a Karush-Kuhn-Tucker point of the E-vector optimization

problem (VPE) (3.2). Let T+E (E (x)) =
{
t ∈ T : ξt > 0

}
and T−E (E (x)) =

{
t ∈ T : ξt < 0

}
. Furthermore, assume

the following hypotheses are fulfilled:

(a) each objective function fi, i ∈ I, is an E-convex function at x on ΩE;
(b) each inequality constraint gj, j ∈ JE (x), is an E-convex function at x on ΩE;
(c) each equality constraint ht, t ∈ T+ (E (x)), is an E-convex function at x on ΩE;
(d) each function −ht, t ∈ T− (E (x)), is an E-convex function at x on ΩE.

Then x is a weak Pareto solution of the problem (VPE) (3.2) and, thus, E (x) is a weak E-Pareto solution of the
problem (VP) (3.1).

Proof. By assumption,
(
x, λ,µ, ξ

)
∈ Ω×Rp×Rm×Rq is a Karush-Kuhn-Tucker point of the differentiable

vector optimization problem (VPE) (3.2). Then, by Definition 3.18, the Karush-Kuhn-Tucker necessary
optimality conditions (3.16), (3.17), (3.18) are satisfied at x with Lagrange multipliers λ ∈ Rp, µ ∈ Rm and
ξ ∈ Rq. We proceed by contradiction. Suppose, contrary to the result, that x is not a weak Pareto solution
of the problem (VPE) (3.2). Hence, by Definition 3.1, there exists another x̃ ∈ ΩE such that

f(E (x̃)) < f (E (x)) . (3.22)

Using hypotheses (a)–(d), by Proposition 2.7 and Definition 2.2, the following inequalities

fi (E (x̃)) − fi (E (x)) = ∇fi (E (x)) (E (x̃) − E (x)) , i ∈ I, (3.23)
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gj(E (x̃)) − gj(E (x)) = ∇gj (E (x)) (E (x̃) − E (x)) , j ∈ J (E (x)) , (3.24)

ht(E (x̃)) − ht(E (x)) = ∇ht (E (x)) (E (x̃) − E (x)) , t ∈ T+ (E (x)) , (3.25)

− ht(E (x̃)) + ht(E (x)) = −∇ht (E (x)) (E (x̃) − E (x)) , t ∈ T− (E (x)) (3.26)

hold, respectively. Combining (3.22) and (3.23) and then multiplying the resulting inequalities by the
corresponding Lagrange multipliers and adding both their sides, we get[

p∑
i=1

λi∇ (fi ◦ E) (x)

]
(E (x̃) − E (x)) < 0. (3.27)

Multiplying inequalities (3.24), (3.25), (3.26) by the corresponding Lagrange multipliers, respectively, we
obtain

µjgj(E (x̃)) − µjgj(E (x)) = µj∇gj (E (x)) (E (x̃) − E (x)) , j ∈ J (E (x)) ,

ξtht(E (x̃)) − ξtht(E (x)) = ξt∇ht (E (x)) (E (x̃) − E (x)) , t ∈ T+ (E (x)) ,

ξtht(E (x̃)) − ξtht(E (x)) = ξt∇ht (E (x)) (E (x̃) − E (x)) , t ∈ T− (E (x)) .

Using the E-Karush-Kuhn-Tucker necessary optimality condition (3.17) together with x̃ ∈ ΩE and x ∈ ΩE,
we get, respectively,

µj∇gj (E (x)) (E (x̃) − E (x)) 5 0, j ∈ J (E (x)) , (3.28)

ξt∇ht (E (x)) (E (x̃) − E (x)) 5 0, t ∈ T+ (E (x)) , (3.29)

ξt∇ht (E (x)) (E (x̃) − E (x)) 5 0, t ∈ T− (E (x)) . (3.30)

Combining (3.27) and (3.28), (3.29), (3.30), we obtain that the following inequality p∑
i=1

