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Abstract
In this paper, we investigate a class of nonlinear Langevin equation involving one fractional order α ∈ (0, 1] with three-point

boundary conditions. By the Banach contraction principle and Krasnoselskii’s fixed point theorem, the existence and uniqueness
results of solutions are obtained. Two examples are given to show the applicability of our main results.
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1. Introduction

Fractional calculus has been extensively studied and developed during the last few decades due to
its important application in many areas. It has become a new research field in differential equations
[9, 16, 23, 26]. The Langevin equation (first formulated by Langevin in 1908) is found to be an effective
tool to describe the evolution of physical phenomena in fluctuating environments [6]. As the intensive
development of fractional derivative, the fractional Langevin equations have been introduced by Mainardi
and Pironi [14]. The general form of the nonlinear fractional Langevin equations is presented as

cDα(cDβ + γ)u(t) = f(t,u(t)),

where cDα and cDβ are the Caputo fractional derivatives and f : [0, 1]×R → R is a given continuously
differentiable function, m − 1 < α 6 m and n − 1 < β 6 n, m,n ∈ N [22]. It worth mentioning
that mainly, fractional Langevin equations have been studied extensively. Recently, the existence and
uniqueness solution for the nonlinear fractional Langevin equations involving two fractional orders was
studied in [1–8, 11, 12, 15, 17, 21–25, 27] and the extensive list of references given therein. With different
unit intervals of values to two fractional orders α and β, many authors introduced their works. For
instance, [3, 4, 22, 24, 25] concerned with m − 1 < α 6 m and n − 1 < β 6 n, m,n ∈ N, [1, 15, 21]
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concerned with 0 < α,β 6 1, [2, 7, 12, 27] concerned with 0 < α 6 1 and 1 < β 6 2, [5, 11] concerned
with 1 < α 6 2 and 0 < β 6 1, and Gao et al [8] concerned with 1 < α,β 6 2.

Inspired by the papers mentioned above, in this paper we consider the nonlinear fractional Langevin
equations

cDα(D2 + λ2)u(t) = f(t,u(t)), t ∈ [0, 1], (1.1)

subject to the three-point boundary conditions

u(0) = 0, u′′(0) = 0, u(1) = βu(η), (1.2)

where cDα is the Caputo fractional derivative of fractional order α ∈ (0, 1], D2 is the second ordinary
derivative, f : [0, 1]×R→ R is a continuously differentiable function, and λ ∈ R+ and β ∈ R such that:

β 6= sin λ
sin λη

.

Some of the most elegant examples of Chua’s circuit and its many variants were motivated by the
discovery of the simple third-order differential equations of the form

...
x = F(ẍ, ẋ, x) whose solutions are

chaotic [18, 20]. The systems of the former form have been called Jerk equations (time derivative of
acceleration) [19]. A simple Jerk circuit that allows studying chaotic dynamics in terms of theoretical
variables x, ẋ, ẍ and ẍ and their equivalent experimental outputs was modeled as [13]

...
x +A1ẍ+A2ẋ+A3|x|+A4 = 0 (1.3)

with Ai, (i = 1, 2, 3, 4) being control parameters might behave chaotically for suitably chosen control
parameter values and initial conditions.

Our interest in studying the Langevin problem (1.1) comes from its application as a model for physical
systems exhibiting anomalous diffusion. In fact, it is well known that in many cases the most convenient
way of describing the time evolution of the velocity of the Brownian motion is to use the Langevin
equation [7]. It is worth pointing out that the equation (1.1) can be considered as a fractional form of
the Jerk chaotic equations mentioned above. Therefore, our work can be considered as a contribution of
development class of chaotic electrical circuit.

In the beginning of the paper we provide some basic concepts on the fractional integrals and deriva-
tives. Then, we use the Banach contraction principle and Krasnoselskii’s fixed point theorem to study the
existence and uniqueness solution of the three points boundary problem (1.1)-(1.2).

