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Abstract

The purpose of this research is to explore a fixed point method to solve a class of functional equations, Tu = f, where T is
a differential or an integral operator on a Sobolev space H2(Ω), where Ω is an open set in Rn. First, T is converted into a sum
of I+ λA with λ > 0, where A is a continuous linear operator and I is identity mapping. Then it is shown that T is a contraction
on the prescribed Sobolev space and norm of A is estimated on the prescribed Sobolev space. By means of the theory of inverse
operator of I+ λA and by choosing the appropriate value of λ, the solution u of differential or integral operator is obtained.
Some practical problems concerning the linear differential equation and Fredholm integral equation are solved by virtue of the
fixed point method.
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1. Introduction

Mathematical aspects of differential and integral equations with extensive applications have obtained
a lot of consideration in various research areas, and the theory of differential and integral equations is
also arising with basic mathematical tools such as fixed point theory, topology and functional analysis.
There are several ways to solve differential equation by inverse differential operator [2, 4–13]. This paper
derived a new method of fixed point to functional equation by means of norm operator A on the Sobolev
space Hm(Ω) by [1]. Fixed point methods in order to solve functional equation like Tu = f where T may
be a differential and integral operator have been adapted by Browder [3] and Kangtunyakarn [12]. They
created new notions and concept to handle functional equations especially based on monotone operator
theory, fixed point theory, linear operator theory, and variational inequalities. There are a large number
of generalizations for this interesting theorem, for example see [2, 7, 9, 11]. And then Kakde [11] by
using the fixed point theory existence and uniqueness of solution on differential and integral equation,
see also Kragler [13] who studied the method of inverse differential operator which is well established for
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ordinary differential equations can be applied to certain class of partial differential equation. This paper
is one of the results due to them and we have an improved estimate of derivatives and integrals by using
differentiation of distributions and norm of functions on Sobolev space.

Here, we organized three parts in this study. The first part concerns estimation of norm of linear
operator on the prescribed Sobolev space. The second part involves solving linear differential equations
by means of fixed point method. The third regards solving integral equation of Fredholm type. Existence
and Uniqueness of fixed point is guaranteed by Banach fixed point principle and finding the fixed point
is the required solution of the prescribed functional equation.

2. Preliminaries

Definition 2.1 ([1]). Let Hm(Ω)= {φ ∈ L2(Ω)|Dαφ ∈ L2(Ω) for all α : |α| 6 m}, where α = (α1,α2, ...,αn) ∈
(J+

⋃
{0})n with |α| = α1 +α2 + · · ·+αn, Ω is an open set in Rn, and Dα = ∂|α|

∂x
α1
1 ,...,∂xαnn

. Then Hm(Ω) is a

Hilbert space under the norm defined by

||φ||m,2 = (
∑

|α|6m

||Dαφ||2L2)
1
2 .

By the definition, ||φ||2m,2 = (
∑

|α|6m ||Dαφ||2
L2) and hence

||φ||m,2 = ||Dαφ||L2 , ∀ α : |α| 6 m.

Theorem 2.2. Let φ ∈ Hm(Ω), u ∈ D′(Ω).Then ‖ Dα ‖5 1, ∀ α : |α| 6 m.

Proof. By differentiation of distribution, we have

〈Dαu,φ〉 = (−1)|α|〈u,Dαφ〉.

Then |〈Dαu,φ〉 5‖ u ‖‖ Dαφ ‖, ∀ φ ∈ Hm(Ω). So,

〈Dαu,φ〉 5‖ u ‖‖ φ ‖m,2 .

Therefore, we have ‖ Dαu ‖5‖ u ‖, ∀ u ∈ D′(Ω). Since Dα is linear. ‖ Dα ‖5 1, ∀ α : |α| 5 m. In
particular, ‖ d

dx ‖5 1 and ‖ d2

dx2 ‖5 1.

Theorem 2.3. Let A be a continuous linear operator defined on Hm(Ω) and λ > 0, f ∈ Hm(Ω). Suppose the
operator T defined by Tu = λAu+ f. Then T is a contraction if |λ| ‖ A ‖< 1.

Proof. For any u, v ∈ Hm(Ω),

‖ Tu− Tv ‖=‖ λAu− λAv ‖6 |λ| ‖ A ‖‖ u− v ‖ .

Since |λ| ‖ A ‖< 1, T is a contraction.

Theorem 2.4. Let T be as in Theorem 2.3. Then Tu = u if and only if (I− λA)u = f, ∀u ∈ Hm(Ω).

Proof. Let Tu = u. Then
λAu+ f = u.

So,

Iu− λAu = f, (I− λA)u = f.

