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Abstract

Let X be a real locally uniformly convex reflexive Banach space. Let T : X ⊇ D(T) → 2X
∗

and A : X ⊇ D(A) → 2X
∗

be
maximal monotone operators such that T is of compact resolvents and A is strongly quasibounded, and C : X ⊇ D(C) → X∗

be a bounded and continuous operator with D(A) ⊆ D(C) or D(C) = U. The set U is a nonempty and open (possibly
unbounded) subset of X. New degree mappings are constructed for operators of the type T +A+C. The operator C is neither
pseudomonotone type nor defined everywhere. The theory for the case D(C) = U presents a new degree mapping for possibly
unbounded U and both of these theories are new even when A is identically zero. New existence theorems are derived. The
existence theorems are applied to prove the existence of a solution for a nonlinear variational inequality problem.
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1. Introduction and preliminaries

Topological degree theories have been essential tools in the study of existence of solutions for equation
and inequality problems arising from different disciplines. Brouwer [12] degree theory for continuous
functions on RN and, Leray and Schauder [25] degree theory for compact displacement of the identity in
real Banach spaces have been played important roles to derive corresponding surjectivity and fixed point
results. The basic details of these degree theories can be found in the books by Lloyd [26] and, O’regan
et al. [29], and in the survey paper by Mawhin [27], and references therein. In series of papers, Browder
[14–16] developed degree theories for perturbed operators of monotone type in reflexive Banach spaces.
The creation of this theory helped to deal with equations and inequalities involving operators defined
from a reflexive Banach space into its dual space. A number of generalizations and/or improvements
of Browder’s theory have been developed over the past 45 years. The main contributions are due to Hu
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and Papageorgiou [18], Berkovits and Mustonnen [10], Kobayashi and Otani [22], Kartsatos and Skrypnik
[19], Adhikari and Kartsatos [1], Asfaw and Kartsatos [7] and, Asfaw [3–5]. It is worth mentioning that
Browder’s theory and those in [3, 5, 7, 10, 14, 18, 19, 22] are for (S+) (or variant of (S+)) perturbations
of maximal monotone operators. On the other hand, it is known due to Propositions 27.6 and 27.7 in the
book by Zeidler [34] that the classes of continuous and pseudomonotone operators (e. g., (S+) operators)
are distinct and coincide only in finite dimensional spaces. The reader can find various examples of
operators with compact resolvents in the books by Varabie [33], Showalter [32] and the references therein.
The existence of problems involving continuous perturbations of resolvent compact operators and the
nonexistence of a unified theory concerning this class of problems appeal a new theory. The present
paper is devoted to develop new degree theories and derive applicable existence theorems.

In what follows, X and X∗ denote a real reflexive Banach space and its dual space, respectively. The
norms of these spaces will be denoted by ‖ · ‖. The symbol 〈x∗, x〉 denotes the value x∗(x), where x∗ ∈ X∗
and x ∈ X. For an operator B : X→ 2X

∗
, the domain of B, denoted by D(B), is

D(B) = {x ∈ X : Bx 6= ∅},

the range of B, denoted by R(B), is understood as R(B) = ∪x∈D(B)Bx and the graph of B, denoted by
G(B), is

G(B) = {(x, x∗) : x ∈ D(B), x∗ ∈ Bx}.

The operator B is “bounded” if it maps a bounded subset of D(B) into a bounded subset of X∗. In
addition, B is called “quasibounded” if for each M > 0, there exists K(M) > 0 such that

〈w∗, x〉 6M‖x‖, ∀ x ∈ BM(0), and w∗ ∈ Bx,

implies ‖w∗‖ 6 K(M). The operator B is called “strongly quasibounded” if for each M > 0 there exists
K(M) > 0 such that

〈w∗, x〉 6M, ∀ x ∈ BM(0) and w∗ ∈ Bx,

implies ‖w∗‖ 6 K(M). A single-valued operator F : X ⊇ D(F) → X∗ is “compact” if it is continuous and
maps each bounded subset E of D(F) into relatively compact subset of X∗ (i.e., F(E) is a compact subset
of X∗).

Definition 1.1 is needed in the squeal.

