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Abstract
In this paper, we study optimal asset allocation strategy for a defined contribution (DC) pension fund with return of

premium clause under Heston’s volatility model in mean-variance utility frame work. In this model, members’ next of kin are
allowed to withdraw their family members’ accumulated premium with predetermined interest. Also, investments in one risk
free asset and one risky asset are considered to help increase the accumulated funds of the remaining members in order to meet
their retirement needs. Using the actuarial symbol, we formulize the problem as a continuous time mean-variance stochastic
optimal control problem. We establish an optimization problem from the extended Hamilton Jacobi Bellman equations using
the game theoretic approach and solve the optimization problem to obtain the optimal allocation strategy for the two assets, the
optimal fund size and also the efficient frontier of the pension members. We analyze numerically the effect of some parameters on
the optimal allocation strategy and deduce that as the initial wealth, predetermined interest rate and risk averse level increases,
the optimal allocation policy for the risky asset (equity) decreases. Furthermore, we give a theoretical comparison of our result
with an existing result and observed that the optimal allocation policy whose return is with predetermined interest is higher
compared to that without predetermined interest.
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1. Introduction

In general, a man’s life cycle is made up of two crucial phase; first, the person’s working years and
his retirement years. Based on this, individuals need to create a definite consumption plan for their needs
from when income is earned (working life) to when there might be no other funds available, except for
a possible survival level of support from the members’ accumulated contribution during working life or
members employers contributions (retirement life). The funds given to a retiree monthly from the ac-
cumulated contributions after their working years is referred to as pension. The important of pension
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scheme cannot be over emphasized in the life of retirees. There are two types of pension plan in which
members can take part in; this include the defined benefit (DB) pension plan and the defined contribution
pension plan (DC). The defined benefit pension plan is a type in which members benefits are determined
in advance following some basic requirements which include age, years in service, members’ salary his-
tories etc., these benefits depend basically on the contributions made by the employers and because of
the mode of contributions, most private organizations found it difficult to develop a pension plan for
their members as a result, this plan was limited to members in government organizations. Although
most members are happy with this plan since contributions are made only by the employers, it has over
the years generated controversies and delay in implementation after retirement and these has led to the
introduction of the alternative plan known as the defined contribution (DC) pension plan which is mostly
members dependent. It also requires that members contribute a certain proportion of their income into the
members’ retirement serving account (RSA). The DC pension plan is much more attractive and reliable
than the DB pension plan since members are fully involved in the contribution and investment process
and depend mostly on the returns of the investment during the accumulation period and this expected
return is influenced by some factors such as investment efficiency, inflation, mortality risk, etc.. Although
the DC pension plan seems attractive, it requires investment knowledge in different assets available in the
financial market. These assets include the cash, bond, and stock etc.. Since investment in stock involve
risk, there is need to study the best possible way to invest for optimal returns. This leads to the study of
optimal allocation policy by financial institutions and this explains the proportion of the members’ wealth
to be invested in various assets available in the financial market for optimal returns with less risk. In [6],
a model of optimal allocation for DC pension plan with a minimum guarantee in the continuous-time
setting was proposed and investigated. [5], studied optimal investment strategy to DC members with
asset, salary and interest rate risk and proposed a novel form of terminal utility function by incorporating
habit formulation. [4] worked on optimal investment strategy for a DC pension with stochastic interest
rate. In [7], asset allocation problem under a stochastic interest rate was studied, and [2], investigated
a case where the interest rate was of Vasicek model, [18] studied optimal investment strategies for DC
pension with a stochastic salary under affine interest rate model which includes the Cox-Ingersoll-Ross
(CIR) model and Vasicek model. Lately, the study of constant elasticity of Variance (CEV) model in DC
pension fund investment strategies have taken centre stage in modelling the stock price. [16], studied
the constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity
contracts. [8], obtained explicit solutions of the optimal investment strategy for investor with CRRA and
CARA utility function by extending the work of [16]. [14], studied optimal investment strategies in DC
pension fund with multiple contributions using Legendre transformation method to obtain the explicit
solution for CRRA and CARA. [1], studied stochastic strategies of optimal investment for DC pension
fund with multiple contributors where they considered the rate of contribution to be stochastic. [13],
studied optimization problem with return of premium in a DC pension with multiple contributors. The
study optimal allocation strategy with refund of contributions clause include [10], who studied optimal
investment strategy for a defined contribution pension scheme with the return of premiums clauses in
a mean-variance utility function. [11] investigated equilibrium investment strategy for DC pension plan
with default risk and return of premiums clauses under constant elasticity of variance model. [15], in-
vestigated the optimal time-consistent investment strategy for a DC pension with the return of premiums
clauses and annuity contracts. To the best of our knowledge, there is no literature that has any work done
on optimal allocation strategy with refund of contributions clause that considers the refund contributions
with predetermined interest under Heston volatility model. This forms the basis of our discussion in this
paper.