λi∇ (fi ◦ E) (x) +
m∑
j=1

µj∇gj (E (x)) +
q∑
t=1

µt∇ht (E (x))

 (E (z̃) − E (x)) < 0

holds, which is a contradiction to the E-Karush-Kuhn-Tucker necessary optimality condition (3.16). By
assumption, E : Rn → Rn is an one-to-one and onto operator. Since x is a weak Pareto solution of the
problem (VPE) (3.2), by Lemma 3.5, E (x) is a weak E-Pareto solution of the problem (VP) (3.1). Thus, the
proof of this theorem is completed.

Theorem 3.20. Let
(
x, λ,µ, ξ

)
∈ Ω× Rp× Rm× Rq be a Karush-Kuhn-Tucker point of the E-vector optimization

problem (VPE) (3.2). Furthermore, assume that the following hypotheses are fulfilled:

(a) each objective function fi, i ∈ I, is a strictly E-convex function at x on ΩE;
(b) each inequality constraint gj, j ∈ JE (x), is an E-convex function at x on ΩE;
(c) each equality constraint ht, t ∈ T+ (E (x)), is an E-convex function at x on ΩE;
(d) each function −ht, t ∈ T− (E (x)), is an E-convex function at x on ΩE.

Then x is a Pareto solution of the problem (VPE) (3.2) and, thus, E (x) is an E-Pareto solution of the problem (VP)
(3.1).

Remark 3.21. As it follows from the proof of Theorem 3.19, the sufficient conditions are also satisfied if all
or some of the functions gj, j ∈ JE (x), ht, t ∈ T+ (E (x)), −ht, t ∈ T− (E (x)), are E-differentiable quasi
E-convex function at x on ΩE.

Note that the sufficient optimality conditions for a weak E-Pareto solution of the problem (VP) (3.1)
can be established also under generalized E-convexity hypotheses.

Theorem 3.22. Let
(
x, λ,µ, ξ

)
∈ Ω× Rp× Rm× Rq be a Karush-Kuhn-Tucker point of the E-vector optimization

problem (VPE) (3.2). Furthermore, assume that the following hypotheses are fulfilled:



T. Antczak, N. Abdulaleem, J. Nonlinear Sci. Appl., 12 (2019), 745–764 758

(a) the objective function f is a pseudo E-convex function at x on ΩE;
(b) each inequality constraint gj, j ∈ JE (x), is a quasi E-convex function at x on ΩE;
(c) each equality constraint ht, t ∈ T+ (E (x)), is a quasi E-convex function at x on ΩE;
(d) each function −ht, t ∈ T− (E (x)), is a quasi E-convex function at x on ΩE.

Then x is a weak Pareto solution of the problem (VPE) (3.2) and, thus, E (x) is a weak E-Pareto solution of the
problem (VP) (3.1).

In order to illustrate the sufficient optimality conditions established in the paper, we now present an
example of an E-differentiable vector optimization problem in which the involved functions are (general-
ized) E-convex.

Example 3.23. Consider the following nonconvex nondifferentiable vector optimization problem

minimize f(x) = ( 1
4x

2
1 +

1
2x1 + x

1
3
2 , 1

2x1 − (1 − 1
2x1)x

1
3
2 )

s.t. g1(x) = x
1
3
2 − 1

2x1 5 0,

g2(x) = −x1x2 5 0,

h1(x) = x
1
3
2 − 1

4x
2
1 = 0.

(VP2) (3.31)

Note that Ω =

{
(x1, x2) ∈ R2 : x

1
3
2 − 1

2x1 5 0 ∧ x1x2 = 0 ∧ x
1
3
2 − 1

4x
2
1 = 0

}
. Let E : R2 → R2 be an one-

to-one and onto mapping defined as follows E (x1, x2) =
(
2x1, x3

2

)
. Now, for the considered nonconvex

nondifferentiable multiobjective programming problem (VP2) (3.31), we define its associated E-vector
optimization problem (VP2E) as follows

minimize f(E(x)) = (x2
1 + x1 + x2 , x1 − (1 − x1)x2)

s.t. g1(E(x)) = x2 − x1 5 0,

g2(E(x)) = −2x1x
3
2 5 0,

h1(E(x)) = x2 − x
2
1 = 0.