Definition 1.1. An operator T : X ⊃ D(T)→ 2X
∗

is said to be

(a) ”monotone” if
〈u∗ − v∗, x− y〉 > 0,

for all (x,u∗) and (y, v∗) in G(T);

(b) ”maximal monotone” if T is monotone and

〈u∗ − u∗0 , x− x0〉 > 0,

for every (x,u∗) ∈ G(T) implies x0 ∈ D(T) and u∗0 ∈ Tx0, i.e., (x0,u∗0) ∈ G(T). Equivalently, T is
”maximal monotone” if and only if T is monotone and T + λJ is surjective for all λ > 0 (c.f., Barbu
[9, Theorem 2.2]);

(c) ”resolvent compact maximal monotone” if T is maximal monotone and

(T + λJ)−1 : X∗ → D(T),

is a compact operator for each λ > 0, equivalently for some λ > 0;
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(d) ”coercive” if either D(T) is bounded or there exists a function φ : [0,∞) → (−∞,∞) such that
φ(t)→∞ as t→∞ and

〈y∗, x〉 > φ(‖x‖)‖x‖,

for all x ∈ D(T) and y∗ ∈ Tx.

The mapping J : X→ 2X
∗

given by

J(x) =
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖

}
,

is known as the ”normalized duality mapping”. It is known due to Hahn-Banach theorem that J(x) 6= ∅
for all x ∈ X. The local uniform convexity of X and X∗ implies that J is single valued, bounded, monotone,
bicontinuous and of type (S+), i.e., it is maximal monotone. A maximal monotone operator T has the
property that

(T + λJ)−1 : X∗ → D(T),

is a single-valued, monotone and demicontinuous operator.
For each λ > 0, the operators Tλ : X→ X∗, given by

Tλx = (T−1 + λJ−1)−1x,

and Jλ : X→ D(T), given by
Jλx = x− λJ

−1(Tλx),

are called the Yosida ”approximant” and ”resolvent” of T , respectively. The operator Tλ is bounded,
continuous and monotone (i.e., maximal monotone) and the operator Jλ is bounded and continuous. It is
also known that Tλx ∈ T(Jλx) for every x ∈ X and lim

λ→0
Jλx = x for all x ∈ coD(T), where coD(T) is the

convex hull of D(T). In addition, Tλx⇀ T (0)x as λ→ 0+ for every x ∈ D(T) where

‖T 0x‖ = inf{‖y∗‖ : y∗ ∈ Tx},

and ‖Tλx‖ 6 |Tx| for all λ > 0 and x ∈ D(T), where |Tx| denotes ‖T 0x‖. The basic theory on monotone
type operators can be found in Pascali and Sburlan [30], Barbu [9], Browder [13], Browder and Hess [17],
Zeidler [34] and the references therein.

Lemma 1.2 is useful in the squeal. Its proof can be found in the proof of Theorem 2.7 due to Asfaw
[6].

Lemma 1.2. Let A : X ⊇ D(A) → 2X
∗

be a maximal monotone operator. Let ε > 0, Aε and JAε be the Yosida
approximant and resolvent of A, respectively. If the sequences {xn} in X and {εn} in (0,∞), are bounded, then
{JAεnxn} is bounded.

For the readers’ convenience we shall briefly outline the relevant degree theories for monotone type
operators in reflexive Banach spaces. Let T : X ⊇ D(T) → 2X

∗
and A : X ⊇ D(A) → 2X

∗
be maximal

monotone operators, S : X→ 2X
∗

be a bounded pseudomonotone operator and, f : G→ X∗ and g : G→ X∗

be bounded demicontinuous operators of type (S+).
Browder’s degree theory (c.f., [16]) is for operators of T + fwith 0 ∈ T(0). It is useful to indicate that the