Its converse is clear. By the result in Theorem 2.3, the fixed point u of T is a solution of the functional
equation (I− λA)u = f. Moreover, since |λ| ‖ A ‖< 1 is invertible and also

u = (I− λA)−1f = f+ λAf+ λ2A2f+ · · ·+ λnAnf+ · · · =
∞∑
n=0

λnAnf,

where A0 = I.
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3. Application to ordinary differential equation

3.1. Solution of ordinary differential equation

Consider ad
2u
dx2 + bdudx + cu = f, c 6= 0, then by Theorem 2.2, we have obtained

‖ d
dx
‖5 1 and ‖ d

2

dx2 ‖5 1.

So,

‖ a d
2

dx2 ‖5 |a| and ‖ b d
dx
‖5 |b|

and hence

‖ a d
2

dx2 + b
d

dx
‖5 2 max{|a|, |b|}.

Let Au = −ac
d2u
dx2 − b

c
du
dx , define the operator T by

Tu = Au+
f

c
.

Since,

a
d2u

dx2 + b
du

dx
+ cu = f, −

a

c

d2u

dx2 −
b

c

du

dx
= u−

f

c
, Au+

f

c
= u,

(or)
Tu = u.

So, we obtain the following theorem.

Theorem 3.1. Let Bu = ad
2u
dx2 + bdudx + cu = f, c 6= 0, max{|a|, |b|} < 1

2 |c|. Then Bu = f is equivalent to Tu = u
and hence Bu = f has a unique solution u.

Proof. Let Tu = Au+ f
c where A is prescribed above.

‖ A ‖=‖ −a
c

d2

dx2 −
b

c

d

dx
‖5 |

a

c
|+ |

b

c
| 5

2
|c|

max{|a|, |b|} <
1
|c|

.|c| = 1,

for max{|a|, |b|} < 1
2 |c|. Then ‖ Tu− Tv ‖=‖ Au−Av ‖5‖ A ‖‖ u− v ‖ . Since ‖ A ‖< 1, T is a contraction

on H2(Ω), there is a unique fixed point u ∈ H2(Ω) by Banach fixed point theorem. Therefore, u is a
unique solution of Tu = f and

u =
1
c
(I−A)−1f =

1
c
(f+A2f+ · · ·+Anf+ · · · ).

Example 3.2. Consider ad
2u
dx2 + bdudx + cu = f, where a = 0.1, b = 0.3, c = 4, and f(x) = x2. Then

2 max{|ac |, |
b
c |} =

0.3
2 = 0.15 < 1. So, we obtain the solution

u =
1
c
(I−A)−1f =

1
c
[I+A+A2 + · · · ]f = 1

c
[f+Af+A2f+ · · · ]

=
1
4
(x2 + (−

1
20

−
3
20
x) +

9
800

)

=
1
4
(x2 −

1
20

−
3
20
x) +

9
800

) =
1
4
x2 −

3
80
x−

31
3200

.
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When ‖ A ‖= 1, we may still use the (I+A)−1 method, provide the equation is stable, i.e., un is a solution
of the equation Tnu = f, Tn → T and un → u∞ implies that u∞ is a solution of Tu = f. In that case, when
‖ A ‖= 1, we may consider the equation (I+An)u = f where An = n

(n+1)A. Then ‖ A ‖< 1 and An→ A.
Suppose un is a solution of u+Anu = f, un → u∞. Then u∞ is a solution of u+Au = f.

As a particular problem, consider d
2u
dx2 + 2u(x) = x− x3 + x4 in H1(a,b). Now ‖ d2

dx2 ‖5 1. Hence we
consider n

(n+1)
d2u
dx2 + 2u(x) = x− x3 + x4 in stead of the original equation. In the new equation,

‖ n

(n+ 1)
d2

dx2 ‖5
n

(n+ 1)
< 1.

Hence we use (I+An)
−1, where An = n

(n+1)
d2

dx2 . Here,

un(x) = (I+
n

(n+ 1)
d2

dx2 )
−1(x− x3 + x4)

= (I−
n

(n+ 1)
d2

dx2 +
n2

((n+ 1))2
d4

dx4 + · · · )(x− x3 + x4),

un(x) = x− x
3 + x4 +

n

(n+ 1)
(−6x+ 12x2) +

n2

(n+ 1)2 (24).

Since limn→∞ un(x) = u(x), u(x) = 12 + 5
2x− 6x2 − 1

2x
3 + 1

2x
4 is a solution of given equation.