(VP2E) (3.32)

Note that ΩE =
{
(x1, x2) ∈ R2 : x2 − x1 5 0 ∧ 2x1x

3
2 = 0 ∧ x2 − x

2
1 = 0

}
and x = (0, 0) is a feasible so-

lution of the problem (VP2E) (3.32). Further, note that all functions constituting the considered vector
optimization problem (VP2) (3.31) are E-differentiable at x = (0, 0). Then, it can also be shown that the
E-Karush-Kuhn-Tucker necessary optimality conditions (3.16), (3.17), (3.18) are fulfilled at x = (0, 0) with
Lagrange multipliers λ1 = 1

2 , λ2 = 1
2 , µ = 1 and ξ1 = −1. Further, it can be proved that f is a strictly

E-convex function at x on ΩE, the constraint function g1 is E-convex at x on ΩE, the constraint function g2
is a quasi E-convex function at x on ΩE, the function −h1 is E-convex at x on ΩE. Hence, by Theorem 3.20
(see also Remark 3.21), x = (0, 0) is a Pareto solution of the E-vector optimization problem (VP2E) (3.32)
and, thus, by Lemma 3.5, E (x) is an E-Pareto solution of the considered E-differentiable multiobjective
programming problem (VP2) (3.31).

4. E-Wolfe duality

In this section, a vector dual problem in the sense of Wolfe is considered for the class of E-differentiable
vector optimization problems with inequality and equality constraints. Let E : Rn → Rn be a given one-
to-one and onto operator. Consider the following dual problem in the sense of Wolfe related to the
considered vector optimization problem (VP) (3.1):
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maximize ψE (y,µ, ξ) = (f ◦ E) (y) +
[∑m

j=1 µj
(
gj ◦ E

)
(y) +

∑q
t=1 ξt (ht ◦ E) (y)

]
e

s.t.
∑p
i=1 λi∇ (fi ◦ E) (y) +

∑m
j=1 µj∇

(
gj ◦ E

)
(y) +

∑q
t=1 ξt∇ (ht ◦ E) (y) = 0,

λ ∈ Rp, λ > 0, λe = 1, e = (1, 1, · · · , 1)T ∈ Rp, µ ∈ Rm,µ = 0, ξ ∈ Rq,

(WDE) (4.1)

where all functions are defined in the similar way as for the considered vector optimization problem (VP)
(3.1) and e = (1, · · · , 1) ∈ Rp. Further, let

ΓE =

{
(y, λ,µ, ξ) ∈ Rn × Rp × Rm × Rq :

p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇(gj ◦ E)(y)

+

q∑
t=1

ξt∇(ht ◦ E)(y) = 0, λ > 0, λe = 1, µ = 0
}

be the set of all feasible solutions of the problem (WDE) (4.1). Further, YE = {y ∈ X : (y, λ,µ, ξ) ∈ ΓE}. We
call the vector dual problem (WDE) (4.1) Wolfe vector E-dual problem or vector E-dual problem in the
sense of Wolfe.

Now, under E-convexity hypotheses, we prove duality results between the E-vector problems (VP)
(3.1) and (WDE) (4.1) and, thus, E-duality results between the problems (VP) (3.1) and (WDE) (4.1).