2. Preliminaries

Here, we recall several known definitions and properties from fractional calculus theory. For details,
see [9, 16].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a continuous function f :
[0,∞)→ R is defined as

Iαf(t) =

∫t
0

(t− s)α−1

Γ(α)
f(s)ds,

where Γ(.) denotes the Gamma function, provided that the right-hand-side integral exists.

Definition 2.2. Let n ∈N be a positive integer and α be a positive real such that n− 1 < α 6 n, then the
fractional derivative of a function f : [0,∞)→ R in the Caputo sense is defined as

cDαf(t) =
1

Γ(n−α)

∫t
0
(t− s)n−α−1f(n)(s)ds,

provided that the right-hand-side integral exists and is finite. We notice that the Caputo derivative of a
constant is zero.
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Lemma 2.3. Let n ∈N and n− 1 < α 6 n. If u is a continuous function on [0, 1], then we have

Iα cDαu(t) = u(t) + c0 + c1t+ · · ·+ cn−1t
n−1.

Lemma 2.4. The unique solution of the fractional differential equation

cDα(D2 + λ2)u(t) = θ(t), n− 1 < α 6 n, n ∈N,

where θ is a continuous function on [0, 1], given by

u(t) =
1
λ

∫t
0

sin λ(t− s)
( ∫s

0

(s− τ)α−1

Γ(α)
θ(τ)dτ+

n−1∑
i=1

cis
i
)
ds+ cn cos λt+ cn+1 cos λt, (2.1)

where ci, i = 0, 1, . . . ,n+ 1 are constants.

Proof. Assume that u(t) satisfies (2.1), then Lemma 2.3 and the variation of parameter method imply the
desired results.

Lemma 2.5. The function u(t) is a unique solution of the boundary value problem (1.1)-(1.2) if and only if it is a
solution of the nonlinear mixed Fredholm-Volterra integral equation

u(t) =
1
λ

∫t
0

sin λ(t− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

+
sin λt
∆

[
β

∫η
0

sin λ(η− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

−

∫ 1

0
sin λ(1 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

]
,

(2.2)

where

∆ = λ(sin λ−β sin λη) 6= 0. (2.3)

Proof. Applying Lemma 2.4, when 0 < α 6 1, we get

u(t) = c1 cos λt+ c2 sin λt+
c0

λ2 (1 − cos λt) +
1
λ

∫t
0

sin λ(t− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds. (2.4)

Using the boundary condition (1.2), we find that c0 = c1 = 0, and

c2 =
1
∆

[∫η
0

sin λ(η− s)
( ∫s

0

(s− τ)α−1

Γ(α)
θ(τ)dτ

)
ds−

∫ 1

0
sin λ(1 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
θ(τ)dτ

)
ds

]

Substituting these values of c0 , c1 , c2 in (2.4), we get (2.2). This completes the proof.

3. Existence of solution

Let E = C([0, 1], R) be the Banach space of all continuous functions from [0, 1] −→ R endowed the
norm defined by

‖u‖ = sup {|u(t)|, t ∈ [0, 1]}.

For the sake of convenience, we set

B =

∣∣∣∣∆1(λ+ 1) + λβ1η
α+1

λ∆1Γ(α+ 2)

∣∣∣∣, (3.1)
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where β1 = |β|, ∆1 = |∆| and ∆ is given by (2.3). In view of Lemma 2.5, we transform problem (1.1)-(1.2)
as

u = T(u), (3.2)

where T : E −→ E is defined by

(Tu)(t) =
1
λ

∫t
0

sin λ(t− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

+
sin λt
∆

[
β

∫η
0

sin λ(η− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

−

∫ 1

0
sin λ(1 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

]
.

Observe that problem (1.1)-(1.2) has solutions if the operator (3.2) has fixed points.

