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Abstract

In this paper, we study the quenching behavior of semidiscretizations of the heat equation with nonlinear boundary
conditions. We obtain some conditions under which the positive solution of the semidiscrete problem quenches in a finite time
and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain
some results on numerical quenching rate. Finally we give some numerical results to illustrate our analysis.
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1. Introduction

In this paper, we study the behavior of a semidiscrete approximation of the following heat equation
involving nonlinear boundary flux conditions:

ui(x,t) =ux(x,t), x€(0,a), te(0,T), (1.1)
Uy (0,t) = (1 —u(0,1))7P, ux(a,t) = (1—u(a,t))"9, t€(0,T), (1.2)
0<ulx,0)=uy(x) <a, xel0,al, (1.3)

where m,n > 0,p, q > 0 and uy satisfies the compatibility conditions, i.e., u}(0) = (1 —up(0))~P, uyla) =
(1 —up(a))~9. The problem is said to be quench if there exists a finite time T such that,

lim max u(x,t)=1".
t—T-0<x<a

The study of heat equation with nonlinear boundary conditions has deserved a great deal of interest in
recent years and has been used to model, for example, heat transfer, polarization phenomena in ionic
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conductor, chemical catalyst kinetics, etc. (see [3, 4, 6-9, 14, 15, 17] and the references cited therein). In
[4] the authors have given some conditions under which the solution u of (1.1)-(1.3) quenches in a finite
time and the quenching occurs only at the boundary x = a. They proved that u; blows up at quenching
set and also gave the quenching rate near the quenching time T, which in other word says that there exist
constants C1, Cy > 0 such that 1 — Cq(T — t)ﬁ <ula,t) <1—C(T— t)ﬁ.

From our knowledge, the numerical approximation of equations (1.1)-(1.3) has not been studied. Thus,
in this paper, we are investigated in the numerical study using a semidiscrete form of (1.1)-(1.3). For that,
we consider the case where a = 1. Let I € IN. We consider a uniform mesh on the interval [0, 1] as

xi=({i-1Dh i=1,..., h=1/(I—1),

Up = Up(t) = (Uy(t),..., Ur(t))" are the values of the numerical approximation at the nodes x; at time
t of the solution of (1.1)-(1.3). By the finite difference method we obtain the following system of ODEs
whose solution is Uy:

ul(t) =8%Uy(t), i=2,...,1—1, t € (0,Tn), (1.4)
uf(n = suy - 28T e oy, (15)
Uj(t) = 82Uy (t) + W te (0,Tn), (1.6)
Ui(0)=¢; >0, i=1,...,1, (1.7)

where 0 < i <1, 1 <i<Tland

52U (1) = Ui _q(t) —2Uhiz(t) + Ui yq(t)

_2Up(t) —2U4 (t)
- =

,2<i<I-1,t>0,

~ 2Upq(t) —2Ug(t)
_ .

52U4 () ,t>0, 5%Ur(t) ,t>0.

We say that the solution of (1.4)-(1.7) quenches in a finite time Ty, if

lim [[Up(1)e = 1.
tngth h(t)]

Ty is called the semidiscrete quenching time of (1.4)-(1.7).

For study on numerical approximations of heat equation with non-linear boundary conditions we refer
to [1, 5, 10-13, 16]. Nabongo et al. in [12] were interested in the numerical study using a semidiscrete
form of

ue(x,t) = uxx(x,t), x€(0,1), te(0,T),
Uy (0,1) =0, ux(L,t) =—u(1,t)" P, t e (0,T), u(x,0) =up(x), x €[0,1],

where 3 > 0. They showed that some conditions under which the positive solution of the numerical
approximation for this heat equation quenches in a finite time, they also established the convergence of
the semidiscrete quenching time and obtained some results on numerical quenching rate and set.