Theorem 4.1 (Weak duality between (VPE) (3.2) and (WDE) (4.1) and also weak E-duality between (VP)
(3.1) and (WDE) (4.1)).
Let z and (y, λ,µ, ξ) be any feasible solutions of the problems (VPE) (3.2) and (WDE) (4.1), respectively. Assume,
moreover, that each objective function fi, i ∈ I, is E-convex at y on ΩE ∪ YE, each constraint function gj, j ∈ J, is
E-convex at y on ΩE ∪ YE, the functions ht, t ∈ T+ (E (y)) and the functions −ht, t ∈ T− (E (y)), are E-convex
at y on ΩE ∪ YE. Then

(f ◦ E) (z) ≮ ψE (y,µ, ξ) .

In other words, E-weak duality holds between the problems (VP) (3.1) and (WDE) (4.1), that is, for any feasible
solutions x and (y, λ,µ, ξ) of the problems (VP) (3.1) and (WDE) (4.1), respectively, the following relation

f(x) ≮ ψE (y,µ, ξ) (4.2)

is true.

Proof. Suppose, contrary to the result, that

(f ◦ E) (z) < ψE (y,µ, ξ) .

Thus,

(fi ◦ E) (z) < (fi ◦ E) (y) +
[ m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
]

, i ∈ I.

Multiplying by λi and then adding both sides of the above inequalities and taking that
∑p
i=1 λi = 1, we

get the inequality

p∑
i=1

λi (fi ◦ E) (z) <
p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
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holds. From the feasibility of z for the problem (VPE) (3.2), it follows that
p∑
i=1

λi (fi ◦ E) (z) +
m∑
j=1

µj
(
gj ◦ E

)
(z) +

q∑
t=1

ξt (ht ◦ E) (z) <

p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y).
(4.3)

By assumption, z and (y, λ,µ, ξ) are feasible solutions for the problems (VPE) (3.2) and (WDE) (4.1),
respectively. Since the functions fi, i ∈ I, gj, j ∈ J, ht, t ∈ T+, −ht, t ∈ T−, are E-convex on ΩE ∪ YE, by
Proposition 2.7, the following inequalities

(fi ◦ E) (z) − (fi ◦ E) (y) = ∇ (fi ◦ E) (y) (E (z) − E (y)) , i ∈ I, (4.4)(
gj ◦ E

)
(z) −

(
gj ◦ E

)
(y) = ∇

(
gj ◦ E

)
(y) (E (z) − E (y)) , j ∈ JE (y) , (4.5)

(ht ◦ E) (z) − (ht ◦ E) (y) = ∇ (ht ◦ E) (y) (E (z) − E (y)) , t ∈ T+ (E (y)) , (4.6)

− (ht ◦ E) (z) + (ht ◦ E) (y) = −∇ (ht ◦ E) (y) (E (z) − E (y)) , t ∈ T− (E (y)) (4.7)

hold, respectively. Multiplying inequalities (4.4), (4.5), (4.6), (4.7) by the corresponding Lagrange multi-
pliers and then adding both sides of the resulting inequalities, we obtain that the inequality

p∑
i=1

λi (fi ◦ E) (z) −
p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(z)

−

m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (z) −
q∑
t=1

ξt (ht ◦ E) (y)

=

[ p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇
(
gj ◦ E

)
(y) +

q∑
t=1

ξt∇ (ht ◦ E) (y)
]
(E (z) − E (y)) ,

holds. Thus, by (4.3), it follows that the following inequality[ p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇
(
gj ◦ E

)
(y) +

q∑
t=1

ξt∇ (ht ◦ E) (y)
]
(E (z) − E (y)) < 0

holds, contradicting the first constraint of the Wolfe vector E-dual problem (WDE) (4.1). This means that
the proof of weak duality theorem between the E-vector optimization problems (VPE) (3.2) and (WDE)
(4.1) is completed. Then, the weak E-duality theorem between the problems (VP) (3.1) and (WDE) (4.1),
that is, the relation (4.2) follows directly from Lemma 3.3. Thus, the proof of this theorem is completed.

If stronger E-convexity hypotheses are imposed on the functions constituting the considered vector
optimization problems, then the stronger weak duality result is true.