2. Mathematical formulation

Consider a financial market which is complete and frictionless and is continuously open over a fixed
period of time interval 0 6 t 6 T , where T is the retirement age of any given plan member.



E. E. Akpanibah, B. O. Osu, S. A. Ihedioha, J. Nonlinear Sci. Appl., 13 (2020), 53–64 55

Assume the market is made of a risk-free asset (cash) and a risky asset (equity) and suppose (Ω, F, P)
is a complete probability space such that Ω is a real space and P a probability measure satisfying the
condition 0 6 t 6 T . {Ws(t),Wl(t) : t > 0} are two standard Brownian motions. F is the filtration and
denotes the information generated by the two Brownian motions. Let C1

t(t) denote the price of the risk
free asset and C2

t(t) the price of the risky asset which satisfies the Heston’s stochastic volatility model.
Their price models are described as follows:

dC1
t (t)

C1
t (t)

= r1dt, C1
t (0) = 1, (2.1)

dC2
t (t)

C2
t (t)

= (r1 + k1L (t))dt+
√
L (t)dW1C

2
t (0) = c

2
0, (2.2)

dL (t)

L (t)
= m

(
θ

L
− 1
)
dt+ σ1

√
L

L
dW2, L (0) = l0.

Here r1 is the predetermine interest rate of the risk free asset and m, θ,k1,σ1 are positive constants
and the two Brownian motions W1 (t) , W2 (t) are such that E[W1 (t) , W2 (t)] = ρ, where ρ represents the
correlation coefficient of the two Brownian motions and satisfies the condition −1 6 ρ 6 1.

Assume the premium received at a given time be represented as b, let π0 represent the initial age
of accumulation phase, T , the period of the accumulation phase such that π0 + T is the end age. The
actuarial symbol M( 1

i ),π0+t
is the mortality rate from time t to t+ 1

i , bt is the premium accumulated at
time t, tbM( 1

i ),π0+t
is the premium returned to the death members. Secondly, we assume that apart from

the accumulated fund of the death member, a certain fixed interest is paid as well from the investment in
the risk-free asset since the risk free interest rate is predetermined. Let ϕ represent the proportion of the
wealth invested in risky asset and ϕ1 = 1 −ϕ is the proportion invested in riskless asset.

Considering the time interval [t, t+ 1
i ], the differential form associated with the fund size is given as:

Z

(
t+

1
i

)
=

 Z (t)

(
ϕ1

C1
t+ 1
i

(t)

C1
t

+ϕ
C2
t+ 1
i

(t)

C2
t

)
+

b
(1
i

)
− tb 1

iMϑ0+t −ϕ1Z (t)
C1
t+ 1
i

(t)

C1
t

1
iMϑ0+t

 1
1 − 1

iMϑ0+t

,

Z

(
t+

1
i

)
=



Z (t)


1 + (1 −ϕ)

(
C1
t+ 1
i

−C1
t

C1
t

)

+ϕ

(
C2
t+ 1
i

−C2
t

C2
t

)


+b
(1
i

)
− tb 1

iMϑ0+t

−(1 −ϕ)Z (t)

(
1 +

C1
t+ 1
i

−C1
t

C1
t

)
1
iMϑ0+t



(
1 +

1
iMϑ0+t

1 − 1
iMϑ0+t

)
,

Z

(
t+

1
i

)
=


Z (t)


1 + (1 −ϕ)

(
C1
t+ 1
i

−C1
t

C1
t

)
(1 − 1

iMϑ0+t)

+ϕ

(
C2
t+ 1
i

−C2
t

C2
t

)
+ b

(1
i

)
− tb 1

iMϑ0+t


−(1 −ϕ)Z (t) 1

iMϑ0+t


(

1 +
1
iMϑ0+t

1 − 1
iMϑ0+t

)
. (2.3)

The conditional death probability tqx = 1 − tpx = 1 − e−
∫t

0 π(ϑ0+t+s)ds, where π (t) is the force function
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of the mortality at time t, and for i→∞,

1
i
Mϑ0+t = 1 − exp{−

∫ 1
i

0
π (ϑ0 + t+ s)ds} ≈ π (ϑ0 + t)

1
i
= O(

1
i
),

1
iMϑ0+t

1 − 1
iMϑ0+t

=
1 − exp{−

∫ 1
i
0 π (ϑ0 + t+ s)ds}

exp{−
∫ 1
i
0 π (ϑ0 + t+ s)ds}

= exp{
∫ 1
i

0
π (ϑ0 + t+ s)ds}− 1 ≈ π (ϑ0 + t)

1
i
= O(

1
i
),

i→∞,
1
iMϑ0+t

1 − 1
iMϑ0+t

= π (ϑ0 + t)dt,
1
i
Mϑ0+t = π (ϑ0 + t)dtb,

(
1
i

)
→ bdt,

C1
t+ 1

i

−C1
t

C1
t

→ dC1
t (t)

C1
t (t)

,
C2
t+ 1

i

−C2
t

C2
t

→ dC2
t(t)

C2
t(t

.

