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Abstract
In this paper, we study the quenching behavior of semidiscretizations of the heat equation with nonlinear boundary

conditions. We obtain some conditions under which the positive solution of the semidiscrete problem quenches in a finite time
and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain
some results on numerical quenching rate. Finally we give some numerical results to illustrate our analysis.

Keywords: Numerical quenching, heat equation, nonlinear boundary.

2010 MSC: 35K05, 34B15, 74S20.

c©2020 All rights reserved.

1. Introduction

In this paper, we study the behavior of a semidiscrete approximation of the following heat equation
involving nonlinear boundary flux conditions:

ut(x, t) = uxx(x, t), x ∈ (0,a), t ∈ (0, T), (1.1)
ux(0, t) = (1 − u(0, t))−p, ux(a, t) = (1 − u(a, t))−q, t ∈ (0, T), (1.2)

0 6 u(x, 0) = u0(x) < a, x ∈ [0,a], (1.3)

where m,n > 0,p,q > 0 and u0 satisfies the compatibility conditions, i.e., u ′0(0) = (1 − u0(0))−p, u ′0(a) =
(1 − u0(a))

−q. The problem is said to be quench if there exists a finite time T such that,

lim
t→T−

max
06x6a

u(x, t) = 1−.

The study of heat equation with nonlinear boundary conditions has deserved a great deal of interest in
recent years and has been used to model, for example, heat transfer, polarization phenomena in ionic
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conductor, chemical catalyst kinetics, etc. (see [3, 4, 6–9, 14, 15, 17] and the references cited therein). In
[4] the authors have given some conditions under which the solution u of (1.1)-(1.3) quenches in a finite
time and the quenching occurs only at the boundary x = a. They proved that ut blows up at quenching
set and also gave the quenching rate near the quenching time T , which in other word says that there exist
constants C1,C2 > 0 such that 1 −C1(T − t)

1
q+1 6 u(a, t) 6 1 −C2(T − t)

1
q+1 .

From our knowledge, the numerical approximation of equations (1.1)-(1.3) has not been studied. Thus,
in this paper, we are investigated in the numerical study using a semidiscrete form of (1.1)-(1.3). For that,
we consider the case where a = 1. Let I ∈N. We consider a uniform mesh on the interval [0, 1] as

xi = (i− 1)h, i = 1, . . . , I, h = 1/(I− 1),

Uh = Uh(t) = (U1(t), . . . ,UI(t))T are the values of the numerical approximation at the nodes xi at time
t of the solution of (1.1)-(1.3). By the finite difference method we obtain the following system of ODEs
whose solution is Uh:

U ′i(t) = δ
2Ui(t), i = 2, . . . , I− 1, t ∈ (0, Th), (1.4)

U ′1(t) = δ
2U1(t) −

2(1 −U1(t))
−p

h
, t ∈ (0, Th), (1.5)

U ′I(t) = δ
2UI(t) +

2(1 −UI(t))
−q

h
, t ∈ (0, Th), (1.6)

Ui(0) = ϕi > 0, i = 1, . . . , I, (1.7)

where 0 6 ϕi < 1, 1 6 i 6 I and

δ2Ui(t) =
Ui−1(t) − 2Ui(t) +Ui+1(t)

h2 , 2 6 i 6 I− 1, t > 0,

δ2U1(t) =
2U2(t) − 2U1(t)

h2 , t > 0, δ2UI(t) =
2UI−1(t) − 2UI(t)

h2 , t > 0.

We say that the solution of (1.4)-(1.7) quenches in a finite time Th if

lim
t→Th

‖Uh(t)‖∞ = 1.