definition of the Browder degree doesn’t require that T is densely defined. However, Kobayashi and Otani
[22, Proposition 3.1] proved that the homotopy {(1 − t)(T + f) + tg}t∈[0,1] is a pseudomonotone homotopy
(c.f., [16]) if and only if T is densely defined. Hu and papageorgiou [18] generalized the Browder degree
theory for everywhere defined, multi-valued and compact perturbation of T + f. Recently, Asfaw and
Kartsatos [7] developed a degree theory for operators of T + S. The reader can find degree theories
for perturbations of maximal monotone operators by a variant form of (S+) operators in the papers by
Berkovits and Mustonnen [10], Kartsatos and Skrypnik [19] and the references therein. In series of papers
[3–5], Asfaw developed three degree theories for operators of the type (i) T +A+ S such that A is of type
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Γφ, (ii) T + S+ C where C : X ⊇ D(C) → X∗ is a sublinear compact operator with D(T) ⊆ D(C) and S
is bounded of type (S+), and (iii) L+A+ C where L is possibly nonmonotone, linear, closed, densely
defined and inverse compact, A is of type Γφ and C : X→ X∗ is a bounded and demicontinuous operator.
In [4] the conditions on L allowed the operator C to be demicontinuous (weaker than continuity). The
possibility of L to be nonmonotone restricted the usage of quasibounded assumption on A. All of these
theories (except the case of (iii) due to Asfaw [4]) required perturbations of a single maximal monotone
operator (or the sum of two maximal monotone operators) by single-valued or multi-valued operators of
type (S+) either densely defined or defined on a closure of a bounded and open subset of X. In contrast
to these, it is the main goal of the present paper to develop degree theories for operators of the type
T +A+ C where T is of compact resolvent, A is strongly quasibounded and C : X ⊇ D(C) → X∗ is a
bounded and continuous operator such that D(A) ⊆ D(C) or D(C) is the closure of a nonempty and
open (possibly unbounded) subset of X. As a result the theories gave improvements of the theory in [4]
by replacing the linear (possibly nonmonotone) operator L by a resolvent compact (linear or nonlinear)
maximal monotone operator T such that A is strongly quiasibounded and C is bounded and continuous.
These degree theories are new in the sense that the operator C is not necessarily pseudomonotone type
(e.g., not necessarily of type (S+)) and D(C) is neither dense nor equal to the closure of a bounded and
open subset of X. These theories will help to derive applicable existence theorems which are not known
earlier.

The arguments of the construction of these degrees are based on Leray-Scahuder degree along with
Nagumo homotopy. The essential feature of Nagumo homotopy is that the Leray-Schauder degree dLS is
invariant under the homotopy H : [0, 1]×G→ X∗ given by

H(x, t) = x−K(t, x), (t, x) ∈ [0, 1]×G,

provided that G is a nonempty, bounded and open subset of X, K : [0, 1]×G → X is a compact operator
and 0 6∈ H(t,∂G) for all t ∈ [0, 1]. Throughout the paper we shall use dNA instead of dLS whenever we
use such homotopy. Additional details of Nagumo degree and related results can be found in Theorems
5, 6 and 7 due to Nagumo [28]. It is worth mentioning that the Leray-Schauder degree and Nagumo
degree coincide in Banach space setting. In addition, the Leray-Schauder homotopy requires the mapping
x 7→ K(t, x) to be compact for each t ∈ [0, 1] and t 7→ K(t, x) is uniformly continuous uniformly for all
x ∈ G.

The paper is organized as follows. In Section 2 a degree theory for operators of the type T +A+C
with D(A) ⊆ D(C), is developed. A homotopy invariance result along with basic properties are derived.
Section 3 deals about a degree theory for operators of the form T +A+ C with D(C) = U, where U is
a nonempty and open (possibly unbounded) subset of X. In Section 4 we applied the degree theories
developed in Sections 2 and 3, and derived existence theorems concerning solvability of inclusion (e.g.,
variational inequality) problems. The last section demonstrates the applicability of the theory for a non-
linear parabolic variational inequality problem. Throughout Sections 2 and 3 we shall use the symbols
dLS and dNA to denote Leray-Schauder and Nagumo degrees, respectively. The letter d stands for each
of the degree mappings constructed in Sections 2 and 3.

2. Degree theory for T +A+C with D(A) ⊆ D(C)

We are now ready to construct the required degree mapping for operators of the type T +A+C with
D(A) ⊆ D(C). Theorem 2.1 is used in the squeal. The proof of Theorem 2.1 used the Leray-Schauder
degree and Nagumo homotopy.