Example 3.3. Let us consider another equation. We know ‖ d
dx ‖5 1 but cannot yet establish that it is less

than 1. So we cannot use (I+A)−1 method directly. If we use it directly, we obtain by y = (I+ d
dx)

−1 sin x,
y = sin x + cos x − sin x − cos x + sin x + cos x − sin x − cos x + · · · , which does not converge. We may
consider n

(n+1)y′(x) + 2y(x) = sin x. Since ‖ n
(n+1)

d
dx ‖5

n
(n+1) < 1, we have

yn(x) = (I+
n

(n+ 1)
d

dx
)−1 sin x

= [I−
n

(n+ 1)
d

dx
+

n2

(n+ 1)2
d2

dx2 −
n3

(n+ 1)3
d3

dx3 + · · · ] sin x

= sin x{1 −
n2

(n+ 1)2 +
n4

(n+ 1)4 + · · · }− cos x{
n

(n+ 1)
−

n3

(n+ 1)3 +
n5

(n+ 1)5 + · · · }

=
sin x

1 + ( n
(n+1))

2 −

n
(n+1)

1 + ( n
(n+1))

2 cos x.

limn→∞ yn(x) = 1
4 sin x− 1

4 cos x, which is a solution of the given equation we considered.

Next, we consider the partial differential operator T defined by

Tu = (a00 + a10
∂

∂x1
+ a01

∂

∂x2
+ a11

∂2

∂x1.∂x2
+ a20

∂2

∂x2
1
+ a02

∂2

∂x2
2
)u = f,a00 6= 0.

This may be written in the form

(I+
a10

a00

∂

∂x1
+
a01

a00

∂

∂x2
+
a11

a00

∂2

∂x1.∂x2
+
a20

a00

∂2

∂x2
1
+
a02

a00

∂2

∂x2
2
)u =

f

a00
.

Let A = I+ a10
a00

∂
∂x1

+ a01
a00

∂
∂x2

+ a11
a00

∂2

∂x1.∂x2
+ a20
a00

∂2

∂x2
1
+ a02
a00

∂2

∂x2
2
, under the condition ‖ A ‖< 1, we obtain

u =
1
a00

(I+A)−1f =
1
a00

(I−A+A2 −A3 + · · · )f = 1
a00

∞∑
n=0

(−1)nAnf,
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where A0 = I. In particular, consider k∆u+u = fwith |k| < 1
2 ,∆u = ∂2u

∂x2
1
+ ∂2u
∂x2

2
, u ∈ H1(Ω) and f ∈ H1(Ω),

Ω ⊂ R2 is open. Here, T = I+ k∆u and ‖ k∆ ‖< 1. Then

u = (I+ k∆)−1f = f− k∆f+ k2∆2f− k3∆3f+ · · · =
∞∑
n=0

(−1)nkn∆nf,

where ∆0f = f.

Example 3.4. Consider 1
3∆u+ u(x) = x3

1x2, x = (x1, x2) ∈ R2. Then

u(x) = (I+
1
2
∆)−1(x3

1x2) = x
3
1x2 − 2x1x2 + 4x2

1x
2
2.

4. Application to Fredholm integral equations

4.1. Fredholm integral equation
Consider u(x) + λ

∫b
a K(x,y)u(y)dy = f(x), where (Ku)(x) =

∫b
a K(x,y)u(y)dy. Then this integral

equation can be written as the following functional equation

u+ λKu = f, u = f− λKu.

Let Bu = f− λKu. Then ‖ Bu− Bv ‖=‖ λK(u− v) ‖5 |λ| ‖ K ‖‖ u− v ‖ for |λ| ‖ K ‖< 1, B is a contraction
and fixed point of B gives a unique solution of Tu = f where T is defined by Tu = u+ λKu.

Since the solution of this integral equation depends on our knowledge of operator K, we shall now
state a few results about K which will be used ||K|| in respective function spaces as follows.

Proposition 4.1 ([8]).

(1) Let X = C([a,b]) for −∞ < a < b <∞. Suppose m = supx∈[a,b]
∫b
a K(x,y)dy <∞, then K ∈ L(X,X) and

‖ K ‖5 m.
(2) Let X = L([a,b]) for −∞ < a < b <∞. Suppose n =

∫b
a supx∈[a,b]|K(x,y)|dy <∞, then K ∈ L(X,X) and

‖ K ‖5 n.
(3) Let 1 < p,p1,q,q1 < ∞ with 1

p + 1
p1 = 1

q + 1
q1 = 1. Let r = max{p1,q} and 1

r +
1
r1 = 1. Suppose M =∫b

a

∫b
a |K(x,y)|rdxdy <∞. Then K ∈ L(Lp([a,b])), (Lq([a,b]), and ‖ K ‖5 NM 1

r , where N = (b− a)α+β,
α = p−r1

pr1 , β = r−q
rq . Obviously, if p = q = r = r1 = 2, then we have

∫b
a

∫b
a |K(x,y)|2dxdy < ∞,

K ∈ L(L2([a,b]),L2([a,b])) with ‖ K ‖5 (
∫b
a

∫b
a |K(x,y)|dxdy)

