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Abstract
In this paper, we present a simple model for the dynamics of one dimensional of a self-gravitating spherical symmetrical gas-

dust cloud. We consider two special initial conditions for density and velocity. We take an analytical Cole-Hopf transformation
method to study the dynamics of a gravitating system of a gas-dust cloud. The technique is employed to simplify the equations
of dynamics, and after that, we applied the method of characteristics to reduce partial differential equations to a system of
entirely solvable ordinary differential equations. The obtained results in this study are presented in graphics.
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1. Introduction

Dust plays an essential role in the formation of planets. Investigation of planet formation processes has
been essential subjects both for astrophysics and for astronomy. To gain an understanding of the planet
formation process a model needed to be developed. In this paper, we considered a one-dimensional
model of a compressible fluid self-gravitating gas-dust cloud. The gas-dust clouds are extremely com-
plex systems. To enable a theoretical treatment, we have to introduce some simplifications as neglecting
rotation, and magnetic fields. By ignoring rotation, and magnetic fields, the cloud can be described as
one-dimensional spherically symmetric systems.

The system of equations describing the dynamics of a gravitating medium is mostly non-linear partial
differential equations and generally cannot be integrated completely. Therefore, numerical, approximate,
and analytical methods are the main way of analyzing such problems. The search for analytical solutions
is now motivated by the desire to understand the mathematical structure of the solutions and, hence, a
deeper understanding of the physical phenomena described by them.

The dynamics of a gravitating system of gas sphere has received considerable theoretical attention
in literature, particularly in connection with the problem of star formation. Larson [7] and Penston [9]
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independently found self-similar solutions which describe the density and velocity prior to the instant
of protostar formation (defined as the instant at which the central density becomes infinite). Shu [13]
extended their work to obtain a whole family of solutions for this problem.

Many numerical simulations have been performed in order to study the dynamics of the collapse of
clouds [1, 4, 8]. However numerical methods often do not provide extremely useful information concern-
ing the character of the solution, and an opportunity to understand the internal nature of the solutions
obtained. Due to this search for the methods for constructing analytical solutions, will remain one of the
important research areas in hydrodynamics.

Considerable attention has been directed towards the study of non-linear problems in hydrodynamics.
Apart from a limited number of these problems, most of them do not have an exact solution, so these
non-linear equations should be solved using analytical methods [10, 11]. For problems of the dynam-
ics of a compressible medium, the hodograph method [5, 10] is the most widely used. However, this
methods allow obtaining solutions in a specific form of dependence of coordinates and time on fluid
flow parameters, which complicates their interpretation and the construction of solutions to initial and
boundary-value problems. This method was applied to the study of the formation of the large-scale struc-
ture of the universe. As an alternative approach, the Cole-Hopf transformation method [12], in contrast
to the Hodograph transformation method allows us to construct solutions either explicitly or in the form
of integral of motion, setting the solution in an implicit form.

In this paper, we will study the dynamics of gravitating gas-dust cloud by applying the Cole-Hopf
transformation method. The Cole-Hopf transformation provides an attractive method for solving Burger’s
equation [2]. Studies of the Burgers equation with the help of a transformation discovered by Cole and
Hopf [2] can be considered a significant result in hydrodynamics and mathematical physics of the mid-
twentieth century.

In this work, we employ the method together with the appropriate initial conditions. The technique
is used to simplify the equations of dynamics, and then, the method of characteristics is used to reduce
the partial differential equation to a system of completely solvable ordinary differential equations. The
Cole-Hopf transformation provides an interesting method for solving Burger’s equation and can simplify
some non-linear partial differential equation and thus makes them analytically solvable.

