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Abstract

In this paper, a new iterative algorithm for finding a common element of the set of minimizers of a convex function, the
set of solutions of variational inequality problem, the set of solutions of equilibrium problems and the set of fixed points of
demicontractive mappings is constructed. Convergence theorems are also proved in Hilbert spaces without any compactness
assumption. Furthermore, a numerical example is given to demonstrate the implementability of our algorithm. Our theorems
are significant improvements in several important recent results.
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1. Introduction

Let H be a real Hilbert space and K be a nonempty subset of H. For a set-valued map A : H→ 2H, the
domain of A, D(A), the image of a subset S of H, A(S) the range of A, R(A) and the graph of A, G(A) are
defined as follows:

D(A) := {x ∈ H : Ax 6= ∅}, A(S) := ∪{Ax : x ∈ S},
R(A) := A(H), G(A) := {[x,u] : x ∈ D(A), u ∈ Ax}.

An operator A : K→ H is called monotone if

〈Ax−Ay, x− y〉H > 0, ∀ x,y ∈ K.

An operator A : K→ H is said α-inverse strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉H > α‖Ax−Ay‖2, ∀ x,y ∈ K.

It is immediate that if A is α- inverse strongly monotone, then A is monotone and Lipschitz continuous.
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A map T : K→ K is said to be Lipschitz if there exists an L > 0 such that

‖Tx− Ty‖ 6 L‖x− y‖, ∀x,y ∈ K,

if L < 1, T is called contraction and if L = 1, T is called non-expansive. We denote by Fix(T) the set of
fixed points of the mapping T , that is Fix(T) := {x ∈ D(T) : x = Tx}. We assume that Fix(T) is nonempty.
If T is non-expansive mapping, it is well known Fix(T) is closed and convex. A map T is called quasi-
nonexpansive if ‖Tx− p‖ 6 ‖x− p‖ holds for all x in K and p ∈ Fix(T). The mapping T : K→ K is said to
be firmly non-expansive, if

‖Tx− Ty‖2 6 ‖x− y‖2 − ‖(x− y) − (Tx− Ty)‖2, ∀x,y ∈ K.

A mapping T : K→ K is called k-strictly pseudo-contractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 6 ‖x− y‖2 + k‖x− y− (Tx− Ty)‖2, ∀x,y ∈ K.

A mapping T is called k-demicontractive if Fix(T) 6= ∅ and for k ∈ [0, 1), we have

‖Tx− p‖ 6 ‖x− p‖+ k‖x− Tx‖2, ∀x ∈ K, p ∈ Fix(T).

Remark 1.1. Easily, we obtain the following conclusions:

1. every firmly non-expansive mapping is non-expansive;
2. every non-expansive mapping is quasi-non-expansive;
3. every quasi-non-expansive mapping is 0-demicontractive;
4. every k-strictly pseudo-contractive mapping is k-demicontractive.

Fixed point theory is one of the most powerful and important tools of modern mathematics and may
be considered a core subject of nonlinear analysis. In the last few decades, the problem of nonlinear
analysis with its relation to fixed point theory has emerged as a rapidly growing area of research because
of its applications in game theory, optimization problem, control theory, integral and differential equations
and inclusions, dynamic systems theory, signal and image processing, and so on. The crucial key of this
success is due to the possibility of representing various problems arising in the above disciplines, in the
form of an equivalent fixed point problem. Until now there have been many effective algorithms for
solving fixed point problem (see, e.g., Yao et al. [35], Chidume [4], Marino et al. [16], Xu [30, 31], and the
references therein).

Recall the classical variational inequality problem is to find a find u ∈ K such that

〈Au, v− u〉 > 0, ∀v ∈ K. (1.1)

We denote the set of solutions of variational inequality problem (1.1) by VI(A,K). Variational inequality
(1.1) was formulated in the late 1960s by Lions and Stampacchia [11]. Since then, it has been extensively
studied via numerical methods. For a lot of real-life problems, such as, in signal processing, resource
allocation, image recovery and so on, the constraints can be expressed as the variational inequality prob-
lem. Hence, the problem of finding solutions of variational inequality (1.1) has become a flourishing area
of contemporary research for numerous mathematicians working in nonlinear operator theory; see, for
example, [12, 20, 24]. It is easy to see that u ∈ K is a solution of variational inequality (1.1) iff u is a fixed
point of the mapping PK(I− λA), where PK is the known metric projection from H onto K, I is the identity
mapping and λ is some real positive number.