Theorem 4.2 (Weak duality between (VPE) (3.2) and (WDE) (4.1) and also weak E-duality between (VP)
(3.1) and (WDE) (4.1)).
Let z and (y, λ,µ, ξ) be any feasible solutions of the problems (VPE) (3.2) and (WDE) (4.1), respectively. Assume,
moreover, that each objective function fi, i ∈ I, is strictly E-convex at y on ΩE ∪ YE, each constraint function gj,
j ∈ J, is E-convex at y on ΩE ∪ YE, the functions ht, t ∈ T+ (E (y)) and the functions −ht, t ∈ T− (E (y)), are
E-convex at y on ΩE ∪ YE. Then

(f ◦ E) (z) 
 ψE (y,µ, ξ) .

In other words, E-weak duality holds between the problems (VP) (3.1) and (WDE) (4.1), that is, for any feasible
solutions x and (y, λ,µ, ξ) of the problems (VP) (3.1) and (WDE) (4.1), respectively,

f(x) 
 ψE (y,µ, ξ) .
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Remark 4.3. As it follows from the proofs of Theorems 4.1 and 4.2, the assumption of E-convexity of
constraint functions can be weakened. Indeed, these results can be established if each constraint functions
gj, j ∈ J, ht, t ∈ T+ (y) and the functions −ht, t ∈ T− (y), can be assumed to be quasi E-convex at y on
ΩE ∪ YE.

Theorem 4.4 (Strong duality between (VPE) (3.2) and (WDE) (4.1) and also strong E-duality between (VP)
(3.1) and (WDE) (4.1)).
Let x ∈ ΩE be a (weak) Pareto solution of the E-vector optimization problem (VP) (3.1) and the E-Abadie constraint
qualification (E-ACQ) be satisfied at x. Then there exist λ ∈ Rp, µ ∈ Rm, ξ ∈ Rq such that (x, λ,µ, ξ) is feasible
for the problem (WDE) (4.1) and the objective functions of (VPE) (3.2) and (WDE) (4.1) are equal at these points.
If also all hypotheses of the weak duality theorem (Theorem 4.1 or Theorem 4.2) are satisfied, then (x, λ,µ, ξ) is a
(weak) efficient solution of maximum type for the problem (WDE) (4.1).
In other words, in such a case, E (x) ∈ Ω is a (weak) E-Pareto solution of the multiobjective programming problem
(VP) (3.1) and the strong E-duality holds between the problems (VP) (3.1) and (WDE) (4.1).

Proof. By assumption, x ∈ ΩE is a weak Pareto solution for the problem (VPE) (3.2) and the E-Abadie
constraint qualification (E-ACQ) is satisfied at x. Then, there exist Lagrange multiplier λ ∈ Rp, µ ∈ Rm,
ξ ∈ Rq such that the E-Karush-Kuhn-Tucker necessary optimality conditions (3.16), (3.17), (3.18) are
satisfied at x. Thus, the feasibility of (x, λ,µ, ξ) in the problem (WDE) (4.1) follows directly from these
conditions. Therefore, the objective functions for the problems (VPE) (3.2) and (WDE) (4.1) are equal at x
and (x, λ,µ, ξ), respectively. By the weak duality theorem (Theorem 4.1 or Theorem 4.2), it follows that the
inequality (f ◦ E) (x) ≮ ψE (y,µ, ξ) (or (f ◦ E) (x) 
 ψE (y,µ, ξ)) is satisfied for any feasible point (y, λ,µ, ξ)
of Wolfe vector E-dual problem (WDE) (4.1). Using the E-Karush-Kuhn-Tucker necessary optimality
conditions (3.17) and (3.18) we get, for any feasible point (y, λ,µ, ξ) of the problem (WDE) (4.1), that

(f ◦ E) (x) +
[ m∑
j=1

µj
(
gj ◦ E

)
(x) +

q∑
t=1

ξt (ht ◦ E) (x)
]
e

≮ (f ◦ E) (y) +
[ m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
]
e.