Inspired by [4, 5, 12], we give some conditions under which any positive solution of semidiscrete
scheme of (1.1)-(1.3) quenches in a finite time. We also show that the semidiscrete quenching time con-
verges to the theoretical one when the mesh size goes to zero. The rest of the paper is organized as
follows : in the next section, we give some properties concerning our semidiscrete scheme. In Section 3,
under some conditions, we prove that the solution of the semidiscrete scheme of (1.1)-(1.3) quenches in a
finite time, we give a result on numerical quenching rate. In Section 4, we show that the quenching time
converges to the theoretical one when the mesh size goes to zero. Finally, in the last section, we give some
numerical results to illustrate our analysis.
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2. Properties of the semidiscrete scheme

In this section, we give some auxiliary results for the problem (1.4)-(1.7).

Definition 2.1. A function Vi, € C1((0, Tn), R!) is a lower solution of (1.4)-(1.7) if

V{(t) =& Vi(t) <0, i=2,...,1-1, t€ (0, Tp),
2(1-vi(t)P
h

Vi) -8y - 20

Vi(0) <Ui(0), i=1,....1,

V],(t) - 62\/1 (t) + < O/ te (OI Th),

< 0/ te (O/Th.)r

where Uy, = (Uy,...,Up)T is solution of (1.4)-(1.7). On the other hand, we say that V}, € Cl((0,T),RY) is
an upper solution of (1.4)-(1.7) if these inequalities are reversed.

Lemma 2.2. Let by, € CO([0, Tw), RY) and let Vi, € C1([0, Tw), RY) such that

dVi(t)
dt

—&Vi(t) +bi()Vi(t) >0, 1<i<L t€(0,Th), Vi(0) >0, 1<i<L
Then we have Vi(t) > 0,1 <1<, te (0, Th).
Proof. Let us define the vector Z,(t) = Vi, (t)eM with A a real. We have

Z{(t) — 82Z;(t) + (bi(t) —A) Zi (1)
Z;(0)

L i=1,...,1, te(0,Ty), 2.1)

0
0, i=1,...,L (2.2)

VoWV

Denote m = miny¢icr, tepo,7,) Zi(t), where Top € (0, Ty). Since for i € {1,...,I}, Z;(t) is a continuous
function on the compact [0, To], there exists ip € {1,...,I} such that m = Z;,(t;,). Assume m < 0. Taking A
such that b;,(ti,) —A > 0. If t;, = 0, then Z;,(0) < 0, which contradicts (2.2), hence t;, > 0.

It is not hard to see that

(s ) — 7 (s —k
Z{o (tio) = lim ZIO (tlo) Zlo (tlo )

<0,
k—0 k =

moreover by a straightforward computation we get
Zi/,o (tio) - 62210 (tio) + (big (tio) - A)Zio (tig) < 0/
but these inequalities contradict (2.1) and the proof is complete. O

Another form of the maximum principle for semidiscrete equations is the following comparison
lemma.

Lemma 2.3. Let Wy, Vi, € CL((0, Ty,), RY) such that for t € (0, Ty,), we have
W (t) — 82W;(t

WL (t) — 8*Wy (1) + g(Wi (t

WL (t) — 82Wi(t) + f(Wi(t

—
/
=
—
-
|
o
N
=
-+
—
o
|
N
~

< L, 11,

u\,
O — —
s < =<
—3
—+

o

NN N

(0) <Vi(0), i=1,...,L

Then we have
Wh(t) < Vr(t), Vt e (0, Ty).
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Proof. Let us define the vector Zy, (t) = Vi (t) — Wy (t) with A a real. We have

ZI(t) —8%Zi(t) >0, i=2,...,1—-1, t € (0, Tpn), (2.3)

Z{(t) = 8°Z1(t) + ¢’ (C(t))Z1(t) > 0, t € (0, Tn), (2.4)
Z{_1(t) = 8°Z11(t) — f'(E(1))Z1(t) = 0, t € (0, Tn), (2.5)
Zi(0)=0, i=1,...,1, (2.6)

where ((t) and &(t) lie, respectively, between V;(t) and W;(t), and between Vi(t) and Wi(t). We can
rewrite (2.3)-(2.6) as
Z{(t) - 6221(1',) + bl(t)zl(t) 2 Or i= 11 ey I/ te (O/Th)/

where by (t) = g’({(t)), br(t) = —f'(&(t)) and bi(t) =0, i=2,...,I—1,Vt € (0, Ty). According to lemma
2.2, Zn(t) > 0, Vt € (0, Ty) and the proof is complete. O

The results of the next lemma are analogue to those of continuous problem.