A well known method for solving the variational inequality problem is the projection algorithm which
starts with x1 ∈ K and generates a sequence {xn} in the following recursion formula,

xn+1 = PK(xn − λnAxn), n > 1, (1.2)
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where {λn} is a sequence of positive numbers satisfying appropriate conditions. In the case that A is
α-inverse strongly monotone, Iiduka et al. [9] proved that the sequence {xn} generated by (1.2) converges
weakly to an element of VI(A,K). Spotlights have been shed on the modification of the above projection
algorithm so that the norm convergence is guaranteed under mild conditions recent; see [2, 27, 28].

Equilibrium problems were originally studied in [3] as a unifying class of variational problems. Given
a nonempty set K, and a bifunction g : K× K → R. The equilibrium problem EP(K,g) is formulated as
follows:

Find a point x∗ ∈ K such that g(x∗,y) > 0 for every y ∈ K.

The set of all solutions of EP(K,g) is denoted by EP(g). Typical studies for EP(K,g) are extensively carried
out in Hilbert spaces and recently in real Banach spaces. The set of solutions is denoted by EP(g).
Equilibrium problems have had a great impact and influence on the development of several branches of
pure and applied sciences. It has been shown that the equilibrium problem theory provides a novel and
unified treatment of a wide class of problems which arise in economics, finance, image reconstruction,
ecology, transportation, network, elasticity, and optimization. It has been shown [22, 33] that equilibrium,
problems include variational inequalities, minimax inequalities, the Nash equilibrium, and game theory
as special cases. Recently, a lot of iterative algorithms have been studied in infinite dimensional spaces,
see [3, 21] and the references therein.

The minimization problem (MP) is one of the most important problems in nonlinear analysis and
optimization theory. The MP is defined as follows: find x ∈ H, such that

F(x) = min
y∈H

F(y),

where F : H → (−∞, +∞] is a proper convex and lower semi-continuous. The set of all minimizers of
F on H is denoted by argminy∈H F(y). A successful and powerful tool for solving this problem is the
well-known proximal point algorithm (shortly, the PPA) which was initiated by Martinet [18] in 1970 and
later studied by Rockafellar [23] in 1976. Let H be a real Hilbert space and F : H→ (−∞, +∞] be a proper
lower semi-continuous and convex function. The PPA is defined as follows: x1 ∈ H,

xn+1 = argminy∈H
[
F(y) +

1
2λn
‖xn − y‖2

]
,

(1.3)

where λn > 0 for all n > 1. In [23] Rockafellar proved that the sequence {xn} given by (1.3) converges
weakly to a minimizer of F. He then posed the following question
(Q1): does the sequence {xn} converges strongly?

This question was resolved in the negative by Güler [8] (1991). He produced a proper lower semi contin-
uous and convex function F in l2 for which the PPA converges weakly but not strongly. This leads naturally
to the following question:
(Q2): can the PPA be modified to guarantee strong convergence?

In response to Q2, several works have been done (see, e.g., Güler [8], Kamimura and Takahashi [10],
Chidume and Djitte [5] and the references therein). In the recent years, the problem of finding a common
element of the set of solutions of various convex minimization problems and the set of fixed points for
nonlinear mapping in the framework of Hilbert spaces and Banach spaces have been intensively studied
by many authors.

Motivated and inspired by the ongoing results in this field, we introduce a new iterative algorithm
for approximating a common element to the set of minimizers of proper lower semicontinuous convex
function, the set of solutions of variational inequality problem, the set of solutions of equilibrium problems
and the set of fixed points of demicontractive mappings in Hilbert spaces. Then, under appropriate
conditions, we establish some strong convergence theorems. The results obtained here extend and unify
the result of Takahashi-Takahashi [25], Moudafi [20] and most of the recent results in this direction. Our
technique of proof is of independent interest.
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2. Preliminaries

Let K be a nonempty, closed convex subset of H. The nearest point projection from H to K, denoted by
PK assigns to each x ∈ H the unique PKx with the property

‖x− PKx‖ 6 ‖y− x‖

for all y ∈ K. It is well known that PK satisfies

〈x− y,PKx− PKy〉 > ‖PKx− PKy‖2

and for all y ∈ H and
〈PKz− y, z− PKz〉 > 0 (2.1)

for all z ∈ K and y ∈ H.

Remark 2.1. In the context of variational inequality problem (1.1), we have

u ∈ VI(A,K)⇐⇒ u = PK(I− θA)u, θ > 0. (2.2)

Lemma 2.2 ([23, Demiclosedness principle]). Let H be a real Hilbert space, K be a closed convex subset of H,
and T : K→ K be a nonexpansive mapping. Then I− T is demiclosed; that is,

{xn} ⊂ K, xn ⇀ x ∈ K and (I− T)xn → y implies that (I− T)x = y.