Th is called the semidiscrete quenching time of (1.4)-(1.7).
For study on numerical approximations of heat equation with non-linear boundary conditions we refer

to [1, 5, 10–13, 16]. Nabongo et al. in [12] were interested in the numerical study using a semidiscrete
form of

ut(x, t) = uxx(x, t), x ∈ (0, 1), t ∈ (0, T),

ux(0, t) = 0, ux(1, t) = −u(1, t)−β, t ∈ (0, T), u(x, 0) = u0(x), x ∈ [0, 1],

where β > 0. They showed that some conditions under which the positive solution of the numerical
approximation for this heat equation quenches in a finite time, they also established the convergence of
the semidiscrete quenching time and obtained some results on numerical quenching rate and set.

Inspired by [4, 5, 12], we give some conditions under which any positive solution of semidiscrete
scheme of (1.1)-(1.3) quenches in a finite time. We also show that the semidiscrete quenching time con-
verges to the theoretical one when the mesh size goes to zero. The rest of the paper is organized as
follows : in the next section, we give some properties concerning our semidiscrete scheme. In Section 3,
under some conditions, we prove that the solution of the semidiscrete scheme of (1.1)-(1.3) quenches in a
finite time, we give a result on numerical quenching rate. In Section 4, we show that the quenching time
converges to the theoretical one when the mesh size goes to zero. Finally, in the last section, we give some
numerical results to illustrate our analysis.
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2. Properties of the semidiscrete scheme

In this section, we give some auxiliary results for the problem (1.4)-(1.7).

Definition 2.1. A function Vh ∈ C1((0, Th), RI) is a lower solution of (1.4)-(1.7) if

V ′i(t) − δ
2Vi(t) 6 0, i = 2, . . . , I− 1, t ∈ (0, Th),

V ′1(t) − δ
2V1(t) +

2(1 − V1(t))
−p

h
6 0, t ∈ (0, Th),

V ′I(t) − δ
2VI(t) −

2(1 − VI(t))
−q

h
6 0, t ∈ (0, Th),

Vi(0) 6 Ui(0), i = 1, . . . , I,

where Uh = (U1, . . . ,UI)T is solution of (1.4)-(1.7). On the other hand, we say that Vh ∈ C1((0, Th), RI) is
an upper solution of (1.4)-(1.7) if these inequalities are reversed.

Lemma 2.2. Let bh ∈ C0([0, Th), RI) and let Vh ∈ C1([0, Th), RI) such that

dVi(t)

dt
− δ2Vi(t) + bi(t)Vi(t) > 0, 1 6 i 6 I, t ∈ (0, Th), Vi(0) > 0, 1 6 i 6 I.

Then we have Vi(t) > 0, 1 6 i 6 I, t ∈ (0, Th).

Proof. Let us define the vector Zh(t) = Vh(t)eλt with λ a real. We have

Z ′i(t) − δ
2Zi(t) + (bi(t) − λ)Zi(t) > 0, i = 1, . . . , I, t ∈ (0, Th), (2.1)

Zi(0) > 0, i = 1, . . . , I. (2.2)

Denote m = min16i6I, t∈[0,T0] Zi(t), where T0 ∈ (0, Th). Since for i ∈ {1, . . . , I}, Zi(t) is a continuous
function on the compact [0, T0], there exists i0 ∈ {1, . . . , I} such that m = Zi0(ti0). Assume m < 0. Taking λ
such that bi0(ti0) − λ > 0. If ti0 = 0, then Zi0(0) < 0, which contradicts (2.2), hence ti0 > 0.

It is not hard to see that

Z ′i0
(ti0) = lim

k→0

Zi0(ti0) −Zi0(ti0 − k)

k
6 0,

moreover by a straightforward computation we get

Z ′i0
(ti0) − δ

2Zi0(ti0) + (bi0(ti0) − λ)Zi0(ti0) < 0,

but these inequalities contradict (2.1) and the proof is complete.

Another form of the maximum principle for semidiscrete equations is the following comparison
lemma.