2. Fundamental equations

We consider a spherical gas-dust cloud mass M and radius R. Let p(r, t), ρ(r, t), v(r, t), and Φ(r, t) be
the pressure, mass density, radial velocity, and gravitational potential, respectively. We assume spherical
symmetry cloud and no rotational motion. In a fluid description, the dynamics of a spherically symmet-
rical compressible gas-dust cloud is governed by the continuity equation

∂ρ

∂t
+ ρ

∂v

∂r
+
∂ρ

∂r
v+

2
r
ρv = 0, (2.1)

and the momentum equation
∂v

∂t
+ v

∂v

∂r
+

1
ρ

∂p

∂r
= −

∂Φ

∂r
. (2.2)

The gravitational potential Φ is given by Poisson’s equation

∂2Φ

∂r2 +
2
r

∂Φ

∂r
= 4πGρ, (2.3)

where G is Newton’s gravitational constant, p the pressure, ρ the density, v the radial velocity, andΦ grav-
itational potential. Equations (2.1)-(2.3) are nonlinear partial differential equations are quite complicated,
and the general solution cannot be obtained.
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Figure 1: The plot of a spherical symmetric gas-dust cloud, the gravity force Φ is balanced by pressure force p.

We shall simplify our model even further and assume that the cloud collapses as pressure-less dust,
which corresponds to the equation of state p = 0, like many authors have been neglected the pressure to
simplify the problem [3, 14]. Let us introduce an auxiliary function σ(r, t) = r2ρ(r, t). In this case, we can
rewrite the equations (2.1)-(2.3) in this way

∂σ

∂t
+
∂

∂r
(σv) = 0, (2.4)

∂v

∂t
+ v

∂v

∂r
= −

∂Φ

∂r
, (2.5)

∂

∂r

(
r2∂Φ

∂r

)
= 4πGσ. (2.6)

3. Cole-Hopf transformation method

Many methods for solving nonlinear differential equations were independently suggested during the
last decades [6], among these methods Cole-Hopf transformation [2, 6]. The Cole-Hopf transformation
method provides an interesting approach for solving Burger’s equation

∂u

∂t
+ u

∂u

∂r
= ν

∂2u

∂r2 ,

with transformation:
u(r, t) = 2µ

ϕr

ϕ
, ϕ = ϕ(r, t).

Also opened up other doors to solve other non-linear partial differential equations through similar
methodologies.

It is a surprising fact that the equations as (2.4)-(2.6) may be solved exactly using a trick discovered
independently by Cole and Hopf [2]. After Cole and Hopf introduced the transformation, several attempts
have been made to generalized Cole-Hopf transformation; we shall use here modified generalized Cole-
Hopf method [6, 14]. Let us change the fluid velocity v in the following form:

v(r, t) = −
θt

θr
, (3.1)

where θ = θ(r, t) is the auxiliary function (generalized Cole-Hopf transformation), θt = ∂θ
∂t , θr = ∂θ

∂r . The
equivalent representation (3.1) has the form of the equation

θt + v(r, t)θr = 0. (3.2)
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Let
v = S(r)T(θ), (3.3)

where S(r), and T(θ) are so far undefined functions. Substitution of (3.3) into the left side of equation
(2.5), and using equation (3.2), we obtain

∂v

∂t
+ v

∂v

∂r
= S(r)

∂T

∂θ

∂θ

∂t
+ S(r)T(θ)

(
∂S

∂r
T(θ) + S(r)

∂T

∂θ

∂θ

∂r

)
,

or
∂v

∂t
+ v

∂v

∂r
= S ′(r)S(r)T 2(θ). (3.4)

We reduce the Poisson equation (2.6) to the form

∂Φ

∂r
= 4πGθ. (3.5)

From equation (2.5), (3.5), and (3.4), we obtain

S ′(r)S(r)T 2(θ) = −4πGθ. (3.6)

From (3.6), we obtain
T 2(θ) = 4πGθ,

and
S ′(r)S(r) = −1. (3.7)

Thus, we obtain
T(θ) =

√
4πG
√
θ, (3.8)

and
S(r) = ±

√
2
√
r−1 + c, (3.9)

where c is constant of integration. From (3.1), (3.3), (3.8), and (3.9)

v(r, t) = −
θt

θr
= ±
√

8πG
√
r−1 + c

√
θ,

or
θt ±

√
8πG

√
r−1 + c

√
θθr = 0. (3.10)