Lemma 2.3 ([4]). Let H be a real Hilbert space. Then for any x,y ∈ H, the following inequalities hold:

‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉,
‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − (1 − λ)λ‖x− y‖2, λ ∈ (0, 1).

Lemma 2.4 ([31]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 6 (1 −αn)an +
αnσn for all n > 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)
∑∞
n=0 αn =∞;

(b) lim supn→∞ σn 6 0 or
∑∞
n=0 |σnαn| <∞.

Then lim
n→∞an = 0.

Lemma 2.5 ([17]). Assume K is a closed convex subset of a Hilbert space H. Let T : K→ K be a self-mapping of K.
If T is a k-demicontractive mapping, then the fixed point set Fix(T) is closed and convex.

Lemma 2.6 ([17]). Let K be a nonempty closed convex subset of a real Hilbert space H and T : K→ K be a mapping.

(i) If T is a k-strictly pseudo-contractive mapping, then T satisfies the Lipschitzian condition

‖Tx− Ty‖ 6 1 + k

1 − k
‖x− y‖.

(ii) If T is a k-strictly pseudo-contractive mapping, then the mapping I− T is demiclosed at 0.

Lemma 2.7 ([23]). Let K be a nonempty closed and convex subset of a real Hilbert space H and A is a monotone,
hemicontinuous map of K into H. Let B ⊂ H×H be an operator defined as follows:

Bz =

{
Az+NK(z), if z ∈ K,
∅, if z /∈ K,

where NK(z) is the normal K at z and is defined as follows:

NK(z) = {w ∈ H : 〈w, z− v〉 > 0, ∀ v ∈ K}.

Then, B is maximal monotone and B−1(0) = VI(A,K).
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Lemma 2.8 ([24]). Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let A : K→ H be
an α-inverse strongly monotone mapping. Then, I− θA is nonexpansive mapping for all x,y ∈ K and θ ∈ [0, 2α].

Lemma 2.9 ([13]). Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there exists
a subsequence tni of tn such that tni such that tni 6 tni+1 for all i > 0. For sufficiently large numbers n ∈N, an
integer sequence {τ(n)} is defined as follows:

τ(n) = max{k 6 n : tk 6 tk+1}.

Then, τ(n)→∞ as n→∞ and
max{tτ(n), tn} 6 tτ(n)+1.

Let F : K→ (−∞, +∞] be a proper convex and lower semi-continuous function. For any λ > 0, define
the Moreau-Yosida resolvent of F in a real Hilbert space H as follows:

JFλx = argminu∈K
[
F(u) +

1
2λ
‖x− u‖2

]
,

for all x ∈ H. It was shown in [8] that the set of fixed points of the resolvent associated with F coincides
with the set of minimizers of F. Also, the resolvent JFλ of F is non-expansive for all λ > 0.

Lemma 2.10 ([19])). For any r > 0 and µ > 0, the following holds:

JFrx = J
F
µx(

µ

r
x+ (1 −

µ

r
)JFrx).

Lemma 2.11 ([13, Sub-differential inequality]). Let F : H→ (−∞, +∞] be a proper convex and lower semicon-
tinuous function. Then, for all x,y ∈ H and λ > 0, the following sub-differential inequality holds:

1
λ
‖JFλx− y‖2 −

1
λ
‖x− y‖2 +

1
λ
‖x− JFλx‖2 + F(JFλx) 6 F(y).

For solving the equilibrium problem for a bifunction g : K× K → R, let us assume that g satisfies the
following conditions:

(A1) g(x, x) = 0 for all x ∈ K;
(A2) g is monotone, i.e., g(x,y) + g(y, x) 6 0 for all x,y ∈ K;
(A3) for each x,y, z ∈ K,

lim
t→0

g(tz+ (1 − t)x,y) 6 g(x,y);

(A4) for each x ∈ K, y→ g(x,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [3].

Lemma 2.12 ([3]). Let K be a nonempty closed convex subset of H and let g be a bifunction of K× K into R

satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ K such that

g(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ K.

The following lemma was given in [32].

Lemma 2.13 ([32]). Assume that g : K× K → R satisfying (A1)-(A4). For r > 0 and x ∈ H, define a mapping
Tr : H→ K as follows

Tr(x) = {z ∈ K, g(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ K},

for all x ∈ H. Then, the following hold:

1. Tr is single-valued;
2. Tr is firmly non-expansive, i.e., ‖Tr(x) − Tr(y)‖2 6 〈Trx− Try, x− y〉 for any x,y ∈ H;
3. Fix(Tr) = EP(g);
4. EP(g) is closed and convex.
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3. Main result

Now, we prove our main result.