Lemma 2.3. Let Wh,Vh ∈ C1((0, Th), RI) such that for t ∈ (0, Th), we have

W ′i(t) − δ
2Wi(t) 6 V

′
i(t) − δ

2Vi(t), i = 2, . . . , I− 1,

W ′1(t) − δ
2W1(t) + g(W1(t)) 6 V

′
1(t) − δ

2V1(t) + g(V1(t)),

W ′I(t) − δ
2WI(t) + f(W1(t)) 6 V

′
I(t) − δ

2VI(t) + f(WI(t)),
0 6Wi(0) 6 Vi(0), i = 1, . . . , I.

Then we have
Wh(t) 6 Vh(t), ∀t ∈ (0, Th).
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Proof. Let us define the vector Zh(t) = Vh(t) −Wh(t) with λ a real. We have

Z ′i(t) − δ
2Zi(t) > 0, i = 2, . . . , I− 1, t ∈ (0, Th), (2.3)

Z ′1(t) − δ
2Z1(t) + g

′(ζ(t))Z1(t) > 0, t ∈ (0, Th), (2.4)

Z ′I−1(t) − δ
2ZI−1(t) − f

′(ξ(t))ZI(t) > 0, t ∈ (0, Th), (2.5)
Zi(0) > 0, i = 1, . . . , I, (2.6)

where ζ(t) and ξ(t) lie, respectively, between V1(t) and W1(t), and between VI(t) and WI(t). We can
rewrite (2.3)-(2.6) as

Z ′i(t) − δ
2Zi(t) + bi(t)Zi(t) > 0, i = 1, . . . , I, t ∈ (0, Th),

where b1(t) = g
′(ζ(t)), bI(t) = −f ′(ξ(t)) and bi(t) = 0, i = 2, . . . , I− 1, ∀t ∈ (0, Th). According to lemma

2.2, Zh(t) > 0, ∀t ∈ (0, Th) and the proof is complete.

The results of the next lemma are analogue to those of continuous problem.

Lemma 2.4. Let Uh ∈ C1((0, Th), RI) be solution of (1.4)-(1.7) with a nonnegative initial data ϕh such that ϕh
is a lower solution and ϕi+1 > ϕi, for i = 1, . . . , I− 1. Then we have

(i) Ui(t) > 0 and Ui(t) > ϕi, i = 1, . . . , I, t ∈ (0, Th);
(ii) Ui+1(t) > Ui(t), i = 1, . . . , I− 1, t ∈ (0, Th);

(iii)
dUi(t)

dt
> 0, i = 1, . . . , I, t ∈ (0, Th).

Proof.

(i) Since ϕh is a lower solution of (1.4)-(1.7), we have

Ui(t) > ϕi > 0, for i = 1, . . . , I, t ∈ (0, Th),

by Lemma 2.3.

(ii) Let t0 be the first t > 0, such that Ki(t) = Ui+1(t) − Ui(t) > 0, for 1 6 i 6 I − 1, but Ki0(t0) =
Ui0+1(t0) −Ui0(t0) = 0 for a certain i0 ∈ {1, . . . , I− 1}. Without lost of generality, we can suppose that i0 is
the smallest integer which satisfies the above equality. We have

dKi0(t0)

dt
= lim
ε→0

Ki0(t0) −Ki0(t0 − ε)

ε
6 0,

Ki0+1(t0) − 2Ki0(t0) +Ki0−1(t0)

h2 > 0, if 2 6 i0 6 I− 2,

Ki0+1(t0) − 3Ki0(t0)h
2 > 0, if i0 = 1,

−3Ki0(t0) +Ki0−1(t0)

h2 > 0, if i0 = I− 1,

which imply that

dKi0(t0)

dt
−
Ki0+1(t0) − 2Ki0(t0) +Ki0−1(t0)

h2 < 0, if 2 6 i0 6 I− 2,

dKi0(t0)

dt
−
Ki0+1(t0) − 3Ki0(t0)

h2 −
2(1 −Ui0(t))

−p

h
< 0, if i0 = 1,

dKi0(t0)

dt
−

−3Ki0(t0) +Ki0−1(t0)

h2 −
2(1 −Ui0+1(t))