(2.4)

Substituting (2.4) into (2.3), we have

Z

(
t+

1
i

)
=

 Z (t)
(

1 + (1 −ϕ)(1 − π (ϑ0 + t)dt)
dC1

t(t)

C1
t(t)

+ϕ
dC2

t(t)

C2
t(t)

)
−(1 −ϕ)Z (t)π (ϑ0 + t)dt

+b
(1
i

)
− tbπ (ϑ0 + t)dt

 (1 + π (ϑ0 + t)dt) . (2.5)

Substituting (2.1) and (2.2) into (2.5), we have

dZ (t)=
( {

Z (t)
(
ϕ
(
k1L (t) +

1
ϑ−ϑ0−t

)
+ r1

)
+ b

(
ϑ−ϑ0−2t
ϑ−ϑ0−t

) }
dt+Z (t)

(
ϕ
√
L (t)dW1

)
,
)

Z (0) = z0,

where ϑ is the maximal age of the life table and π (t) is the force function given by

π (t) =
1

ϑ− t
, 0 6 t < ϑ, π (ϑ0 + t) =

1
ϑ− ϑ0 − t

.

3. Methodology

If we consider the pension wealth and the volatility of the accumulations, the remaining members of
the pension scheme will want to increase their total wealth and minimize the risk as much as possible.
Hence there is need to formulate the optimal portfolio problem under the mean-variance criterion as
follows:

sup
ϕ

{Et,z,lZ
ϕ (T) − Vart,z,lZ

ϕ (T)} . (3.1)

Our main aim is to obtain the optimal investment strategies for both the risk-free and risky asset using
the mean-variance utility function. Applying game theoretic method in [3, 10] the mean-variance control
problem in (3.1) is equivalent to the following Markovian time inconsistent stochastic optimal control
problem with value function C(t, z, l)

D(t, z, l,ϕ) = Et,z,l[Z
ϕ(T)] − γ

2 Vart,z,l[Z
ϕ(T)],

D(t, z, l,ϕ) = Et,z,l[Z
ϕ(T)] − γ

2 (Et,z,l[Z
ϕ(T)2] − (Et,z,l[Z

ϕ(T)])2),
C(t, z, l) = supϕD(t, z, l,ϕ).

Following [15], the optimal portfolio policy ϕ satisfies: C(t, z, l) = supϕD(t, z, l,ϕ∗). γ is a con-
stant representing risk aversion coefficient of the members. Let pϕ(t, z, l) = Et,z,l[Z

ϕ(T)],qϕ(t, z, l) =
Et,z,l[Z

ϕ(T)2], then C(t, z, l) = supϕ u(t, z, l,p
ϕ(t, z, l),qϕ(t, z, l)), where

u(t, z, l,p,q) = p−
γ

2
(q− p2).
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Theorem 3.1 (Verification theorem). If there exist three real functions U,V ,W : [0, T ]× R → R satisfying the
following Hamilton Jacobi Bellman equations:

supµ



Ut − ut

+

 z(ϕ(k1l+
1

ϑ−ϑ0−t

)
+ r1

)
+b
(
ϑ−ϑ0−2t
ϑ−ϑ0−t

)  (Uz − uz)

+m (θ− l) (Ul − ul) +
1
2z

2ϕ2l (Uzz − Pzz)

+1
2σ

2
1l (Ull − Pll) +ϕzρlσ1 (Uzl − Pzl)


U (T , z, l) = u

(
t, z, l, z2

)
= 0, (3.2)

where 
Pzz = uzz + 2uzppz + 2uzqqz + uppp2

z + 2upqpzqz + uqqq2
z = γV

2
z,

Pll = ull + 2ulppl + 2ulqql + uppp2
l + 2upqplql + uqqq2

l = γV
2
l ,

Pzl = uzl + uzppl + uzqql + uplpz + uqlqz + upppzpl
+upqpzql + upqplqz + uqqqlqz = γVzVl,

Vt

+

 z(ϕ(k1l+
1

ϑ−ϑ0−t

)
+ r1

)
+b
(
ϑ−ϑ0−2t
ϑ−ϑ0−t

) Vz
+m (θ− l)Vl +

1
2z

2ϕ2lVzz
+1

2σ
2
1lVll +ϕzρlσ1Vzl


= 0,

V (T , z, l) = z,

(3.3)



Wt

+

 z(ϕ(k1l+
1

ϑ−ϑ0−t

)
+ r1

)
+b
(
ϑ−ϑ0−2t
ϑ−ϑ0−t

) Wz
+m (θ− l)Wl +

1
2z

2ϕ2lWzz
+1

2σ
2
1lWll +ϕ2zρlσ1Wzl


= 0.