Theorem 3.1. Let K be a nonempty, closed convex subset of a real Hilbert space H. Let A : K→ H be an α-inverse
strongly monotone operator and let g be a bifunction from K× K → R satisfying (A1)-(A4). Let f : K → K be a
contraction with coefficient b and F : K→ (−∞, +∞] be a proper convex and lower semi-continuous function. Let
T : K→ K be a λ-demicontractive mapping such that Γ := Fix(T)∩ VI(A,K)∩ argminu∈K F(u)∩ EP(g) 6= ∅ and
I− T is demiclosed at the origin. Let {xn} be a sequence defined as follows:

x0 ∈ K,

un = argminu∈K
[
F(u) +

1
2λn
‖u− xn‖2

]
,

zn = PK(I− θnA)un,

g(vn,y) +
1
rn
〈y− vn, vn − zn〉 > 0, ∀y ∈ K,

yn = βnvn + (1 −βn)Tvn,
xn+1 = αnf(xn) + (1 −αn)yn,

(3.1)

where βn ∈]λ, 1[, {αn} ⊂ (0, 1), {θn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy the following conditions; limn→∞ αn = 0,∞∑
n=0

αn = ∞, lim
n→∞ inf(1 − βn)(βn − λ) > 0, θn ∈ [a,b] ⊂

(
0, min{1, 2α}

)
, lim
n→∞ inf rn > 0 and {λn} is a

sequence such that λn > β > 0 for all n > 1 and some β. Then, the sequence {xn} generated by (3.1) converges
strongly to a point x∗ ∈ Γ , where x∗ is the unique solution of the variational inequality:

〈x∗ − f(x∗), x∗ − p〉 6 0, ∀p ∈ Γ . (3.2)

Proof. From (I− f) being strongly monotone and Γ is closed convex, then the variational inequality (3.2)
has a unique solution in Γ . In what follows, we denote x∗ to be the unique solution of (3.2). Now we
show that {xn} is bounded. Let p ∈ Γ , then F(p) 6 F(u) for all u ∈ K. This implies that

F(p) +
1

2λn
‖p− p‖2 6 F(u) +

1
2λn
‖u− p‖2

and hence JFλnp = p for all n > 1, where JFλn is the Moreau-Yosida resolvent of F in K. From (2.2),
vn = Trnzn, and Lemma 2.8, we have

‖vn − p‖ = ‖Trnzn − p‖ 6 ‖zn − p‖ = ‖PK(I− θnA)un − p‖ 6 ‖JFλnxn − p‖ 6 ‖xn − p‖, ∀n > 0.

Applying Lemma 2.3, we have

‖yn − p‖2 =
∥∥∥βn(vn − p) + (1 −βn)(Tvn − p)

∥∥∥2

= βn‖vn − p‖2 + (1 −βn)‖Tvn − p‖2 −βn(1 −βn)‖Tvn − vn‖2.

Using the fact that T is λ-demicontractive, we obtain

‖yn − p‖2 6 βn‖vn − p‖2 + (1 −βn)
(
‖vn − p‖2 + λ‖Tvn − vn‖2

)
−βn(1 −βn)‖Tvn − vn‖2.

Hence
‖yn − p‖2 6 ‖vn − p‖2 − (1 −βn)(βn − λ)‖Tvn − vn‖2.

Since βn ∈]λ, 1[, we have

‖yn − p‖ 6 ‖vn − p‖ 6 ‖zn − p‖ 6 ‖un − p‖ 6 ‖xn − p‖, ∀n > 0. (3.3)
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By using (3.1) and (3.3), we obtain

‖xn+1 − p‖ = ‖αnf(xn) + (1 −αn)yn − p‖
6 αn‖f(xn) − f(p)‖+ (1 −αn)‖yn − p‖+αn‖f(p) − p‖
6 (1 −αn(1 − b))‖xn − p‖+αn‖f(p) − p‖

6 max {‖xn − p‖, ‖f(p) − p‖
1 − b

}.

By induction, we conclude that

‖xn − p‖ 6 max {‖x0 − p‖,
‖f(p) − p‖

1 − b
}, n > 1.