−q

h
< 0, if i0 = I− 1,

but these inequalities contradict (1.4)-(1.6) and we obtain the desired result.
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(iii) Denote Zi(t) = Ui(t+ ε) −Ui(t), i = 1, . . . , I, using (i) we obtain Zi(0) > 0.
A straightforward calculation yields

dZi(t)

dt
=
Zi−1(t) − 2Zi(t) +Zi+1(t)

h2 , 2 6 i 6 I− 1, t ∈ (0, Th),

dZ1(t)

dt
=

2Z2(t) − 2Z1(t)

h2 −
2p(1 − η(t))−p−1Z1(t)

h
, t ∈ (0, Th),

dZI(t)

dt
=

2ZI−1(t) − 2ZI(t)
h2 +

2q(1 − ξ(t))−q−1ZI(t)

h
, t ∈ (0, Th),

Zi(0) > 0, i = 1, . . . , I,

where η(t) and ξ(t) lie, respectively, between U1(t+ ε) and U1(t) and between UI(t+ ε) and UI(t). We
obtain the below inequality by the same manner as Lemma 2.3

Zi(t) > 0, i = 1, . . . , I, ∀t ∈ (0, Th).

This fact implies the desired result.

3. Quenching and quenching rate

In this section, under some assumptions, we show that the solutionUh of (1.4)-(1.7) quenches in a finite
time and estimate its semidiscrete quenching time. Moreover we determine the numerical quenching rate
and quenching set of the solution.

Theorem 3.1. Let Uh(t) be the solution of (1.4)-(1.7) such that the initial data ϕh is a lower solution, assumption
q > p > 0. Then there exists a positive constant γ such that Uh quenches in a finite time Th and we have the
following estimate

Th 6
(1 − ‖ϕh‖∞)q+1

γ(q+ 1)
.

Proof. Let (0, Th) be the maximal time interval on which 0 6 Uh(t) < 1. Our aim is to show that Th is
finite and satisfies the above inequality. Introduce the function Jh(t) such that

Ji(t) =
dUi(t)

dt
− γ(1 −Ui(t))

−q, i = 1 . . . , I.

A straightforward calculation gives

dJ1(t)

dt
− δ2J1(t) +

2p
h
(1 −U1(t))

−p−1J1(t) =
2γ
h
(q− p)(1 −U1(t))

−p−q−1 + γ(δ+U1(t))
2g ′′(µ1(t)),

dJI(t)

dt
− δ2JI(t) −

2q
h
(1 −UI(t))

−q−1JI(t) = γ(δ
−UI(t))

2g ′′(θI(t)),

dJi(t)

dt
− δ2Ji(t) = γ(δ

+Ui(t))
2g ′′(µi(t)) + γ(δ

−Ui(t))
2g ′′(θi(t)) i = 2, . . . , I− 1,

with g ′′(x) = q(q+ 1)(1 − x)−q−2, δ+Ui =
Ui+1−Ui

h , δ−Ui =
Ui−Ui−1

h , where θi and µi lie, respectively,
between Ui and Ui+1, and between Ui and Ui−1. It is not hard to see that

dJ1(t)

dt
− δ2J1(t) +

2p
h
(1 −U1(t))

−p−1J1(t) > 0,

dJI(t)

dt
− δ2JI(t) −

2q
h
(1 −UI(t))

−q−1JI(t) > 0,

dJi(t)

dt
− δ2Ji(t) > 0, i = 2, . . . , I− 1.
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Moreover, using the fact that ϕh is a lower solution, we obtain Jh(0) > 0. We deduce from Lemma 2.2
that Ji(t) > 0, i = 1, . . . , I. As a consequence we get

(1 −Ui(t))
qdUi(t) > γdt. (3.1)

Integrating (3.1) from 0 to t we obtain

(1 −Ui(t))
q+1 6 (1 −ϕi)

q+1 − γ(q+ 1)t, i = 1, . . . , I.