Lemma 2.4. Let Uy, € C1((0,Ty), RY) be solution of (1.4)-(1.7) with a nonnegative initial data @y, such that oy,
is a lower solution and @41 > @i, fori=1,...,1—1. Then we have

(1) ul(t) 2 Oﬂnd ul(t) 2 i, 1= 1/---111 te (O/Th)/
(11) uiJrl(t) > ul(t)/ i= 1/-"11_1/ te (OITh)/

U (t
(ﬁ)dg()>a i=1,...,1 te(0,Tn)

t
Proof.

(i) Since @y, is a lower solution of (1.4)-(1.7), we have

ui(t)ZquZO, for iZl,...,I,tE(O,T}L),

by Lemma 2.3.

(ii) Let tg be the first t > 0, such that Ki(t) = Ui 4(t) —Ui(t) > 0, for 1 < i < I—1, but Ky, (tg) =
Uj,41(to) — Uy, (to) = 0 for a certain ip € {1,...,I —1}. Without lost of generality, we can suppose that iy is
the smallest integer which satisfies the above equality. We have

dK"Lo (tO) _ hm Kio (tO) - Kig (tO - e) g 0,
dt e—0 €
Kiy+1(to) — 2K, (to) + Ki,—1(to)

>0, if2<ip<I-2

hz
Kip+1(to) = 3Ky, (to)h* >0, ifig =1,

—3Kj, (t Ki,—1(t
3 10( O)+ 10 1( O)>O, Ifi[):I—].,

h2
which imply that
dK;O,EtO) ~ Kig+1(to) —2K;(;2(to) + Kiy—1(to) <0, f2<ig<I 2,
dK;OJEtO) B Kio+1(t0)h; 3Ki,(to)  2(1— u}iLO(t))p <0, ifig=1,
dK:;,EtO) _ —3K10(t0)}j; Kip—1(to) 2(1— ui;:rl(t))q <0, ifig=1_1,

but these inequalities contradict (1.4)-(1.6) and we obtain the desired result.
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(iii) Denote Z;i(t) = Ui(t+¢)—Ui(t), i=1,...,1, using (i) we obtain Z;(0) > 0.
A straightforward calculation yields

dZi(t)  Zia(t) —2Zi(t) +Zi+1(t), 2<i<I—1, te (0T,

dt h2
dZy(t)  2Z5(t) —2Zy(t) 2p(1—m(t) P 'Zi(t)

dt — hz - h 7 t S (O/Th)/
AZi(t) _ 2Z1(t) —2Zy(t) | 2q(1—E(O) 40 o1

dt h2 h

where n(t) and &(t) lie, respectively, between U;(t + ¢) and U;(t) and between U;(t + ¢) and U;(t). We
obtain the below inequality by the same manner as Lemma 2.3

Zi(t) >0, i=1,...,Lvte (0, Ty).

This fact implies the desired result. O

3. Quenching and quenching rate

In this section, under some assumptions, we show that the solution Uy, of (1.4)-(1.7) quenches in a finite
time and estimate its semidiscrete quenching time. Moreover we determine the numerical quenching rate
and quenching set of the solution.