Hence {xn} is bounded, also {yn}, {Axn}, {un}, and {f(xn)} are all bounded. Thus we have

‖xn+1 − p‖2 6 ‖αnf(xn) + (1 −αn)yn − p‖2

6 α2
n‖f(xn) − p‖2 + (1 −αn)

2‖yn − p‖2 + 2αn(1 −αn)‖f(xn) − p‖‖yn − p‖
6 α2

n‖f(xn) − p‖2 + (1 −αn)
2‖vn − p‖2 − (1 −αn)

2(1 −βn)(βn − λ)‖Tvn − vn‖2

+ 2αn(1 −αn)‖f(xn) − p‖‖yn − p‖.

Thus

(1 −αn)
2(1 −βn)(βn − λ)‖Tvn − vn‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +α2

n‖f(xn) − p‖2

+ 2αn(1 −αn)‖f(xn) − p‖‖xn − p‖.

Since {xn} is bounded, then there exists a constant C > 0 such that

(1 −αn)
2(1 −βn)(βn − λ)‖Tvn − vn‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +αnC. (3.4)

Now we prove that {xn} converges strongly to x∗. We divide the rest of the proof into two cases.

Case 1. Assume that the sequence {‖xn− p‖} is monotonically decreasing. Then {‖xn− p‖} is convergent.
Clearly, we have

lim
n→∞

[
‖xn − p‖2 − ‖xn+1 − p‖2] = 0. (3.5)

Using the fact that lim
n→∞ inf(1 −βn)(βn − λ) > 0, we have

lim
n→∞‖vn − Tvn‖ = 0. (3.6)

From (3.1), (2.2), convexity of ‖.‖2, and Lemma 2.8, it follows that

‖xn+1 − p‖2 = ‖αnf(xn) + (1 −αn)yn − p‖2

6 αn‖f(xn) − p‖2 + (1 −αn)‖yn − p‖2

6 αn‖f(xn) − p‖2 + (1 −αn)‖zn − p‖2

= αn‖f(xn) − p‖2 + (1 −αn)‖PK(I− θnA)un − PK(I− θnA)p‖2

6 αn‖f(xn) − p‖2 + (1 −αn)
[
‖un − p‖2 + θn(θn − 2α)‖Aun −Ap‖2

]
6 αn‖f(xn) − p‖2 + (1 −αn)‖xn − p‖2 + (1 −αn)a(b− 2α)‖Aun −Ap‖2.

Therefore, we have

(1 −αn)a(2α− b)‖Aun −Ap‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +αn‖f(xn) − p‖2.
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Since, αn → 0 as n→∞ and {xn} is bounded, we obtain

lim
n→∞ ‖Aun −Ap‖2 = 0. (3.7)

From (2.1) and (3.1), we have

‖zn − p‖2 = ‖PK(I− θnA)un − PK(I− θnA)p‖2

6 〈zn − p, (I− θnA)un − (I− θnA)p〉

=
1
2

[
‖(I− θnA)un − (I− θnA)p‖2 + ‖zn − p‖2 − ‖(I− θnA)un − (I− θnA)p− (zn − p)‖2

]
6

1
2

[
‖un − p‖2 + ‖zn − p‖2 − ‖un − zn‖2 + 2θn〈zn − p,Aun −Ap〉− θn2‖Aun −Ap‖2

]
6

1
2

[
‖xn − p‖2 + ‖zn − p‖2 − ‖un − zn‖2 + 2θn〈zn − p,Aun −Ap〉− θn2‖Aun −Ap‖2

]
.

So, we obtain

‖zn − p‖2 6 ‖xn − p‖2 − ‖un − zn‖2 + 2θn〈zn − p,Aun −Ap〉− θn2‖Aun −Ap‖2,

and thus

‖xn+1 − p‖2 6 αn‖f(xn) − p‖2 + (1 −αn)‖yn − p‖2

6 αn‖f(xn) − p‖2 + (1 −αn)‖zn − p‖2

6 αn‖f(xn) − p‖2 + ‖xn − p‖2 − (1 −αn)‖un − zn‖2 − (1 −αn)θn
2‖Aun −Ap‖2

+ 2θn(1 −αn)〈zn − p,Aun −Ap〉.