W (T , z, l) = z2,

(3.4)

Then C(t, z, l) = U(t, z, l), pϕ
∗
= V(t, z, l),qϕ

∗
=W(t, z, l) for the optimal investment strategy ϕ∗.

The details of the proof can be found in [9, 12, 17]. Next, we try to find the optimal allocation strategies
for the two assets and also the efficient frontier by solving (3.2), (3.3), and (3.4).

Proposition 3.2. The optimal allocation policy for equity is given as

ϕ1
∗ = 1 −ϕ∗ = 1 −

er1(t−T)

γz

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]
+

1
l

(
1

ϑ− ϑ0 − t

)}
,

ϕ∗ =
er1(t−T)

γz

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]
+

1
l

(
1

ϑ− ϑ0 − t

)}
.

Proof. Recall that u(t, z, l,p,q) = p− γ
2 (q− p

2),

ut = uz = ul = uzz = ull = uzl = upl = uql = uzp = uzq = upq = uqq = 0,

up = 1 + γp, upp = γ, uq = −
γ

2
.

(3.5)

Substituting (3.5) into (3.2) and differentiating it with respect to ϕ and solving for ϕ, we have:

ϕ∗ = −

[
(k1l+

1
ϑ−ϑ0−t

)uz + (Uzl − γVzVl) ρσ1

zl
(
Uzz − γV

2
z

) ]
. (3.6)
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Substituting (3.6) and (3.5) into (3.2) and (3.3) we have

Ut +

[
r1z+ b

(
ϑ− ϑ0 − 2t
ϑ− ϑ0 − t

)]
Uz +m (θ− l)Ul +

1
2
(
Ull − γV

2
l

)
σ2

1l

−
1
2

U2
z(

Uzz − γV
2
z

)

(
k1l+

1
ϑ−ϑ0−t

)2

l

−
1
2
(Uzl − γVzVl)

2(
Uzz − γV

2
z

) ρ2σ2
1 = 0,

(3.7)

Vt + Vz

[
r1z+ b

(
ϑ− ϑ0 − 2t
ϑ− ϑ0 − t

)]
+m (θ− l)Vl +

1
2
σ2

1lVll −
UzVz(

Uzz − γV
2
z

)

(
k1l+

1
ϑ−ϑ0−t

)2

l


−
Vz (Uzl − γVzVl)(
Uzz − γV

2
z

) (
k1l+

1
ϑ− ϑ0 − t

)
ρσ1

+
1
2

l

(
k1l+

1
ϑ−ϑ0−t

)
uz + (Uzl − γVzVl) ρσ1

l
(
Uzz − γV

2
z

)
2Vzz

+ ρσ1


(
k1l+

1
ϑ−ϑ0−t

)
uz + (Uzl − γVzVl) ρσ1(
Uzz − γV

2
z

)
Vlz = 0.

(3.8)

We will next assume a solution for U (t, z, l) and V (t, z, l) as follows:
U (t, z, l) = X1 (t) z+

X2(t)l
γ +X3(t)

γ , X
1
(T) = 1, X2 (T) = 0, X3 (T) = 0,

V (t, z, l) = Y1 (t) z+
Y2(t)l
γ +Y3(t)

γ , Y
1
(T) = 1, Y2 (T) = 0, Y3 (T) = 0,

Ut = z
dX1(t)
dt + l

γ
dX2(t)
dt + 1

γ
dX3(t)
dt , Uz = X1 (t) , Uzz = 0, Ul =

X2(t)
γ , Ull = 0,

Vt = z
dY1(t)
dt + l

γ
dY2(t)
dt + 1

γ
dY3(t)
dt , Vz = Y1 (t) , Vzz = 0, Vl =

Y2(t)l
γ , Vll = 0.