(4.8)

Hence, by (4.8), it follows that (x, λ,µ, ξ) is a weak efficient point of maximum type for Wolfe vector
E-dual problem (WDE) (4.1). The strong E-duality holds between the problems (VP) (3.1) and (WDE)
(4.1) follows directly from Lemma 3.4. Namely, E (x) is a weak E-Pareto (E-Pareto) solution of the vector
optimization problem (VP) (3.1) and then (x, λ,µ, ξ) is a (weak) efficient solution of maximum type for
the problem (WDE) (4.1).

Theorem 4.5 (Converse duality between (VPE) (3.2) and (WDE) (4.1) and also converse E-duality between
(VP) (3.1) and (WDE) (4.1)).
Let

(
x, λ,µ, ξ

)
be a (weak) efficient solution of a maximum type in the vector E-Wolfe dual problem (WDE) (4.1)

such that x ∈ ΩE. Moreover, that the objective functions fi, i ∈ I, are (strictly) E-convex at x on ΩE ∪ YE, the
constraint functions gj, j ∈ J, are E-convex at x on ΩE ∪ YE, the functions ht, t ∈ T+ (E (x)) and the functions



T. Antczak, N. Abdulaleem, J. Nonlinear Sci. Appl., 12 (2019), 745–764 762

−ht, t ∈ T− (E (x)), are E-convex at x onΩE ∪ YE. Then x is a weak Pareto (Pareto) solution of the problem (VPE)
(3.2) and, thus, E (x) is a weak E-Pareto (E-Pareto) solution of the problem (VP) (3.1).

Proof. Proof of this theorem follows directly from Theorem 4.1 (or Theorem 4.2).

Theorem 4.6 (Restricted converse duality between (VPE) (3.2) and (WDE) (4.1) and also restricted converse
E-duality between (VP) (3.1) and (WDE) (4.1)).
Let x and

(
y, λ,µ, ξ

)
be feasible solutions for the problems (VPE) (3.2) and (WDE) (4.1), respectively, such that

(f ◦ E) (x) < (f ◦ E) (y) +
[ m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
]
e. (6) (4.9)

Moreover, assume that the objective functions fi, i ∈ I, are (strictly) E-convex at y on ΩE ∪ YE, the constraint
functions gj, j ∈ J, are E-convex at y on ΩE ∪ YE, the functions ht, t ∈ T+ (E (y)) and functions −ht, t ∈
T− (E (y)), are E-convex at y on ΩE ∪ YE. Then x = y, that is, x is a weak Pareto (Pareto) solution of the problem
(VPE) (3.2) and

(
y, λ,µ, ξ

)
is a weak efficient point (efficient) of maximum type for the problem (WDE) (4.1). In

other words, E (x) is a weak E-Pareto (E-Pareto) solution of the problem (VP) (3.1) and
(
y, λ,µ, ξ

)
is a weakly

efficient (an efficient) solution of maximum type for the problem (WDE) (4.1).

Proof. From (4.9), it follows that

(fi ◦ E) (x) < (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y), i ∈ I. (4.10)

Multiplying each inequality (4.10) by λi, i ∈ I, and then adding both sides of the resulting inequalities,
we get

p∑
i=1

λi (f ◦ E) (x) <
p∑
i=1

λi (f ◦ E) (y) +
[ m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
] p∑
i=1

λi. (4.11)

Since
∑p
i=1 λi = 1, (4.11) implies

p∑
i=1

λi (fi ◦ E) (x) <
p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y). (4.12)

Now, we proceed by contradiction. Suppose, contrary to the result, that x 6= y. By assumption, the
objective functions fi, i ∈ I(y), are E-convex at y on ΩE ∪ YE, the constraint functions gj, j ∈ J(y), are
E-convex at y on ΩE ∪ YE, the functions ht, t ∈ T+ (E (y)) and functions −ht, t ∈ T− (E (y)), are E-convex
at y on ΩE ∪ YE. Then, by Proposition 2.7, the following inequalities