By the substitution of new variable

ξ(r) =

∫
(r−1 + c)−1/2dr, (3.11)

to equation (3.10), it takes the form
θt ±

√
8πG
√
θθξ = 0. (3.12)

This is a quasi-linear partial differential equation. We can solve it by the method of characteristics [12].
Let us consider the differential form

dt

1
= ± dξ√

8πG
√
θ
=
dθ

0
, (3.13)

from (3.13), we have
θ = c1, (3.14)

where c1 is a constant. Also
ξ±
√

8Gλ
√
θt = c2. (3.15)

Combining equations (3.14) and (3.15) we obtain

c2 = F(c1),

where F is an arbitrary function, then the general solution to the partial differential equation (3.12) may
be written in implicit form

ξ±
√

8πG
√
θt = F(θ). (3.16)
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4. Initial conditions

One of the main problems with model calculations the formation of planets is the fact that initial
conditions of the cloud are not known. We consider in this paper, two initial conditions for the density
and velocity. For both conditions, the initial density of fluid as a function of distance vanished at the edge
of the cloud and the center has a maximum value. We start with the Cauchy conditions, let us look for
the solution to the problem with

ρ(r, 0) =
1
r2
∂θ0(r)

∂r
, (4.1)

where θ0(r) = θ(r, 0). Let
θ0(r) = ρ0 arctan(r3), (4.2)

differentiating equation (4.2) and using (4.1), we find ρ(r, 0) (see Figures 2 and 3).
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Figure 2: Graph of the inverse tangent function θ0.
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Figure 3: Graph of the initial density function ρ(r, 0).

ρ(r, 0) =
ρ0

1 + r6 > 0. (4.3)

Assume that velocity of the fluid at the time t=0 as following:

v(r, 0) = 0. (4.4)

The second set of initial conditions are as following:

θ0(r) =
M

4π
arsinh(r3), (4.5)

where θ0(r) = θ(r, 0), and M is mass of cloud

ρ(r, 0) =
1
r2
∂θ0(r)

∂r
. (4.6)

Differentiating equation (4.5) and using (4.6), we find, ρ(r, 0) (see Figures 4 and 5)

ρ(r, 0) =
3M

4π(r6 + 1)1/2 > 0. (4.7)

Assume too that velocity of the fluid at the time t = 0 as

v(r, 0) = 0. (4.8)
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Figure 4: Graph of the inverse hyperbolic sine function,
θ0(r) = arsinh(r3).
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Figure 5: Graph of the initial density function ρ0(r).

5. Analytical solution of fundamental equations

5.1. Solution to the problem with the Cauchy conditions

When c = 0 in equation (3.11) we obtain

ξ(r) =
2
3
r

3
2 . (5.1)

Then we can rewrite equation (4.2) as

θ0(ξ) = ρ0 arctan((
3
2
ξ)2). (5.2)

We seek now the solution of the equation (3.16) with initial condition (5.2). By plugging initial condition
(5.2) into equation (3.16), we get

F(θ0(ξ)) = ξ,

therefore

F(θ) = ±2
3

(
tan
(
θ

ρ0

)) 1
2

. (5.3)

Substituting the equation (5.3) into (3.16), we obtain that

tan
(
θ

ρ0

)
=

9
4
(ξ±

√
8πG
√
θt)2,

therefore

θ = ρ0 arctan(
3
2
ξ± 3

√
2πG
√
θt)2,

replacing the variable ξ by its expression from equation (5.1), we finally obtain

θ− ρ0 arctan(
√
r±
√

2πG
√
θt)2 = 0, (5.4)

which is non-linear inverse trigonometrical transcendental equation, we can solve it numerically to find
θ.
Differentiating the equation (5.4) with respect to r, we find

θr =
3ρ0
√
θ
√
rw

(
√
θ(1 +w4)± ρ0λtw)

,
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where
w(r, t) = r

3
2 ± λ

√
θt, λ = 3

√
2πG.

Now we can calculate density ρ through function θ

ρ(r, t) =
θr

r2 =
3ρ0
√
θ(r

3
2 ± λ

√
θt)r−

3
2

((1 +w4)
√
θ± ρ0λt(

√
r± λ

√
θt))

.