(3.9)

Substituting (3.9) into (3.7) and (3.8), we have[
dX1 (t)

dt
+ r1X1 (t)

]
z +

[
dX2 (t)

dt
−mX2 +

(ρ2 − 1)σ2
1Y2

2

2
+
k2

1X1
2

2Y1
2 −

ρσ1k1X1Y2

Y1

]
l

γ

+

[
dX3 (t)

dt
+mθX2 +X1bγ

(
ϑ− ϑ0 − 2t
ϑ− ϑ0 − t

)
−

(
1

ϑ− ϑ0 − t

)
ρσ1k1Y1

+ (
1

ϑ− ϑ0 − t
)k1
X1

2

Y1
2 +

1
2

(
1

ϑ−ϑ0−t

)2
X2

1

lY2
1

 1
γ
= 0,


dX1(t)
dt + r1X1 (t) = 0,

dX2(t)
dt −mX2 +

(ρ2−1)σ2
1Y2

2

2 +
k2

1
2 − ρσ1k1Y2 = 0,

dX3(t)
dt +mθX2 +X1bγ

(
ϑ−ϑ0−2t
ϑ−ϑ0−t

)
−
(

1
ϑ−ϑ0−t

)
ρσ1k1Y1 +

(
1

ϑ−ϑ0−t

)
k1 +

1
2l

(
1

ϑ−ϑ0−t

)2
= 0,

(3.10)

[
dY1 (t)

dt
+ r1Y1 (t)

]
z +

[
dY2 (t)

dt
−mY2 +

k2
1X1
Y1

−
ρσ1k1X1Y2

Y1

]
l

γ
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+

[
dY3 (t)

dt
+mθY2 + Y1bγ

(
ϑ− ϑ0 − 2t
ϑ− ϑ0 − t

)
−

(
1

ϑ− ϑ0 − t

)
ρσ1k1Y2

+ 2k1

(
1

ϑ− ϑ0 − t

)
X1Y1

Y1
2 +

1
2

(
1

ϑ− ϑ0 − t

)2
X1Y1

lY2
1

]
1
γ
= 0,


dY1(t)
dt + r1Y1 (t) = 0,

dY2(t)
dt −mY2 + k

2
1 − ρσ1k1Y2 = 0,

dY3(t)
dt +mθY2 + Y1bγ

(
ϑ−ϑ0−2t
ϑ−ϑ0−t

)
−
(

1
ϑ−ϑ0−t

)
ρσ1k1Y2 + 2k1

(
1

ϑ−ϑ0−t

)
+ 1

2l

(
1

ϑ−ϑ0−t

)2
= 0.

(3.11)

Solving (3.10) and (3.11), we have

X1 (t) = e
r1(T−t)

X2 (t) =
ρσ1k

3
1

m+ ρσ1k1

{
1
m

(
em(t−T) − 1

)
+ 1
ρσ1k1

(em(t−T) − e(m+ρσ1k1)(t−T))

}
+
k2

1
2m

(1 − em(t−T))

+
σ2

1k
3
1

(
ρ2 − 1

)
2(m+ ρσ1k1)

2


1
m

(
em(t−T) − 1

)
+2em(t−T)

ρσ1k1

(
1 − eρσ1k1(t−T)

)
+

em(t−T)

m+2ρσ1k1

(
e(m+ρσ1k1)(t−T) − 1

)
 ,

X3 (t) =−mθ

∫T
t

X2 (τ)dτ+bγ

∫T
t

τer1(T−τ)

ϑ− ϑ0 − τ
dτ+

bγ

r1

(
er1(t−T) − 1

)
+

(
k1

+ 1
2l(ϑ−ϑ0−t)(ϑ−ϑ0−T)

)
(T − t) ,

Y1 (t) = e
r1(T−t),

Y2 (t) =
k2

1
m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)
,

Y3 (t) = −mθ

∫T
t

Y2 (τ)dτ− ρσ1k1

∫T
t

(
1

ϑ− ϑ0 − t

)
Y2 (τ)dτ+ bγ

∫T
t

τer1(T−τ)

ϑ− ϑ0 − τ
dτ

+

(
k2

1
m+ ρσ1k1

) ∫T
t

e(m+ρσ1k1)(T−τ)

ϑ− ϑ0 − τ
dτ+

bγ

r1

(
er1(t−T) − 1

)
+

1
l

(
1

2 (ϑ− ϑ0 − t) (ϑ− ϑ0 − T)

)
(T − t) +

(
2k1 −

k2
1

m+ ρσ1k1

)
ln
(
ϑ− ϑ0 − T

ϑ− ϑ0 − t

)
,

U (t, z, l) = zer1(T−t) +
l

γ



ρσ1k
3
1

m+ρσ1k1

{
1
m

(
em(t−T) − 1

)
+ 1
ρσ1k1

(em(t−T) − e(m+ρσ1k1)(t−T))

}
+
k2

1
2m

(
1 − em(t−T)

)
+
σ2

1k
3
1(ρ

2−1)
2(m+ρσ1k1)

2


1
m

(
em(t−T) − 1

)
+2em(t−T)

ρσ1k1

(
1 − eρσ1k1(t−T)

)
+

em(t−T)

m+2ρσ1k1

(
e(m+ρσ1k1)(t−T) − 1

)



+

1
γ

 −−mθ
∫T
t X2 (τ)dτ+ bγ

∫T
t
τer1(T−τ)