Theorem 2.1. Let G be a nonempty, bounded and open subset of X. Let T : X ⊇ D(T) → 2X
∗

with 0 ∈ T(0)
and A : X ⊇ D(A) → 2X

∗
be maximal monotone operators such that T is of compact resolvent, A is strongly

quasibounded and, C : X ⊇ D(C) → X∗ and B : G → X∗ be bounded and continuous operators such that
〈Bx, x〉 > 0 for all x ∈ G, 〈Bx, x〉 > 0 for all x ∈ ∂G and D(A) ⊆ D(C). Let

H(t, x) = Tx+ t(Ax+Cx− f∗) + (1 − t)Bx,
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for (t, x) ∈ [0, 1]×
(
D(T)∩D(A)∩G

)
. Assume that

0 6∈ H(t,D(T)∩D(A)∩ ∂G),

for all t ∈ [0, 1]. Then

dNA(I− (T + J)−1(−t(Aε +CJ
A
ε − f∗)) − (1 − t)B+ J),G, 0),

is well-defined and, constant for all t ∈ [0, 1] and sufficiently small ε > 0.

Proof. We shall first show that

dNA(I− (T + J)−1(−t(Aε +CJ
A
ε − f∗) − (1 − t)B+ J),G, 0),

is well-defined for all t ∈ [0, 1] and sufficiently small ε > 0, i.e., there exists ε0 > 0 such that

0 6∈ (I− (T + J)−1(− t(Aε +CJAε − f∗) − (1 − t)B+ J
)
(∂G),

for all t ∈ [0, 1] and ε ∈ (0, ε0). Suppose not, i.e., there exist εn ↓ 0+, tn ∈ [0, 1] and xn ∈ ∂G such that

xn = (T + J)−1(− tn(Aεnxn +CJAεnxn − f∗) − (1 − tn)Bxn + Jxn
)
,

for all n, i.e., xn ∈ D(T)∩ ∂G for all n and there exists z∗n ∈ Txn such that

z∗n + tn(Aεnxn +CJAεnxn − f∗) + (1 − tn)Bxn = 0, (2.1)

for all n. The boundedness of {xn} along with Lemma 1.2 imply the boundedness of {JAεnxn}. In addition
{CJAεnxn} and {Bxn} are bounded because the operators C and B are bounded. Clearly tn 6= 0 for all n.
Otherwise, if tn = 0 for some n, we get z∗n + Bxn = 0 with xn ∈ D(T) ∩ ∂G, i.e., the monotonicity of T
with 0 ∈ T(0) and condition of B on ∂G imply

0 < 〈Bxn, xn〉 = −〈z∗n, xn〉 6 0,

for all n, i.e., 0 < 0, which is absurd. This shows that tn 6= 0 for all n. The monotonicity of T with 0 ∈ T(0)
and 〈Bx, x〉 > 0 for all x ∈ ∂G imply that

〈Aεnxn, xn〉 = −
1
tn
〈z∗n, xn〉−

1 − tn
tn
〈Bxn, xn〉

− 〈CJAεnxn − f∗, xn〉 6 K,

for all n, where K is an upper bound for {−〈CεnJAεnxn − f∗, xn〉}. Due to the properties of Aεn and JAεn it
follows that JAεnxn ∈ D(A), Aεnxn ∈ A(JAεnxn) and

JAεnxn = xn − εnJ
−1(Aεnxn),

for all n, i.e., we get

〈Aεnxn, JAεnxn〉 = 〈Aεnxn, xn − εnJ
−1(Aεnxn)〉

= 〈Aεnxn, xn〉− εn〈Aεnxn, J−1(Aεnxn)〉
= 〈Aεnxn, xn〉− εn‖Aεnxn‖2

6 〈Aεnxn, xn〉 6 K,

for all n. The strong quasiboundedness of A shows the boundedness of {Aεnxn}, i.e., (2.1) implies that
{z∗n} is bounded, and