Denote ‖ϕh‖∞ = ϕi0 and ‖Uh(t)‖∞ = Ui0(t) for a certain i0 ∈ {1, . . . , I}. Which means that ‖Uh(T0)‖∞ = 1

for some T0 =
(1 − ‖ϕh‖∞)q+1

γ(q+ 1)
. Thus Uh quenches in finite time Th 6 T0.

Theorem 3.2. Under the assumptions of Theorem 3.1 and Lemma 2.4, the solution Uh of (1.4)-(1.7) quenches in a
finite time Th and

1 − ‖Uh(t)‖∞ ∼ (Th − t)
1
q+1 for t ∈ (0, Th).

Proof. From Theorem 3.1 Uh quenches in a finite time Th. Integrating the above inequalities (3.1) over
(t, Th) we obtain

Th − t 6
(1 −Ui(t))

q+1

γ(q+ 1)
, i = 1, . . . , I, (3.2)

which implies that
‖Uh(t)‖∞ 6 1 −C2(Th − t)1/(q+1),

where C2 = (γ(q+ 1))1/(q+1). From Lemma 2.4, Ui < Ui+1, for 1 6 i 6 I− 1, hence ‖Uh(t)‖∞ = UI(t),
for t ∈ (0, Th). It follows from (1.6) that

dUI(t)

dt
6

2
h
(1 −UI(t))

−q,

which implies that (1 −UI(t))
qdUI(t) 6

2
h
dt. Thus we have

1 −C1(Th − t)1/(q+1) 6 ‖Uh(t)‖∞, where C1 =

(
2(q+ 1)
h

)1/(q+1)

,

and we have the desired result.

Theorem 3.3. If limt→Th UI(t) = 1, then U ′h(t) blows up.

Proof. Suppose U ′h(t) is bounded. Then, there exists a positive constant M such that U ′h(t) < M. We have

I∑
i=2

I∑
j=i

h2U ′j(t) 6
I∑
i=2

I∑
j=i

h2M.

From (1.4)-(1.6) and lemma 2.4 we get

1
(1 −UI(t))q

<
M

2
+
hM

2
+UI(t) −U1(t).

As t→ T−h , the left-hand side tends to infinity while the right-side is finite. This contradiction shows that
U ′h(t) blows up.
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4. Convergence of the semidiscrete quenching time

In this section, we study the convergence of the semidiscrete quenching time. Now we will show that
for each fixed time interval [0, T ], where u is defined, the solution Uh of (1.4)-(1.7) approximates u when
the mesh parameter h goes to zero. We denote

uh(t) = (u(x1, t), . . . ,u(xI, t))T and ‖Uh(t)‖∞ = max
16i6I

|Ui(t)|.

Theorem 4.1. Assume that the problem (1.1)-(1.3) has a solution u ∈ C4,1 ([0, 1]× [0, T∗]) and the initial condition
ϕh at (1.7) verifies

‖ϕh − uh(0)‖∞ = o(1), h→ 0. (4.1)

Then, for h small enough, the semidiscrete problem (1.4)-(1.7) has a unique solution Uh ∈ C1
(
[0, T∗], RI

)
such

that

max
t∈[0,T∗]

‖Uh(t) − uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h2), as h→ 0.

Proof. Let σ > 0 be such that
‖u‖∞ < σ, t ∈ [0, T∗].

Then the problem (1.4)-(1.7), for each h, has a unique solution Uh ∈ C1
(
[0, T∗], RI

)
. Let t(h) 6 T∗ be the

greatest value of t > 0 such that

‖Uh(t) − uh(t)‖∞ < 1. (4.2)

The relation (4.1) implies t(h) > 0 for h small enough. Using the triangle inequality, we obtain

‖Uh(t)‖∞ 6 ‖Uh(t) − uh(t)‖∞ + ‖u(·, t)‖∞, for t ∈ (0, t(h)),

which implies that
‖Uh(t)‖∞ 6 1 + σ, for t ∈ (0, t(h)).