Theorem 3.1. Let f : [0, 1]×R −→ R be a jointly continuous function satisfying the condition

|f(t,u1) − f(t,u2)| 6 K|u1 − u2|, ∀t ∈ [0, 1], x,y ∈ R,

where K is the Lipschitz constant .Then the boundary value problem (1.1)-(1.2) has a unique solution if B < 1/K,
where B is given by (3.1).

Proof. As a first step, for T defined by (3.2), we show that TBr ⊂ Br, where Br = {u ∈ E : ‖u‖ 6 r}. For
that, set supt∈[0,1] |u(t, 0)| = σ and choose r > (σB)/(1 − KB), where B is given by (3.1). For u ∈ Br , we
have

‖(Tu)(t)‖ = sup
t∈[0,1]

∣∣∣∣1λ
∫t

0
sin λ(t− s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

+
sin λt
∆

[
β

∫η
0

sin λ(η− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

−

∫ 1

0
sin λ(1 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

]∣∣∣∣
6 sup
t∈[0,1]

(
1
λ

∫t
0

( ∫s
0

(s− τ)α−1

Γ(α)
(|f(τ,u(τ)) − f(τ, 0)|+ |f(τ, 0)|)dτ

)
ds

)
+

1
|∆|

[
|β|

∫η
0

( ∫s
0

(s− τ)α−1

Γ(α)
(|f(τ,u(τ)) − f(τ, 0)|+ |f(τ, 0)|)dτ

)
ds

+

∫ 1

0

( ∫s
0

(s− τ)α−1

Γ(α)
(|f(τ,u(τ)) − f(τ, 0)|+ |f(τ, 0)|)dτ

)
ds

]
6 sup
t∈[0,1]

(
1
λ

∫t
0

( ∫s
0

(s− τ)α−1

Γ(α)
(K|u(τ)|+ |f(τ, 0)|)dτ

)
ds

)
+

1
|∆|

[
|β|

∫η
0

( ∫s
0

(s− τ)α−1

Γ(α)
(K|u(τ)|+ |f(τ, 0)|)dτ

)
ds

+

∫ 1

0

( ∫s
0

(s− τ)α−1

Γ(α)
(K|u(τ)|+ |f(τ, 0)|)dτ

)
ds

]
6 (Kr+ σ)

(
1
λ

sup
t∈[0,1]

∫t
0
+
|β|

|∆|

∫η
0
+

∫ 1

0

)(∫s
0

(s− τ)α−1

Γ(α)
dτ

)
ds

6 (Kr+ σ)
∣∣∣∣∆1(λ+ 1) + λβ1η

α+1

λ∆1Γ(α+ 2)

∣∣∣∣ = (Kr+ σ)B 6 r.
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Now, let u1,u2 ∈ E for each t ∈ [0, 1], we obtain

‖(Tu1)(t) − (Tu2)(t)‖ = sup
t∈[0,1]

|(Tu1)(t) − (Tu2)(t)|

6 sup
t∈[0,1]

{(
1
λ

∫t
0

( ∫s
0

(s− τ)α−1

Γ(α)
|f(τ,u1(τ)) − f(τ,u2(τ))|dτ

)
ds

)
+

1
∆1

[
β1

∫η
0

( ∫s
0

(s− τ)α−1

Γ(α)
|f(τ,u1(τ)) − f(τ,u2(τ))|dτ

)
ds

+

∫ 1

0

( ∫s
0

(s− τ)α−1

Γ(α)
|f(τ,u1(τ)) − f(τ,u2(τ))|dτ

)
ds

]}

6 K‖u1 − u2‖

(
1
λ

sup
t∈[0,1]

∫t
0
+
|β|

|∆|

∫η
0
+

∫ 1

0

)(∫s
0

(s− τ)α−1

Γ(α)
dτ

)
ds

= BK‖u1 − u2‖.

By virtue that B < 1/K, then the operator T is a contraction. Therefore, the conclusion of the theorem
follows by the contraction mapping principle. This ends the proof.