z∗n + Jxn = −tn(Aεnxn +CJAεnxn − f∗) − (1 − tn)Bxn + Jxn = En,
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for all n. The compactness of (T + J)−1 and boundedness of {En} imply that there exists a subsequence of
{xn}, denoted again by {xn}, such that

xn = (T + J)−1(En)→ x0 ∈ ∂G, and JAεnxn = xn − εnJ
−1(Aεnxn)→ x0,

as n → ∞. Assume without loss of generality that z∗n ⇀ z∗0 , Aεnxn ⇀ a∗0 and tn → t0 as n → ∞. The
maximal monotonicity of T and A implies that G(T) and G(A) are strong-weak closed in X× X∗ (c.f.,
Brézis et al. [11]), i.e., (x0, z∗0) ∈ G(T) and (x0,a∗0) ∈ G(A), i.e., we get

x0 ∈ D(T)∩D(A)∩ ∂G ⊆ D(C), z∗0 ∈ Tx0 and a∗0 ∈ Ax0.

The continuity of C and B imply CJAεnxn → Cx0 and Bxn → Bx0 as n→∞. Letting n→∞ in (2.1) gives

0 ∈ (T + t0(A+C− f∗) + (1 − t0)B)(D(T)∩D(A)∩ ∂G).

But this is impossible, i.e., the claim holds.
Next we show that

dNA
(
I− (T + J)−1(− t(Aε +CJAε − f∗) − (1 − t)B+ J

)
,G, 0

)
,

is independent of t ∈ [0, 1] and ε ∈ (0, ε0). Fix ε ∈ (0, ε0) temporarily. Let Hε : [0, 1]×G→ X∗ be given by

Hε(t, x) = (T + J)−1(− t(Aεx+CJAε x− f∗) − (1 − t)Bx+ Jx
)
.

It is clear to see that Hε is a compact operator such that 0 6∈ Hε(t,∂G) for all t ∈ [0, 1], i.e., {Hε}t∈[0,1] is an
admissible Nagumo homotopy, i.e., we obtain that

dNA(I−Hε(t, .),G, 0),

is independent of t ∈ [0, 1], i.e., it follows that

dNA(I−Hε(t, .),G, 0) = dLS(I−Hε(0, .),G, 0)

= dLS(I− (T + J)−1(−B+ J
)
,G, 0),

for all t ∈ [0, 1]. Since dLS(I− (T + J)−1
(
−B+ J

)
,G, 0) is independent of ε ∈ (0, ε0), we conclude that

dNA(I−Hε(t, .),G, 0),

is independent of t ∈ [0, 1] and ε ∈ (0, ε0). This completes the proof.

Next we give the definition of the degree mapping.

Definition 2.2. Let G be a nonempty, bounded and open subset of X. Let T : X ⊇ D(T) → 2X
∗

and
A : X ⊇ D(A) → 2X

∗
be maximal monotone operators such that T is resolvent compact with 0 ∈ T(0),

A is strongly quasibounded and C : X ⊇ D(C) → X∗ be a bounded and continuous operator with
D(A) ⊆ D(C). Suppose

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂G).

Then the degree of T +A+C at f∗ with respect to G, denoted by d, is defined by

d(T +A+C,G, f∗) = lim
ε↓0+

dLS
(
I− (T + J)−1(−Aε −CJ

A
ε + f∗ + J),G, 0

)
.

The basic properties of d are presented below.

Theorem 2.3. Let G be a bounded and open subset of X. Let T : X ⊇ D(T) → 2X
∗

and A : X ⊇ D(A) → 2X
∗

be maximal monotone operators such that T is resolvent compact with 0 ∈ T(0), A is strongly quasibounded and
C : X ⊇ D(C)→ X∗ be a bounded and continuous operator with D(A) ⊆ D(C). Then the following hold.
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(i) (Normalization) d(T + J,G, 0) = 1 if 0 ∈ G and d(T + J,G, 0) = 0 if 0 6∈ G.

(ii) (Existence) Suppose

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂G) and d(T +A+C,G, f∗) 6= 0.

Then f∗ ∈ (T +A+C)(D(T)∩D(A)∩G).