Theorem 3.1. Let Uy, (t) be the solution of (1.4)-(1.7) such that the initial data @y, is a lower solution, assumption
q = p > 0. Then there exists a positive constant y such that Uy, quenches in a finite time Ty and we have the
following estimate
(1 — H(PhHoo)qul

vl@+1)

Proof. Let (0, Ty,) be the maximal time interval on which 0 < Un(t) < 1. Our aim is to show that Ty, is
finite and satisfies the above inequality. Introduce the function Ji(t) such that

Th <

Ji(t) = dudlt(t) —vy(1-U;t) 9,i=1...,L

A straightforward calculation gives

dl&iﬂ — () + 2%)(1 ~ W (1) P () = 2%(q —p) (1= Uy (1)) P9ty (57U (1)) 29" (wa (1)),
Y g2y, 00) — 290 - 1y 0) =i 0) = (5 Un ()9 (B1(1)),
d{;([t) — 85 (t) = y(6T U (1))?g” (i (1) + (8 Uy (t)?g” (6:(1)) i=2,...,1—1,

with ¢”(x) = q(q+1)(1 —x)"972, 67U; = %, > Uy = %, where 0; and p; lie, respectively,
between U; and U;, 1, and between U; and U;_;. It is not hard to see that

dI(ll’Et) S0+ - Uy ()P () > 0,
dlﬁit) S0 — 22— Ur() () >0,

dJi(t)

i —8Jy(t) >0,i=2,...,I—1.
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Moreover, using the fact that ¢y is a lower solution, we obtain ] (0) > 0. We deduce from Lemma 2.2
that Ji(t) >0,i=1,...,I. As a consequence we get

(1—Uq(t)9dU;(t) > yadt. (3.1)
Integrating (3.1) from 0 to t we obtain
A—Ui() "' < (1= —y(q+Dt, i=1,...,L

Denote ||@nhl|cc = @i, and |[Un (t)|lcc = Uy, (t) for a certain ip € {1,...,I}. Which means that ||[Un(To)||cc =1
(1—[lonlleo)¥*!
v(g+1)

for some Ty = . Thus Uy, quenches in finite time Ty, < To. O

Theorem 3.2. Under the assumptions of Theorem 3.1 and Lemma 2.4, the solution Uy, of (1.4)-(1.7) quenches in a
finite time Ty, and

1—[Un ()]l ~ (Th — )7 for t € (0, Tn).

Proof. From Theorem 3.1 Uy quenches in a finite time Ty. Integrating the above inequalities (3.1) over
(t, Tr,) we obtain
_ (- Uy()e*!

Th—t< , 1=1,...,], 3.2
" via+1) 2

which implies that
[Un(t)]|oo < 1—Ca(Ty —t)/ (a4,

where C, = (y(q+1))1/(4+D), From Lemma 2.4, U; < Ui 1, for 1 < i < I—1, hence ||[Up(t)]|o = Us(t),
for t € (0, Tw,). It follows from (1.6) that

dUy(t)
dt

< SO-w)y,

which implies that (1 — Uy (t))9dU;(t) < %dt. Thus we have

1—Cy (T — )19 | UR (1) ||so, Where C; = (

and we have the desired result. O
Theorem 3.3. If lim¢_,7, Ug(t) =1, then U (t) blows up.

Proof. Suppose Uj (t) is bounded. Then, there exists a positive constant M such that U/ (t) < M. We have

h2M.

D> MUm <)y

i=2 j=i i=2

1 I I
=1

From (1.4)-(1.6) and lemma 2.4 we get

Hll(t))q < %4— #—i—ul(t) —U1(t)-

As t — T, , the left-hand side tends to infinity while the right-side is finite. This contradiction shows that
Uy (t) blows up. O
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4. Convergence of the semidiscrete quenching time

In this section, we study the convergence of the semidiscrete quenching time. Now we will show that
for each fixed time interval [0, T], where u is defined, the solution Uy, of (1.4)-(1.7) approximates u when
the mesh parameter h goes to zero. We denote

Un(t) = (i, 1) uwlxi, 1) and [[Un(t)]oo = max [Us(b)L

Theorem 4.1. Assume that the problem (1.1)-(1.3) has a solution w € C** ([0,1] x [0, T*]) and the initial condition
@n at (1.7) verifies
[on —un(0)[lc =0(1), h—0. (4.1)