Let eh(t) = Uh(t) − uh(t), ∀t ∈ [0, T∗] be the discretization error and let W ∈ C4,1 ([0, 1], [0, T∗]) be
such that W(x, t) =

(
‖ϕh − uh(0)‖∞ +Mh2

)
e(M+1)t+

√
M+1x, ∀(x, t) ∈ [0, 1]× [0, T∗], with M a positive

constant. We can prove by Lemma 2.3 that

|ei(t)| < W(xi, t), 1 6 i 6 I, for t ∈ (0, t(h)).

We deduce that

‖Uh(t) − uh(t)‖∞ 6
(
‖ϕh − uh(0)‖∞ +Mh2) e(M+1)t+

√
M+1, for t ∈ (0, t(h)).

Suppose that T∗ > t(h) from (4.2), we obtain

1 = ‖Uh(t(h)) − uh(t(h))‖∞ 6
(
‖ϕh − uh(0)‖∞ +Mh2) e(M+1)t+

√
M+1.

Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we deduce
that, 1 6 0, which is impossible. Hence we have t(h) = T∗, and the proof is complete.

Theorem 4.2. Suppose that the solution u of (1.1)-(1.3) quenches in a finite time T such that u ∈ C4,1([0, 1]× [0, T))
and the initial condition at (1.7) satisfies

‖ϕh − uh(0)‖∞ = o(1), h→ 0.

Then the solution Uh of (1.4)-(1.7) quenches in a finite time Th and we have

lim
h→0

Th = T .
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Proof. Set ε > 0. There exists η > 0 such that

(1 − y)q+1

γ(q+ 1)
6
ε

2
, 0 6 y 6 η. (4.3)

Since u(x, t) quenches in a finite time T , there exists a time T0 < T such that |T0 − T | <
ε
2 and 0 6

‖u(x, t)|∞ 6 η
2 for t ∈ [T0, T). Setting T1 = T0+T

2 , it is not hard to see that ‖u(x, t)|∞ < 1 for t ∈ [0, T1].
From Theorem 4.1, we have ‖Uh(T1) − uh(T1)‖∞ 6 η

2 . Applying the triangle inequality, we get

‖Uh(T1)|∞ 6 ‖Uh(T1) − uh(T1)‖∞ + ‖uh(T1)‖∞ 6 η.

From Theorem 3.1, Uh quenches in a finite time Th. We deduce from (3.2) and (4.3) that

|Th − T | 6 |Th − T1|+ |T1 − T | 6
(1 − ‖Uh(T1)|∞)q+1

γ(q+ 1)
+
ε

2
6 ε.

5. Numerical experiments

In this section, we present some numerical approximations to the quenching time of (1.4)-(1.7), the
initial data ϕh such

αϕ2 > (1 −ϕ1)
−p, (5.1)

where α > 0. We use the following explicit scheme

U
(n+1)
i −U

(n)
i

∆tneh
=
U

(n)
i+1 − 2U(n)

i +U
(n)
i−1

h2 , 2 6 i 6 I− 1,

U
(n+1)
1 −U

(n)
1

∆tneh
=

2U(n)
2 − 2U(n)

1
h2 −

2
h

(
1 −U

(n)
1

)−p
,

U
(n+1)
I −U

(n)
I

∆tneh
=

2U(n)
I−1 − 2U(n)

I

h2 +
2
h

(
1 −U

(n)
I

)−q
,

U
(0)
i = ϕi, 1 6 i 6 I,

where n > 0, ∆tneh = min
{
h2

2
,h2‖U(n)

h ‖
q+1∞
}

. We also consider the implicit scheme

U
(n+1)
i −U

(n)
i

∆tnh
=
U

(n+1)
i+1 − 2U(n+1)

i +U
(n+1)
i−1

h2 , 2 6 i 6 I− 1,

U
(n+1)
1 −U

(n)
1

∆tnh
=

2U(n+1)
2 − 2U(n+1)

1
h2 −

2
h

(
1 −U

(n)
1

)−p
,

U
(n+1)
I −U

(n)
I

∆tnh
=

2U(n+1)
I−1 − 2U(n+1)

I

h2 +
2
h

(
1 −U

(n)
I

)−q
,

U
(0)
i = ϕi, 1 6 i 6 I,

where n > 0, ∆tnh = h2‖U(n)
h ‖

q+1∞ .
Let us notice that (5.1) and the restriction on the time step guarantee the positivity of the discrete

solution. We need the following definition.