(iii) (Translation Invariance) Let f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂G). Then we have

d(T +A+C− f∗,G, 0) = d(T +A+C,G, f∗).

(iv) (Decomposition) Let G1 and G2 be nonempty and disjoint open subsets of G such that

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ (G\(G1 ∪G2))).

Then
d(T +A+C,G, f∗) = d(T +A+C,G1, f∗) + d(T +A+C,G2, f∗).

(v) Let B : G→ X∗ be a bounded and continuous operator such that 〈Bx, x〉 > 0 for all x ∈ ∂G and 〈Bx, x〉 > 0
for all x ∈ G and

H : [0, 1]× (D(T)∩D(A)∩G)→ 2X
∗
,

be given by
H(t, x) = Tx+ t(Ax+Cx− f∗) + (1 − t)Bx.

Suppose 0 6∈ H(t,D(T)∩D(A)∩ ∂G) for all t ∈ [0, 1]. Then d(H(t, .),G, f∗) is independent of t ∈ [0, 1].

Proof.

(i) By the definition of d and using (T + J)(0) 3 0 ((T + J)−1(0) = 0), it follows that

d(T + J,G, 0) = dLS
(
I− (T + J)−1(−J+ J)

)
,G, 0)

= dLS(I,G, 0).

Clearly dLS(I,G, 0) = 1 if 0 ∈ G and dLS(I,G, 0) = 0 if 0 6∈ G. The proof of (i) follows.

(ii) Assume that f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂G) and d(T +A+C,G, f∗) 6= 0. Then

dLS
(
I− (T + J)−1(−Aε −CJAε + f∗ + J

)
,G, 0

)
6= 0,

for all sufficiently small ε > 0, i.e., for each εn ↓ 0+ there exists xn ∈ D(T)∩G and z∗n ∈ Txn such that

z∗n +Aεnxn +CJAεnxn = f∗,

for all n. The arguments in the proof of Theorem 2.1 can be applied to conclude that

f∗ ∈ (T +A+C)(D(T)∩D(A)∩G).

The details are omitted here.

(iii) Suppose f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂G). The definition of d gives

d(T +A+C− f∗,G, 0) = dLS(I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J),G, 0)

= d(T +A+C,G, f∗),

for all sufficiently small ε > 0, i.e., translation invariance follows.
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(iv) By the decomposition property of Leray-Schauder degree, we see that

d(T +A+C,G, f∗) = dLS(I− (T + J)−1(−Aε −CJAε + f∗ + J
)
,G, 0)

= dLS(I− (T + J)−1(−Aε −CJAε + f∗ + J
)
,G1, 0)

+ dLS(I− (T + J)−1(−Aε −CJAε + f∗ + J
)
,G2, 0),

for all sufficiently small ε > 0. Letting ε ↓ 0+ gives

d(T +A+C,G, f∗) = d(T +A+C− f∗,G1, 0) + d(T +A+C− f∗,G2, 0)
= d(T +A+C,G1, f∗) + d(T +A+C,G2, f∗),

(v) The proof is given in Theorem 2.1.

3. Degree theory for T +A+C with D(C) = U

Next we construct our degree mapping for operators of the type T +A+C with D(C) = U where U is
a nonempty and open subset of X. We shall complete the construction based on Theorem 3.1. The proof
requires the regularity property of a topological space.

Theorem 3.1. Let U be a nonempty and open subset of X, T : X ⊇ D(T) → 2X
∗

and A : X ⊇ D(A) → 2X
∗

be
maximal monotone operators such that T is of compact resolvents, A is strongly quasibounded and C : U→ X∗ and
B : X→ X∗ are bounded and continuous operators such that 〈Bx, x〉 > 0 for all x ∈ X \ {0} and 〈Bx, x〉 > 0 for all
x ∈ X. Let S : [0, 1]× (D(T)∩D(A)∩U)→ 2X

∗
be given

S(t, x) = Tx+ t(Ax+Cx− f∗) + (1 − t)Bx.

Suppose 0 6∈ S(t,D(T)∩D(A)∩ ∂U) for all t ∈ [0, 1]. Then

(i) there exist a nonempty, bounded and open subset G of X such that G ⊆ U and

Z(S, f∗) =
⋃

06t61

{
x ∈ D(T)∩D(A)∩U : S(t, x) 3 0

}
⊆ G.