ϑ−ϑ0−τ
dτ+ bγ

r1

(
er1(t−T) − 1

)
+

(
k1

+ 1
2l(ϑ−ϑ0−t)(ϑ−ϑ0−T)

)
(T − t)

 ,

V (t, z, l) = zer1(T−t) +
l

γ

{
k2

1
m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)}
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+
1
γ



−mθ
∫T
t Y2 (τ)dτ− ρσ1k1

∫T
t

(
1

ϑ−ϑ0−t

)
Y

2
(τ)dτ

+bγ
∫T
t
τer1(T−τ)

ϑ−ϑ0−τ
dτ+

(
k2

1
m+ρσ1k1

) ∫T
t
e(m+ρσ1k1)(T−τ)

ϑ−ϑ0−τ
dτ

+bγr1

(
er1(t−T) − 1

)
+ 1
l

(
1

2(ϑ−ϑ0−t)(ϑ−ϑ0−T)

)
(T − t)

+
(

2k1 −
k2

1
m+ρσ1k1

)
ln
(
ϑ−ϑ0−T
ϑ−ϑ0−t

)


,

Uz = X1 (t) ,Vz = Y1 (t) ,Uzz = 0, and Vl = Y2 (t) . (3.12)

Substituting (3.12) into (3.6), we have

ϕ1
∗ = 1 −ϕ∗ = 1 −

er1(t−T)

γz

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]
+

1
l

(
1

ϑ− ϑ0 − t

)}
ϕ∗ =

er1(t−T)

γz

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]
+

1
l

(
1

ϑ− ϑ0 − t

)}
.

Proposition 3.3. The efficient frontier of the pension members is given by

Et,z,l[Z
ϕ∗ (T)]=zer1(T−t)+

√
Vart,z,l[Z

ϕ∗ (T)]

J (t)



lk2
1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)
−mθ

∫T
t Y2 (τ)dτ− ρσ1k1

∫T
t

(
1

ϑ−ϑ0−t

)
Y

2
(τ)dτ

+bγ
∫T
t
τer1(T−τ)

ϑ−ϑ0−τ
dτ+

(
k2

1
m+ρσ1k1

) ∫T
t
e(m+ρσ1k1)(T−τ)

ϑ−ϑ0−τ
dτ

+bγr1

(
er1(t−T) − 1

)
+ 1
l

(
1

2(ϑ−ϑ0−t)(ϑ−ϑ0−T)

)
(T − t)

+
(

2k1 −
k2

1
m+ρσ1k1

)
ln
(
ϑ−ϑ0−T
ϑ−ϑ0−t

)


.

Proof.

Vart,z,l[Z
ϕ∗ (T)] = Et,z,l[Z

ϕ∗ (T)
2
] − (Et,z,l[Z

ϕ∗ (T)])
2
=

2
γ
(V (t, z, l) −U (t, z, l))

=
1
γ2


2l



k2
1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)

−



ρσ1k
3
1

m+ρσ1k1

{
1
m

(
em(t−T) − 1

)
+ 1
ρσ1k1

(em(t−T) − e(m+ρσ1k1)(t−T))

}
+
k2

1
2m

(
1 − em(t−T)

)
+
σ2

1k
3
1(ρ

2−1)
2(m+ρσ1k1)

2


1
m

(
em(t−T) − 1

)
+2em(t−T)

ρσ1k1

(
1 − eρσ1k1(t−T)

)
+

em(t−T)

m+2ρσ1k1

(
e(m+ρσ1k1)(t−T) − 1

)






+



−mθ
∫T
t (Y2 (τ) +X2 (τ))dτ

−ρσ1k1
∫T
t

(
1

ϑ−ϑ0−t

)
Y

2
(τ)dτ

+
(

k2
1

m+ρσ1k1

) ∫T
t
e(m+ρσ1k1)(T−τ)

ϑ−ϑ0−τ
dτ

k1 (T − t)

+
(

2k1 −
k2

1
m+ρσ1k1

)
ln
(
ϑ−ϑ0−T
ϑ−ϑ0−t

)




,

Vart,x[Z
ϕ∗ (T)] =

1
γ2 J(t),
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where

J (t) =


2l



k2
1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)

−


ρσ1k

3
1

m+ρσ1k1

{
1
m

(
em(t−T) − 1

)
+ 1
ρσ1k1

(em(t−T) − e(m+ρσ1k1)(t−T))

}
+
k2

1
2m

(
1 − em(t−T)

)
+
σ2

1k
3
1(ρ

2−1)
2(m+ρσ1k1)

2


1
m

(
em(t−T) − 1

)
+2em(t−T)

ρσ1k1

(
1 − eρσ1k1(t−T)

)
+

em(t−T)

m+2ρσ1k1

(
e(m+ρσ1k1)(t−T) − 1

)