By using (3.5) and (3.7), we obtain
lim
n→∞ ‖un − zn‖ = 0. (3.8)

Using Lemma 2.11 and since F(p) 6 F(un), we get

‖xn − un‖2 6 ‖xn − p‖2 − ‖un − p‖2. (3.9)

Therefore, from (3.1), (3.9), and Lemma 2.3, we have

‖xn+1 − p‖2 = ‖αnf(xn) + (1 −αn)yn − p‖2

= ‖αn(f(xn) − p) + (1 −αn)(yn − p)‖2

6 (1 −αn)
2‖yn − p‖2 + 2αn〈f(xn) − p, xn+1 − p〉

6 (1 −αn)
2‖zn − p‖2 + 2αn〈f(xn) − p, xn+1 − p〉

6 (1 −αn)
2(‖xn − p‖2 − ‖xn − un‖2) + 2αn‖f(xn) − p‖‖xn+1 − p‖

6 (1 − 2αn +α2
n)‖xn − p‖2 − (1 −αn)

2‖xn − un‖2 + 2αn‖f(xn) − p‖‖xn+1 − p‖
6 ‖xn − p‖2 +αn‖xn − p‖2 − (1 −αn)

2‖xn − un‖2 + 2αn‖f(xn) − p‖‖xn+1 − p‖,

and hence

(1 −αn)
2‖xn − un‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +αn‖xn − p‖2 + 2αn‖f(xn) − p‖‖xn+1 − p‖.

Thanks to inequality (3.5), {xn} being bounded, and αn → 0 as n→∞, we have

lim
n→∞ ‖xn − un‖ = 0. (3.10)
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Also, from (3.8) and (3.10), we have
lim
n→∞ ‖xn − zn‖ = 0.

Letting p ∈ Γ , we have

‖vn − p‖2 = ‖Trnzn − Trnp‖2 6 〈Trnzn − Trnp, zn − p〉

6 〈vn − p, zn − p〉 = 1
2
(‖vn − p‖2 + ‖zn − p‖2 − ‖zn − vn‖2)

and hence
‖vn − p‖2 6 ‖zn − p‖2 − ‖zn − vn‖2. (3.11)

Therefore, from (3.1) and (3.11), we obtain

‖xn+1 − p‖2 = ‖αnf(xn) + (1 −αn)yn − p‖2

6 (1 −αn)
2‖yn − p‖2 + 2αn〈f(xn) − p, xn+1 − p〉

6 (1 −αn)
2‖vn − p‖2 + 2αn〈f(xn) − p, xn+1 − p〉

6 (1 −αn)
2‖vn − p‖2 + 2αn〈f(xn) − f(p), xn+1 − p〉+ 2αn〈f(p) − p, xn+1 − p〉

6 (1 −αn)
2(‖zn − p‖2 − ‖zn − vn‖2) + 2αnb‖xn − p‖‖xn+1 − p‖+ 2αn‖f(p) − p‖‖xn+1 − p‖

6 (1 − 2αn +α2
n)‖xn − p‖2 − (1 −αn)

2‖zn − vn‖2

+ 2αnb‖xn − p‖‖xn+1 − p‖+ 2αn‖f(p) − p‖‖xn+1 − p‖
6 ‖xn − p‖2 +αn‖xn − p‖2 − (1 −αn)

2‖zn − vn‖2 + 2αnb‖xn − p‖‖xn+1 − p‖
+ 2αn‖f(p) − p‖‖xn+1 − p‖,

and hence

(1 −αn)
2‖zn − vn‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +αn‖xn − p‖2 + 2αnb‖xn − p‖‖xn+1 − p‖

+ 2αn‖f(p) − p‖‖xn+1 − p‖.

So, we have
lim
n→∞ ‖zn − vn‖ = 0. (3.12)

Now, we prove that lim sup
n→+∞ 〈x∗ − f(x∗), x∗ − xn〉 6 0. Since H is reflexive and {xn} is bounded, there exists

a sub-sequence {xnk} of {xn} which converges weakly to ω in K and

lim sup
n→+∞ 〈x∗ − f(x∗), x∗ − xn〉 = lim

k→+∞〈x∗ − f(x∗), x∗ − xnk〉.
From (3.6), (3.12), and I− T being demiclosed, we obtain ω ∈ Fix(T). Moreover, note that by (A2) and
Lemma 2.13, we have

1
rn
〈y− vn, vn − zn〉 > g(y, vn)

and hence
〈y− vnk ,

vnk − znk
rnk

〉 > g(y, vnk).

Since
vnk − znk
rnk

→ 0 and vnk ⇀ ω, it follows from (A4) that g(y,ω) 6 0 for all y ∈ K. For t with 0 < t < 1

and y ∈ K, let yt = ty+ (1 − t)ω. Since y ∈ ω and ω ∈ K, we have yt ∈ K and hence g(yt,ω) 6 0. So,
from (A1) and (A4) we have

0 = g(yt,yt) 6 tg(yt,y) + (1 − t)g(yt,ω) 6 tg(yt,y)
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and hence 0 6 g(yt,y). From (A3), we have g(ω,y) > 0 for all y ∈ K and hence ω ∈ EP(g). Using (3.1)
and Lemma 2.10, we arrive at

‖xn − JFβxn‖ 6 ‖un − JFβxn‖+ ‖un − xn‖
6 ‖JFλnxn − JFβxn‖+ ‖un − xn‖

6 ‖un − xn‖+ ‖JFβ
(λn −β

λn
JFλnxn +

β

λn
xn

)
− JFβxn‖

6 ‖un − xn‖+ ‖
λn −β

λn
JFλnxn +

β

λn
xn − xn‖

6 ‖un − xn‖+
(

1 −
β

λn

)
‖un − xn‖

6
(

2 −
β

λn

)
‖un − xn‖.