(fi ◦ E) (x) − (fi ◦ E) (y) = ∇ (fi ◦ E) (y) (E (x) − E (y)) , i ∈ I, (4.13)(
gj ◦ E

)
(x) −

(
gj ◦ E

)
(y) = ∇

(
gj ◦ E

)
(y) (E (x) − E (y)) , j ∈ J (E (y)) , (4.14)

(ht ◦ E) (x) − (ht ◦ E) (y) = ∇ (ht ◦ E) (y) (E (x) − E (y)) , t ∈ T+ (E (y)) , (4.15)

− (ht ◦ E) (x) + (ht ◦ E) (y) = −∇ (ht ◦ E) (y) (E (x) − E (y)) , t ∈ T− (E (y)) (4.16)
hold, respectively. Multiplying inequalities (4.13), (4.14), (4.15), (4.16) by the corresponding Lagrange
multipliers and then adding both sides of the resulting inequalities, we get

p∑
i=1

λi (fi ◦ E) (x) −
p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(x)

−

m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (x) −
q∑
t=1

ξt (ht ◦ E) (y)

=

[ p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇
(
gj ◦ E

)
(y) +

q∑
t=1

ξt∇ (ht ◦ E) (y)
]
(E (x) − E (y)) .

(4.17)
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By (4.17) and the first constraint of (WDE) (4.1), it follows that

p∑
i=1

λi (fi ◦ E) (x) +
m∑
j=1

µj
(
gj ◦ E

)
(x) +

q∑
t=1

ξt (ht ◦ E) (x)

=
p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y).

Hence, by x ∈ ΩE, we get that the following inequality

p∑
i=1

λi (fi ◦ E) (x) =
p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj
(
gj ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)

holds, contradicting (4.12). Then, x = y and this means by weak duality (Theorem 4.1) that x is a weak
Pareto solution of the problem (VPE) (3.2) and

(
y, λ,µ, ξ

)
is a weak efficient solution of maximum type for

the problem (WDE) (4.1). Further, by Lemma 3.4, it follows that E (x) is a weak E-Pareto solution of the
problem (VPE) (3.2) and

(
y, λ,µ, ξ

)
is a weak efficient solution of maximum type for the problem (WDE)

(4.1). Thus, the proof of this theorem is completed.

5. Concluding remarks

In this paper, a nonlinear multiobjective programming problem with both inequality and equality con-
straints has been considered in which the involved functions are not necessarily differentiable, but they
are E-differentiable. The so-called E-Fritz John necessary optimality conditions have been established for
the considered E-differentiable vector optimization problem with both inequality and equality constraints.
Further, under the introduced E-Abadie constraint qualification, also the so-called E-Karush-Kuhn-Tucker
necessary optimality conditions have been established for such a not necessarily differentiable multiob-
jective programming problem. In order to illustrate this result an example of such a vector optimization
problem with E-differentiable functions has been given in which the E-Abadie constraint qualification is
not satisfied and, therefore, the E-Karush-Kuhn-Tucker necessary optimality conditions are not satisfied
in such a case. Also several sufficient optimality conditions have been derived for such nonlinear vector
optimization problems with E-differentiable functions under (generalized) E-convexity hypotheses.

Further, the so-called Wolfe E-duality theory has been investigated for the considered E-differentiable
vector optimization problem with both inequality and equality constraints. Various E-duality theorems
between the E-differentiable vector optimization problem and its vector Wolfe E-dual problem have been
proved also under (generalized) E-convexity hypotheses.

However, some interesting topics for further research remain. It would be of interest to investigate
whether it is possible to prove similar optimality results for other classes of E-differentiable vector opti-
mization problems. We shall investigate these questions in subsequent papers.
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