1
2 . Since α = 2−2

2×2 , β = 2−2
2×2 , and N =

(b− a)0 + 0 = 1.
(4) Let X = L∞([a,b]) for −∞ < a < b < ∞. Suppose m =

∫b
a

∫b
a |K(x,y)|2dxdy, then K ∈ L(X, Y) and

‖ K ‖5 m for Y = L′([a,b]).

Example 4.2. Consider the integral equation u(x) + λ
∫1

0(3x+ 2y)2u(y)dy = 2 − x2. We shall evaluate the
range of λ for the fixed point method is applicable in the spaces C([0, 1]), L1([0, 1]), L2([0, 1]), and L∞([0, 1]).

(i) When we consider in C([0, 1]),

‖ λK ‖= |λ|

∫ 1

0
sup
x∈[0,1]

(3x+ 2y)2dx =
49
3
|λ|.

Then ‖ λK ‖< 1 if |λ| < 3
49 = 0.06122.

(ii) In L1([0, 1]),

‖ λK ‖5 |λ||

∫ 1

0
sup
y∈[0,1]

(3x+ 2y)2dx| = 13|λ|.

Then ‖ λK ‖< 1 if |λ| < 1
13 = 0.0769.
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(iii) In L2([0, 1]),

‖ λK ‖5 |λ||(

∫ 1

0

∫ 1

0
|3x+ 2y|4dxdy)| =

√
82.4|λ|.

Then ‖ λK ‖< 1 if |λ| < 1√
82.4

= 0.1101.

(iv) In L∞([0, 1]),

‖ λK ‖5 sup
x∈[0,1]

∫ 1

0
(3x+ 2y)2dy =

49
3
|λ|.

Then ‖ λK ‖< 1 if |λ| < 3
49 = 0.06122.

Next, we consider the integral equation (I+λK)u = f, where K ∈ L(X,X), X = L2([0, 1]). If | λ |‖ K ‖< 1,
then (I+ λK)−1 exists and hence u = (I+ λK)−1f =

∑∞
n=0(−1)λn(Knf) is a solution.

Example 4.3. Consider u(x) + 1
10

∫1
0(2x+ 3y)2u(y)dy = 5x+ 1. Now ‖ K ‖5

√
82.4 and then |λ| ‖ K ‖< 1.

(Kf)(x) =

∫ 1

0
(2x+ 3y)2(5y+ 1)dy = 14x2 + 26x+ 14.25,

(K2f)(x) =

∫ 1

0
(2x+ 3y)2(14y2 + 26y+ 14.25)dy = 127.67x2 + 231.5x+ 126.45,

(K3f)(x) =

∫ 1

0
(2x+ 3y)2(127.67y2 + 231.5y+ 126.45)dy = 1139.022x2 + 2067.71x+ 1130.031,

...

u(x) = −1.515x2 + 2.181x− 0.546 + · · · .

Example 4.4. Consider u(x) + 1
2

∫1
0(x+ y)u(y)dy = 2 − x2. Now ‖ K ‖<

√
7
6 and hence ‖ λK ‖< 1. Then

u = (I+ λK)−1f,

(Kf)(x) =

∫ 1

0
(x+ y)(2 − y2)dy = 1.667x+ 0.75,

(K2f)(x) =

∫ 1

0
(x+ y)(2 − (1.667y+ 0.75)2)dy = −0.73875x− 0.8095,

(K3f)(x) =

∫ 1

0
(x+ y)(2 − (1.5835y+ 0.93066)2)dy = 0.9286x+ 0.1369,

...

u(x) = 0.46 − 1.3275x− x2 + · · · .

The convergence of this series has been guaranteed by the Banach fixed point theorem since the
operator is a contraction and space R is a complete metric space.

5. Conclusion

A way to solve functional equation has been presented by using upper bounds of norm of operators
T which may be a linear differential or a linear partial differential or a Fredholm integral operator on an
open subset of Hilbert Sobolev space by transforming T = I+ λA where ‖ A ‖< 1. The inverse operator
method has been used in order to obtain required solution of Tu = f. By using the fixed point theorem,
we obtain the existence and uniqueness solution from the results of the prescribed functional equations.
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