Hence,
lim
n→∞‖xn − JFβxn‖ = 0. (3.13)

Since JFβ is single valued and non-expansive, using (3.13) and Lemma 2.2, then

ω ∈ Fix(JFβ) = argminu∈K F(u).

Let us show ω ∈ VI(A,K). Now, let us introduce the multi-valued map B : H→ 2H defined by:

Bz =

{
Az+NK(z), if z ∈ K,
∅, if z /∈ K,

where NK(z) is the normal K at z and is defined as follows:

NK(z) = {w ∈ H : 〈w, z− v〉 > 0, ∀ v ∈ K}.

From Lemma 2.7, we have that B is maximal monotone and B−1(0) = VI(A,K). Let (u, v) ∈ G(A). Since
v−Au ∈ NK(u) and zn ∈ K, we have

〈u− zn, v−Au〉 > 0.

On other hand, from zn = PK(I− θnA)un, we have, 〈u− zn, zn − (I− θnA)un〉 > 0 and hence

〈u− zn,
zn − un
θn

+Aun〉 > 0.

Therefore, we have

〈u− znk , v〉 > 〈u− znk ,Au〉

> 〈u− znk ,Au〉− 〈u− znk ,
znk − unk
θnk

+Aunk〉

> 〈u− znk ,Au−Aznk〉+ 〈u− znk ,Aznk −Aunk〉− 〈u− znk ,
znk − unk
θnk

〉

> 〈u− znk ,Aznk −Aunk〉− 〈u− znk ,
znk − unk
θnk

〉.

By using A being
1
α

Lipschitz, we have

〈u− znk , v〉 > −M
(‖znk − unk‖

α
+
‖znk − unk‖

a

)
,
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where M is a positive constant such that supk>1{‖u− znk‖} 6 M. Since znk ⇀ ω, it follows from (3.8)
that 〈u−ω, v〉 > 0 as k → ∞. Since B is maximal monotone, we have ω ∈ B−1(0) and we obtain that
ω ∈ VI(A,K). Therefore, ω ∈ Γ . Hence

lim sup
n→+∞ 〈x∗ − f(x∗), x∗ − xn〉 = lim

k→+∞〈x∗ − f(x∗), x∗ − xnk〉
= 〈x∗ − f(x∗), x∗ −ω〉 6 0.

Finally, we show that xn → x∗. From (3.1) , we have

‖xn+1 − x
∗‖2 = ‖αnf(xn) + (1 −αn)yn − x∗‖2

6 ‖αn(f(xn) − f(x∗)) + (1 −αn)(yn − x∗)‖2 + 2αn〈x∗ − f(x∗), x∗ − xn+1〉

6
(
αn‖f(xn) − f(x∗)‖+ ‖(1 −αn)(yn − x∗)‖

)2
+ 2αn〈x∗ − f(x∗), x∗ − xn+1〉

6
(
αnb‖xn − x∗‖+ (1 −αn)‖yn − x∗‖

)2
+ 2αn〈x∗ − f(x∗), x∗ − xn+1〉

6
(
(1 −αn(1 − b))‖xn − x∗‖

)2
+ 2αn〈x∗ − f(x∗), x∗ − xn+1〉

6 (1 −αn(1 − b))‖xn − x∗‖2 + 2αn〈x∗ − f(x∗), x∗ − xn+1〉.

From Lemma 2.4, its follows that xn → x∗.

Case 2. Assume that the sequence {‖xn − x∗‖} is not monotonically decreasing. Set Bn = ‖xn − x∗‖ and
τ : N→ N be a mapping for all n > n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k 6 n, Bk 6
Bk+1}. We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) 6 Bτ(n)+1 for
n > n0. From (3.4), we have

(1 −ατ(n))(1 −βτ(n))(βτ(n) − λ)‖vτ(n) − Tvτ(n)‖2 6 2ατ(n)C→ 0 as n→∞.

Since βn ∈]λ, 1[ and lim
n→∞ inf(1 −βτ(n))(βτ(n) − λ) > 0, we can deduce

lim
n→∞‖vτ(n) − Tvτ(n)‖ = 0.