Now we study the existence of solutions for boundary value problem (1.1)-(1.2) by satisfying the
conditions due to Krasnoselskii’s fixed point theorem that is as follows.

Theorem 3.2 ([10]). Let Ω be a closed convex and nonempty subset of Banach space E. Let F1 and F2 be two
operators such that:

1. F1z+F2z ∈ Ω;
2. F1 is compact and continuous;
3. F2 is a contraction mapping.

Then there exists z ∈ Ω such that z = F1z+F2z.

Theorem 3.3. Assume that f : [0, 1]×R −→ R be a jointly continuous function and the following assumptions
hold:

(H1) |f(t,u1) − f(t,u2)| 6 K|u1 − u2|, ∀t ∈ [0, 1],u1,u2 ∈ R;
(H2) |f(t,u)| 6 ω(t) for all (t,u) ∈ [0, 1]×R with ω ∈ C[0, 1].

Then the boundary value problem (1.1)-(1.2) has at least one solution in [0, 1] if Λ < 1/K, where Λ is given by

Λ =
β1η

α+1 +∆1

∆1Γ(α+ 2)
,

β1 = |β|, and ∆1 = |∆|.

Proof. Set supt∈[0,1] |ω(t)| 6 ‖ω‖ and consider Br = {u ∈ E : ‖u‖ 6 r} with fix

r >

∣∣∣∣∆1(λ+ 1) + λβ1η
α+1

λ∆1Γ(α+ 2)

∣∣∣∣‖ω‖.
Define the two operators T1 and T2 on Br as

(T1u)(t) =
1
λ

∫t
0

sin λ(t− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds,

(T2u)(t) =
sin λt
∆

[
β

∫η
0

sin λ(η− s)
( ∫s

0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds
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−

∫ 1

0
sin λ(1 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

]
.

For u1,u2 ∈ Br, it follows from (3.2) that

‖T1u1 + T2u2‖ 6
∣∣∣∣∆1(λ+ 1) + λβ1η

α+1

λ∆1Γ(α+ 2)

∣∣∣∣‖ω‖ 6 r.
Therefore, T1u1 + T2u2 ∈ Br. By virtue of Λ < 1/K it can be easily shown that T2 is a contraction mapping.
The continuity of the operator T1 comes from the continuity of the function f. Also, T1 is uniformly
bounded on Br as

‖T1u‖ 6
‖ω‖

λΓ(α+ 2)
.

To prove the compactness of the operator T1, assume thatD = [0, 1]×Br ⊂ E and define sup(t,u)∈D |f(t,u)| =
Hr. Let

δ = min

{[
ελΓ(α+ 2)
Hr(λ+α+ 1)

] 1
α

,
[
ελΓ(α+ 2)
Hr(λ+ 2α+1)

] 1
α+1
}

, ∀ε > 0.

Thus, for all u ∈ Br and t1, t2 ∈ [0, 1] with t1 < t2 and t2 − t1 < δ

‖(T1u)(t2) − (T1u)(t1)‖ =
∥∥∥∥1
λ

∫t2

0
sin λ(t2 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

−
1
λ

∫t1

0
sin λ(t1 − s)

( ∫s
0

(s− τ)α−1

Γ(α)
f(τ,u(τ))dτ

)
ds

∥∥∥∥
6
Hr

λ

∫t1

0
| sin λ(t2 − s) − sin λ(t1 − s)|

( ∫s
0

(s− τ)α−1

Γ(α)
dτ
)
ds

+
Hr

λ

∫t2

t1

( ∫s
0

(s− τ)α−1

Γ(α)
dτ
)
ds

=
Hr

λΓ(α+ 1)

[
λ

∫t1

0
sα
∣∣∣ ∫t2

t1

cos λ(ξ− s)dξ
∣∣∣ds+ ∫t2

t1

sαds

]
6

Hr

λΓ(α+ 2)

[
λ(t2 − t1)t

α+1
1 + tα+1

2 − tα+1
1

]
,

which is independent of u and tends to zero when t2 −→ t1. It obvious that t2 > δ and there are two
probabilities for t1 and δ.