Then, for h small enough, the semidiscrete problem (1.4)-(1.7) has a unique solution Uy € C' ([0, T*],R) such
that

max |[Up(t) — un(t)]le = O(|@n — un(0)]oo +h?), as h — 0.
te[0,T*]

Proof. Let o > 0 be such that
lullo <o, t€[0, T

Then the problem (1.4)-(1.7), for each h, has a unique solution Uy, € C! ([0, T, RI). Let t(h) < T* be the
greatest value of t > 0 such that

[Un (t) = un(t)]leo < 1. (4.2)
The relation (4.1) implies t(h) > 0 for h small enough. Using the triangle inequality, we obtain
U (B)floo < Un(t) = wn(t)]loo + [l t)loo, for t € (0,t(h)),

which implies that
lUh(t)|loo < 140, for te (0,t(h)).

Let en(t) = Up(t) —up(t), Vt € [0, T*] be the discretization error and let W € C*!([0,1],[0, T*]) be
such that W(x,t) = (H(ph —Uun(0)]|oo + Mhz) eMADVMHIX y(x 1) ¢ [0,1] x [0, T*], with M a positive
constant. We can prove by Lemma 2.3 that

lei(t)] < W(xi,1), 1 <i< I, for te (0,t(h)).
We deduce that
[Un(8) = (®)oe < (lon —un(0)]loo + MnZ) e MM for ¢ & (0,t().
Suppose that T* > t(h) from (4.2), we obtain
1= [[Un(t(h) —un(t(h)]eo < (|[@n —un(0)]oo + Mh?) o (MA1) t-V/MFT

Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we deduce
that, 1 < 0, which is impossible. Hence we have t(h) = T*, and the proof is complete. O

Theorem 4.2. Suppose that the solution w of (1.1)-(1.3) quenches in a finite time T such that w € C*1([0,1] x [0, T))
and the initial condition at (1.7) satisfies

lon —un(0)|lo = 0(1), h—0.
Then the solution Uy, of (1.4)-(1.7) quenches in a finite time Ty, and we have

li =T.
A T
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Proof. Set ¢ > 0. There exists 1 > 0 such that

(1—y)d*tt e
<5, 0<y <. 4.3

Since u(x,t) quenches in a finite time T, there exists a time Tp < T such that [Tp—T| < 5 and 0 <

lu(x, t)]eo < % for t € [Ty, T). Setting Ty = TO;T, it is not hard to see that ||u(x,t)|c < 1 for t € [0, Tq].
From Theorem 4.1, we have ||[Up(T;) —un(T1)|| < 3. Applying the triangle inequality, we get

U (T)loo < [Un(T1) —un(T1) oo + [un(T1) oo < 7.

From Theorem 3.1, U}, quenches in a finite time Ty,. We deduce from (3.2) and (4.3) that

(1= Up(T)le)9™ e
T T <[Th =Tl +T =T < f<e O
Th =TI <[Th — T+ T =T Va1 +2 €

5. Numerical experiments

In this section, we present some numerical approximations to the quenching time of (1.4)-(1.7), the
initial data ¢, such

xpr > (1—01)" P, (5.1)
where o« > 0. We use the following explicit scheme

ugT‘LJhl) . ufn] u(n) o 2u1('n) + ufn)

i+1 —1 .
1 Ate - h? oo2sisiel
(n+1) (n) (n) (n)
ul —Lll _ 2u2 —2u1 _ z (1 —U(n)>7p
Atle h? h ! ’
utt ot o w2 (1-up)
Atlre B h2 h ! ’
(0)

ui — (Pi/ 1 < 1 < I/
2
where n > 0, At{;® = min {h

X h2||U}(1n) 155 } We also consider the implicit scheme

(n+1) (n) (n+1) (n+1) (n+1)
U —U; :ui+1 —2U; +U; C2<i<I—1,

At] h?
(n+1) (m) (n+1) (n+1)
W -wt 2uy -2y 2 (1 —u(“))ip
Al h? h 1 ’
(n+1) (m) (n+1) (n+1)
UI — UI _ 2u171 — 2UI n g (1 B u(n)>*q
AtD h? h ! ’

0 .
U£)=<Pi, 1<i<],

where n > 0, At]y = hZHU](mn) (S
Let us notice that (5.1) and the restriction on the time step guarantee the positivity of the discrete
solution. We need the following definition.