By a similar argument as in case 1, we can show that xτ(n) and vτ(n) are bounded in K and lim sup
τ(n)→+∞〈x

∗−

f(x∗), x∗ − xτ(n)〉 6 0. We have for all n > n0,

0 6 ‖xτ(n)+1 − x
∗‖2 − ‖xτ(n) − x∗‖2 6 ατ(n)[−(1 − b)‖xτ(n) − x∗‖2 + 2〈x∗ − f(x∗), x∗ − xτ(n)+1〉],

which implies that

‖xτ(n) − x∗‖2 6
2

1 − b
〈x∗ − f(x∗), x∗ − xτ(n)+1〉.

Then, we have
lim
n→∞‖xτ(n) − x∗‖2 = 0.

Therefore,
lim
n→∞Bτ(n) = lim

n→∞Bτ(n)+1 = 0.

Thus, by Lemma 2.9, we conclude that

0 6 Bn 6 max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.
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We apply Theorem 3.1 when we consider fixed point problems involving strictly pseudo-contractive
mappings. In this case demiclosedness assumption is not necessary.

Theorem 3.2. Let K be a nonempty, closed convex subset of a real Hilbert space H. Let A : K→ H be an α-inverse
strongly monotone operator and let g be a bifunction from K× K → R satisfying (A1)-(A4). Let f : K → K be
a contraction with coefficient b and F : K → (−∞, +∞] be a proper convex and lower semi-continuous function.
Let T : K → K be a λ-strictly pseudo-contractive mapping such that Γ := Fix(T) ∩ VI(A,K) ∩ argminu∈K F(u) ∩
EP(g) 6= ∅. Let {xn} be a sequence defined as follows:

x0 ∈ K,

un = argminu∈K
[
F(u) +

1
2λn
‖u− xn‖2

]
,

zn = PK(I− θnA)un,

g(vn,y) +
1
rn
〈y− vn, vn − zn〉 > 0, ∀y ∈ K,

yn = βnvn + (1 −βn)Tvn,
xn+1 = αnf(xn) + (1 −αn)yn,

(3.14)

where βn ∈]λ, 1[, {αn} ⊂ (0, 1), {θn} ⊂ (0, 1) and {rn} ⊂]0,∞[ satisfy the following conditions; limn→∞ αn = 0,∑∞
n=0 αn =∞, limn→∞ inf(1−βn)(βn − λ) > 0, θn ∈ [a,b] ⊂

(
0, min{1, 2α}

)
, lim
n→∞ inf rn > 0 and {λn} is

a sequence such that λn > β > 0 for all n > 1 and some β. Then, the sequence {xn} generated by (3.14) converges
strongly to x∗ ∈ Γ , which is the unique solution of variational inequality (3.2).

Proof. Since every strictly pseudo-contractive mapping is demicontractive, then, the proof follows from
Lemma 2.6 and Theorem 3.1.

4. Numerical example

In this section, we present a numerical example to illustrate the convergence behavior of our iteration

scheme (3.1). Let H = R and K = [0, 1]. We set F(x) :=
1
2
‖x‖2, g(x,y) := y2 + yx − 2x2, Tx =

1
2
x,

f(x) =
1
3
x and A ≡ 0. It can easily be seen that F,g,A, and T are satisfied the conditions in Theorem

3.1. We can observe that Tr(x) =
1

1 + 3r
x and Fix(T)∩VI(A,K)∩ argminu∈K F(u)∩ EP(g) = {0}. Using the

proximity operator [6], we know that

argminu∈K
[
F(u) +

1
2
‖u− x‖2

]
= proxFx =

x

2
.

We take r = 1, αn =
1
n

and βn =
1

2n
+

1
2

. Then, the scheme (3.1) can be simplified as



un =
xn

2
,

vn =
xn

8
,

yn =
n+ 1
16n

xn +
n+ 1
16n

,

xn+1 =
1

3n
xn +

n− 1
n

yn, n > 1.

Take the initial point x1 = 1, the numerical experiment result using SciLab is given by Figure 1, which
shows the iteration process of the sequence xn converges strongly to 0.
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Figure 1

5. Conclusion

In this work, we proposed a new iteration scheme for the approximation of a common element of the
set of minimizers of a convex function, the set of solutions of variational inequality problem, the set of
solutions of equilibrium problems and the set of fixed points of demicontractive mappings. The results
obtained in this paper are important improvements of recent important results in nonlinear analysis. It is
of worth interest to establish such results in general Banach spaces.
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