Differentiating equation (5.4) with respect to t, we obtain

θt =
±2ρ0λθw(r, t)√
θ(1 +w4)± ρ0λtw

.

Now we can calculate velocity through function θ

Figure 6: Graphs of density ρ(r) for a variety of time t. Figure 7: Graphs of density ρ for a variety of radius r.

v(r, t) = −
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θr
= ±λθ
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Figure 8: Graphs of velocity v(r) for a variety of times t.

5.2. Solution to the problem with the inverse hyperbolic condition
Now we want to get the solution of the equation (3.16) with initial condition (4.5), (4.7), and (4.4). The

procedure for calculating the function F(θ) remains similar to that described in the previous subsection
5.1 and reduced to the equation:

θ−
M

4π
arsinh(r3/2 ± 3

2

√
8πG
√
θt)2 = 0, (5.5)
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this is the inverse hyperbolic transcendental equation, and we can solve it numerically to find θ. Differ-
entiating the equation (5.5) with respect to r, we find

θr =
6M
√
θw(r, t)

√
r

8π
√
θ
√

1 +w4 − 3Mλtw(r, t)
,

where
w(r, t) = (r

3
2 ± 3

2
λ
√
θt), λ =

√
8πG.

Now we can calculate density ρ through function θ

ρ =
6M
√
θ(r

3
2 ± 3

2λt
√
θ)r−

3
2

8π
√
θ

√
1 + (r

3
2 ± 3

2λ
√
θt)4 − 3Mλt(r

3
2 ± 3

2λ
√
θt)

.

Differentiating equation (5.5) with respect to t, we obtain

θt =
6Mθw(r, t)

8π
√
θ
√

1 +w4 − 3Mλtw(r, t)
.

Now we can calculate velocity v through function θ

Figure 9: Graphs of density ρ(r) for a variety of times t. Figure 10: Graphs of density ρ for a variety of radius r.
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Figure 11: velocity v(r) for a variety of times t.
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6. Results and discussion

Mathematica package software has been used to solve numerically the inverse trigonometrical tran-
scendental equation (5.4), inverse hyperbolic transcendental equation (5.5), and to generate plots of the
density and velocity. The plots start at r = 0.0001 to avoid infinities at zero, and the real part of the result
is used for the plot.

Figures 6 and 8 show the fluid flow variables ρ, and v as function of radius r for verity times t,
as solution for the fundamental equations with special initial condition (4.2), (4.3), and (4.4). It can be
observed from graphs, that the density inside the cloud decreases with the increasing value of the distance
r from the center of the cloud, whereas the central density inside a cloud increases with increasing time
t. Figure 7 shows the density ρ as function of time t for verity of radius r.

Moreover, Figure 9 and 11 show the fluid flow variable ρ as function of radius r for verities time t
as solution for the fundamental equations with the second special initial conditions (4.5), (4.7), and (4.8).
It can be observed from graphs, that the density inside the cloud decreases with the increasing value
of the distance r from the centre of the cloud, whereas the central density inside a cloud increases with
increasing time t. Figure 10 shows the density ρ as function of time t for verity of radius r.

7. Conclusion and future work

We demonstrated in this paper that the modified form of Cole-Hopf transformation could be used to
find the solutions for the dynamics of gravitating spherical symmetrical gas-dust cloud.

In this paper, the Cole-Hopf transformation method has been presented and successfully used to
obtain analytic expressions and to illustrate the solutions graphically. We have applied two special initial
conditions to get a solution to the problem.

As shown in this paper, the proposed modified Cole-Hopf method, together with the appropriate
initial conditions, allow us to get effective scheme to construct a solution to the problem of dynamics
gravitating system of the gas-dust cloud. This method allows us to obtain the analytical solution which
different to similarity techniques, which have been allowed many authors [7, 9, 13] to get the semi-
analytical solution.

A further possible study may be the investigation of the system (2.1)-(2.3) with other possible equation
of state, which may be different from the ones considered here and other special initial conditions.
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