Case I: δ 6 t1 < t2 < 1, the mean value theorem implies that there exists t ∈ (t1, t2) such that

tα+1
2 − tα+1

1 = (α+ 1)(t2 − t1)t
α < (α+ 1)δtα−1t < (α+ 1)δα.

Hence, we obtain

‖(T1u)(t2) − (T1u)(t1)‖ 6
Hr

λΓ(α+ 2)
(
λδtα−1

1 t2
1 + (α+ 1)δα

)
<
Hr(λ+α+ 1)
λΓ(α+ 2)

δα < ε.

Case II: 0 6 t1 < δ < t2 < 1 and so t2 < 2δ. These imply that

‖(T1u)t2 − (T1u)t1‖ 6
Hr

λΓ(α+ 2)
(
λδα+2 + (2δ)α+1) < Hr(λ+ 2α+1)

λΓ(α+ 2)
δα+1 < ε.

Therefore, the operator T1 is relatively compact on Br. Hence by the Arzela-Ascoli Theorem, the operator
T1 is compact on Br. Thus all assumptions of Theorem 3.3 are satisfied and the conclusion of Theorem
3.2 implies that the boundary value problem (1.1) and (1.2) has at least one solution in [0,1].
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4. Examples

We present two examples to better illustrate our main results.

Example 4.1. Consider the following initial value problemcD
1
2 (D2 + 16)u(t) = K

(
t

1
2 − sin(t) + tan−1 u(t)

)
, 0 < t < 1, 0 < α 6 1,

u(0) = 0, u′′(0) = 0, u(1) = 2u( 1
2).

(4.1)

Here, f(t,u(t)) = K
(
t

1
2 − sin(t) + tan−1 u(t)

)
, λ = 4,β = 2,η = 1

2 . Clearly

|f(t,u1(t)) − f(t,u2(t))| 6 K|u1 − u2|

and

B =
5∆1 + 2( 1

2)
( 5

2 )

3
√
π∆1

.

For K < 1.056222342, it follows by Theorem 3.1 that problem (4.1) has a unique solution.

Example 4.2. Consider the following initial value problem{
cD

3
4 (D2 + 9)u(t) = K

(
cos(t)u(t) − 1

)
, 0 < t < 1, 0 < α 6 1,

u(0) = 0, u′′(0) = 0, u(1) = 3u( 2
5).

(4.2)

Here, f(t,u(t)) = K
(

cos(t)u(t) − 1
)
, λ = 3,β = 3,η = 2

5 . Clearly

|f(t,u1(t)) − f(t,u2(t))| 6 K|u1 − u2|

and

B =
4∆1 + 3( 2

5)
( 11

4 )

3∆1Γ(2 + 3
4)

.

For K < 1.197197490, it follows by Theorem 3.1 that problem (4.2) has a unique solution.

5. Conclusion

The existence and uniqueness of solutions for three-point boundary value problem involving Langevin
equation with one fractional orders has been discussed. We apply the concepts of fractional calculus
together with fixed point theorems to establish the existence and uniqueness results. To investigate our
problem, we apply Banach contraction principle and Krasnoselskii’s fixed point theorem. Our approach
is simple and is applicable to a variety of real world problems.

As a special case, the existence results for a nonlinear third-order differential equations with a three-
point nonlinear boundary value problem

(D3 + λ2D)u(t) = f(t,u(t)), t ∈ [0, 1],

subject to the three-point boundary conditions

u(0) = 0, u′′(0) = 0, u(1) = βu(η),

can be obtained by fixing α = 1 in the results of this paper which can be considered as a special case of a
simple Jerk Chaotic circuit equation (1.3).
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