+

 −mθ
∫T
t (Y2 (τ) +X2 (τ))dτ− ρσ1k1

∫T
t

(
1

ϑ−ϑ0−t

)
Y

2
(τ)dτ

+
(

k2
1

? ′+ρσ1k1

) ∫T
t
e(m+ρσ1k1)(T−τ)

ϑ−ϑ0−τ
dτk1 (T − t) +

(
2k1 −

k2
1

m+ρσ1k1

)
ln
(
ϑ−ϑ0−T
ϑ−ϑ0−t

)

 ,

1
γ
=

√
Vart,z,l[Z

ϕ∗ (T)]√
J(t)]

, (3.13)

Et,z,l[Z
ϕ∗ (T)] = V (t, z, l) = zer1(T−t) +

1
γ



lk2
1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)
−mθ

∫T
t Y2 (τ)dτ− ρσ1k1

∫T
t

(
1

ϑ−ϑ0−t

)
Y

2
(τ)dτ

+bγ
∫T
t
τer1(T−τ)

ϑ−ϑ0−τ
dτ+

(
k2

1
m+ρσ1k1

) ∫T
t
e(m+ρσ1k1)(T−τ)

ϑ−ϑ0−τ
dτ

+bγr1

(
er1(t−T) − 1

)
+ 1
l

(
1

2(ϑ−ϑ0−t)(ϑ−ϑ0−T)

)
(T − t)

+

(
2k1 −

k2
1

m+ρσ1k1

)
ln
(
ϑ−ϑ0−T
ϑ−ϑ0−t

)


. (3.14)

Substituting (3.13) in (3.14), we have

Et,z,l[Z
ϕ∗ (T)]= zer1(T−t) +

√
Vart,z,l[Z

ϕ∗ (T)]

J (t)



lk2
1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)
−mθ

∫T
t Y2 (τ)dτ− ρσ1k1

∫T
t

(
1

ϑ−ϑ0−t

)
Y

2
(τ)dτ

+bγ
∫T
t
τer1(T−τ)

ϑ−ϑ0−τ
dτ+

(
k2

1
m+ρσ1k1

) ∫T
t
e(m+ρσ1k1)(T−τ)

ϑ−ϑ0−τ
dτ

+bγr1

(
er1(t−T) − 1

)
+ 1
l

(
1

2(ϑ−ϑ0−t)(ϑ−ϑ0−T)

)
(T − t)

+
(

2k1 −
k2

1
m+ρσ1k1

)
ln
(
ϑ−ϑ0−T
ϑ−ϑ0−t

)


.

Proposition 3.4. The optimal fund size Zϕ
∗
(t) corresponding to the optimal allocation strategy ϕ∗is given as

Z (t) =
ϑmk1

γ


((
t
m − 1

m2

)
emt + 1

m2

) (
1 − ρσ1k1

m+ρσ1k1

)
er1(t−T)

+emt
(

t
2m+ρσ1k1

− 1
(2m+ρσ1k1)

2

)
e(r1+m+ρσ1k1)(t−T)

+
(

1
(2m+ρσ1k1)

2 e
−(m+ρσ1k1)Ter1(t−T)

)


+
k2

1
mγ

[
er1(t−T)

(
1 − ρσ1k1

m(m+ρσ1k1)

)
+ 1

2m+ρσ1k1
e(r1+m+ρσ1k1)(t−T)

] (
emt − 1

)
+ z0e

r1t +
b

m

(
er1t − 1

)
− bγer1t

∫T
t

τe−r1t

ϑ− ϑ0 − τ
dτ.



E. E. Akpanibah, B. O. Osu, S. A. Ihedioha, J. Nonlinear Sci. Appl., 13 (2020), 53–64 62

4. Theoretical analysis

In this section, we present a proposition comparing our result with the result in [15]. Let µ∗ be the
optimal asset allocation in [15] and is given as

µ∗ =
er1(t−T)

γz1

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]}
.

Proposition 4.1. Let k1 > 0, ϑ > 0, ϑ0 > 0, r1 > 0,m > 0, γ > 0, σ1 > 0, T > 0, t > 0, ρ ∈ [−1, 1], and
l (t) > 0, l1 > 0 for t ∈ [0, T ], such that z1(t) > z (t) and m+ ρσ1k1 > 0, (ϑ− ϑ0 − t) > 0, then ϕ∗ > µ∗.

Proof. Recall that ϕ∗ = er1(t−T)

γz

{
k1

[
1 − ρσ1k1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]
+ 1
l

(
1

ϑ−ϑ0−t

)}
and µ∗ = er1(t−T)

γz1{
k1

[
1 − ρσ1k1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]}
. Suppose ϕ∗ > µ∗, we want to show that ϕ∗ − µ∗ > 0.