Definition 5.1. We say that the discrete solution U
(n)
h of the explicit scheme or the implicit scheme

quenches in a finite time if limn→∞ ‖U(n)
h ‖∞ = 1 and the series

∑+∞
n=0∆t

n
h converges. The quantity

tnh =
∑n−1
j=0 ∆t

j
h is called the numerical quenching time of the solution U(n)

h and Th =
∑+∞
n=0∆t

n
h is called

the numerical quenching time of the solution Uh.
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In Tables 1, 2, 3, and 4, in rows, we present the numerical quenching times, the numbers of iterations
and the orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. We
take for the numerical quenching time Th =

∑+∞
n=0∆t

n
h which is computed at the first time when ∆tnh =

|tn+1
h − tnh | 6 10−16. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
, where h = 1/(I− 1).

For the numerical values, we take ϕi =
√

1.5 − cos(Π(i−1)h
4 ) for i = 1, . . . , I.

Table 1: Numerical quenching times obtained with the
explicit Euler method for q = 0.5, p = 0.5.

I Th n s

16 0.04139596 236 -
32 0.03955588 679 -
64 0.03900581 2164 1.74
128 0.03884205 7556 1.75
256 0.03879396 28153 1.77
512 0.03878005 108750 1.79

1024 0.03877610 427914 1.82

Table 2: Numerical quenching times obtained with the
implicit Euler method for q = 0.5, p = 0.5.

I Th n s

16 0.04221929 237 -
32 0.03975759 680 -
64 0.03905612 2163 1.81
128 0.03885465 7558 1.80
256 0.03879711 28155 1.81
512 0.03878084 108753 1.82

1024 0.03877629 427917 1.84

Table 3: Numerical quenching times, obtained with the
explicit Euler method for q = 1, p = 0.5.

I Th n s

16 0.00972448 129 -
32 0.00813955 310 -
64 0.00763971 816 1.66
128 0.00748449 2434 1.69
256 0.00743743 8155 1.72
512 0.00742349 29675 1.76

1024 0.00741945 113290 1.79

Table 4: Numerical quenching times obtained with the
implicit Euler method for q = 1, p = 0.5.

I Th n s

16 0.01036564 129 -
32 0.00830903 311 -
64 0.00768367 818 1.72
128 0.00749576 2436 1.73
256 0.00744028 8158 1.76
512 0.00742421 29678 1.79

1024 0.00741963 113293 1.81

Figure 1: Evolution of the numerical solution Uh for I =
64, q = 1 and p = 0.5.

Figure 2: Evolution of U ′h for I = 64, q = 1 and p = 0.5.

Remark 5.2. The various tables of our numerical results show that there is a relationship between the
quenching time and the flows on the boundaries. If we consider the problem (1.4)-(1.7) in the case where
the initial data ϕ(x) =

√
1.5 − cos(Πx4 ) and q = 0.5, we observe from Tables 1 and 2 that the numerical

quenching time is approximately equal to 0.038. When q = 1, we observe from Tables 3 and 4 that the
numerical blow-up time is approximately equal to 0.0074. Thus we can said that when rise q we have an
acceleration of quench of the solution. Also, from the tables we observe the convergence of blow-up time
Th of the solution of (1.4)-(1.7), since the rate of convergence is near 2. This result does not surprise us
because of the result established in the previous section.
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[13] K. C. N’dri, K. A. Touré, G. Yoro, Numerical blow-up time for a parabolic equation with nonlinear boundary conditions,

Int. J. Numer. Methods Appl., 17 (2018), 141–160. 1
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