Definition 5.1. We say that the discrete solution Uiln) of the explicit scheme or the implicit scheme
quenches in a finite time if lim,_, ||U§Ln)||Oo = 1 and the series y >, Atl* converges. The quantity

th = Z-“;()l At{1 is called the numerical quenching time of the solution Ugl) and Ty, = Y 1% Atl is called
the numerical quenching time of the solution Uy,.
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In Tables 1, 2, 3, and 4, in rows, we present the numerical quenching times, the numbers of iterations
and the orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. We
take for the numerical quenching time Ty, = Y % At' which is computed at the first time when At} =
ItRJrl —thl < 1071, The order(s) of the method is computed from

s — 108((Tan — Ton)/(Ton — Th))

log(2) , where h=1/(1—1).

For the numerical values, we take ¢; = V1.5 — cos(mizl)h) fori=1,...,1

Table 1: Numerical quenching times obtained with the Table 2: Numerical quenching times obtained with the
explicit Euler method for q = 0.5, p = 0.5. implicit Euler method for q = 0.5, p = 0.5.
I Th n S I Th n S
16 | 0.04139596 | 236 - 16 | 0.04221929 | 237 -
32 | 0.03955588 | 679 - 32 | 0.03975759 | 680 -
64 | 0.03900581 | 2164 | 1.74 64 | 0.03905612 | 2163 | 1.81
128 | 0.03884205 | 7556 | 1.75 128 | 0.03885465 | 7558 | 1.80
256 | 0.03879396 | 28153 | 1.77 256 | 0.03879711 | 28155 | 1.81
512 | 0.03878005 | 108750 | 1.79 512 | 0.03878084 | 108753 | 1.82
1024 | 0.03877610 | 427914 | 1.82 1024 | 0.03877629 | 427917 | 1.84
Table 3: Numerical quenching times, obtained with the Table 4: Numerical quenching times obtained with the
explicit Euler method for q =1, p = 0.5. implicit Euler method for q =1, p = 0.5.
I Th n s I Th n S
16 | 0.00972448 129 - 16 | 0.01036564 129 -
32 | 0.00813955 | 310 - 32 | 0.00830903 | 311 -
64 | 0.00763971 816 1.66 64 | 0.00768367 | 818 1.72
128 | 0.00748449 | 2434 | 1.69 128 | 0.00749576 | 2436 | 1.73
256 | 0.00743743 | 8155 | 1.72 256 | 0.00744028 | 8158 | 1.76
512 | 0.00742349 | 29675 | 1.76 512 | 0.00742421 | 29678 | 1.79
1024 | 0.00741945 | 113290 | 1.79 1024 | 0.00741963 | 113293 | 1.81
: £
Figure 1: Evolution of the numerical solution Uy, for I = Figure 2: Evolution of U}, for I = 64, ¢ = 1 and p = 0.5.

64, g=1and p =0.5.

Remark 5.2. The various tables of our numerical results show that there is a relationship between the
quenching time and the flows on the boundaries. If we consider the problem (1.4)-(1.7) in the case where
the initial data ¢(x) = V1.5 — Cos(%) and q = 0.5, we observe from Tables 1 and 2 that the numerical
quenching time is approximately equal to 0.038. When q = 1, we observe from Tables 3 and 4 that the
numerical blow-up time is approximately equal to 0.0074. Thus we can said that when rise q we have an
acceleration of quench of the solution. Also, from the tables we observe the convergence of blow-up time
Th of the solution of (1.4)-(1.7), since the rate of convergence is near 2. This result does not surprise us

because of the result established in the previous section.
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