ϕ∗ − µ∗ =
1
γzl

(
1

ϑ− ϑ0 − t

)
er1(t−T) +

(z1 − z)

z1z

er1(t−T)

γ

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]}
.

Since (ϑ− ϑ0 − t) > 0, 0 < er1(t−T) < 1, zl > 0, then

1
γzl

(
1

ϑ− ϑ0 − t

)
er1(t−T) > 0.

Also, z1 − z > 0, z1z > 0, t− T < 0, then (z1−z)
z1z

er1(t−T)

γ > 0 and 0 <
(
1 − e(m+ρσ1k1)(t−T)

)
< 1 .

Case 1. If ρ = 0, then

ϕ∗ − µ∗ =
1
γzl

(
1

ϑ− ϑ0 − t

)
er1(t−T) +

(z1 − z)

z1z

er1(t−T)

γ

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]}
ϕ∗ − µ∗ =

1
γzl

(
1

ϑ− ϑ0 − t

)
er1(t−T) +

k1(z
1 − z)

z1z

er1(t−T)

γ
> 0.

Case 2. If ρ < 0, then

ϕ∗ −µ∗=
1
γzl

(
1

ϑ− ϑ0 − t

)
er1(t−T) +

(z1 − z)

z1z

er1(t−T)

γ

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]}
> 0.

Since ρσ1k1
m+ρσ1k1

< 1.

Case 3. If ρ > 0, then

ϕ∗ −µ∗=
1
γzl

(
1

ϑ− ϑ0 − t

)
er1(t−T) +

(z1 − z)

z1z

er1(t−T)

γ

{
k1

[
1 −

ρσ1k1

m+ ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]}
> 0.

Since
[
1 − ρσ1k1

m+ρσ1k1

(
1 − e(m+ρσ1k1)(t−T)

)]
> 0. Therefore

ϕ∗ − µ∗ > 0.

5. Numerical simulations

Here, we give numerical simulations of the optimal investment strategy with respect to time and
study the impact of the different parameters of the optimal portfolio strategy with the help of math lab
programming language.

The following parameters were used unless otherwise stated γ = 0.2, r1 = 0.06,m = 0.5, ρ = 0.2,k1 =
0.05, l0 = 0.1, z0 = 0.1, T = 40, t = 0 : 5 : 20, ϑ = 100, ϑ0 = 20.
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Figure 1: Evolution of optimal allocation strategy with different risk averse level.

Figure 2: Evolution of optimal allocation strategy with different predetermined interest rates.

Figure 3: Evolution of optimal allocation strategy with different initial wealth.

6. Discussion

From Proposition 4.1, we observed that the optimal allocation strategy whose return of premium is
with predetermined interest is greater than that without predetermined interest. The reason being that
when the return is with interest, the remaining fund in the pension system is less compared to when the
return is without interest and comparing that with Figure 3, we observed that a decrease in wealth leads
to an increase in the optimal allocation strategy of the risky assets. This implies that fund manager in case
where the return is with interest will take more risk in investing in risky asset with the aim to increase
the wealth of the remaining members.

In Figure 1, the optimal allocation strategy increases with a decrease in the risk-averse coefficient.
The implication is that members with high risk averse will prefer to invest more in cash and will reduce
that of the equity. Figure 2 shows that the optimal allocation strategy increases with a decrease in the
interest rate of cash. This implies that if the interest rate of the cash is high, the members will increase
the proportion of its wealth to be invested in cash thereby reducing the proportion invested in equity and
vice versa. Also, Figure 3, shows that the optimal allocation strategy decreases with increase in the initial
wealth. The implication here is that if the initial wealth of the plan member is high, the member will
prefer to invest more in cash to minimize risk instead of investing more in equity but if the initial wealth
is low, the member prefers taking the risk to grow the wealth by investing in equity.
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In general, we observe that at the beginning of the accumulation phase, the pension manager will
invest more in cash because there is no return initially, but once refund is made to the death members,
the fund manager will increase its investment in the equity to meet the retirement needs of the remaining
members.

7. Conclusion

We investigated asset allocation strategy in a defined contribution (DC) pension plan with refund
of premium clauses under Heston’s Volatility model using mean-variance utility function. We assumed
that the refund contributions are with predetermined interest and considered investments in cash and
equity to help increase the accumulated funds of the remaining members to meet their retirement needs.
We established an optimized problem from the extended Hamilton Jacobi Bellman equations and solved
the optimized problem and obtained the optimal allocation strategy for both cash and equity and also
the efficient frontier of the members. We compared our result with that in [15]. Next, we analyzed
numerically the effect of some parameters on the optimal allocation strategy. Our conclusion is that as the
initial wealth, predetermined interest rate, and risk averse level increase, the optimal allocation strategy
for the risky asset (equity) decreases.
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