(ii)
dNA(I− (T + J)−1(−t(Aε +CJ

A
ε − f∗) − (1 − t)B+ J),G, 0)

is independent of t ∈ [0, 1], G and sufficiently small ε > 0.

Proof.

(i) We shall show that Z(S, f∗) is a compact subset of U. To this end, let {xn} be a bounded sequence in
Z(S, f∗), i.e., xn ∈ D(T)∩D(A)∩U and there exits tn ∈ [0, 1] such that

0 ∈ Txn + tn(Axn +Cxn − f∗) + (1 − tn)Bxn,

for all n, i.e., there exist u∗n ∈ Txn and w∗n ∈ Axn such that

u∗n + tn(w
∗
n +Cxn − f∗) + (1 − tn)Bxn = 0, for all n.

Clearly {xn}, {tnCxn} and {(1 − tn)Bxn} are bounded. The boundedness of {w∗n} follows because of the
strong quasiboundedness of A and following the arguments of the proof of Theorem 2.1. The compactness
of (T + J)−1 and boundedness of

{Dn = −tn(w
∗
n +Cxn − f∗) − (1 − tn)Bxn + Jxn},
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imply the existence of a subsequence, denoted again by {xn}, such that

xn = (T + J)−1(Dn)→ x0 ∈ U, as n→∞.

The arguments of the proof of Theorem 2.1 can be applied to show that

x0 ∈ D(T)∩D(A)∩U, and 0 ∈ S(t0, x0),

for some t0 ∈ [0, 1]. The boundary condition gives x0 ∈ D(T)∩D(A)∩U, i.e., x0 ∈ Z(S, f∗). This proves the
compactness of Z(S, f∗). The regularity property of the normed space X gives the existence of a nonempty,
bounded and open subset G of U such that Z(S, f∗) ⊆ G ⊆ G ⊆ U.

(ii) Fix G temporarily. The arguments used in the proof of Theorem 2.1 can be applied to conclude that

dNA(I−Kε(t, .),G, 0) = dLS(I− (T + J)−1(−B+ J),G, 0),

for all t ∈ [0, 1] and sufficiently small ε > 0, where

Kε(t, x) = (T + J)−1(−t(Aεx+CJ
A
ε x− f

∗) − (1 − t)Bx+ Jx),

for (t, x) ∈ [0, 1]×G. It remains to show that

dLS(I− (T + J)−1(−B+ J),G, 0),

is independent of G, i.e.,

dLS
(
I− (T + J)−1(−B+ J

)
,G1, 0

)
= dLS

(
I− (T + J)−1(−B+ J

)
,G2, 0

)
,

for any G1 and G2 satisfying Z(S, f∗) ⊆ G1 ∩G2. Since Z(S, f∗) ⊆ G1 ∩G2 and

G1 \G2 ⊆ G1 \G2 = (G1 \G2)∪ (∂G1 \G2),

it follows that
0 6∈ (I− (T + J)−1(−B+ J))(∂(G1 ∩G2)),

and
0 6∈ (I− (T + J)−1(−B+ J))(∂(G1 \G2)),

for all t ∈ [0, 1]. Let
Ω = G1 \

(
(G1 ∩G2)∪ (G1 \G2)

)
.

It is not hard to see that G1 ∩G2 and G1 \G2 are nonempty, disjoint and open subsets of G1,

∂
(
G1 \G2

)
∩
(
G1 ∩G2

)
= ∅,

and
0 6∈ (I− (T + J)−1(−B+ J))(G1\G2).

By the decomposition property of Leray-Schauder degree, we obtain that

dLS(I− (T + J)−1(−B+ J),G1, 0) = dLS(I− (T + J)−1(−B+ J),Ω1, 0)

+ dLS(I− (T + J)−1(−B+ J),Ω2, 0),

where Ω1 = G1 ∩G2 and Ω2 = G1 \G2. On the other hand, one can apply the existence property of the
Leray-Schauder degree to conclude

dLS(I− (T + J)−1(−B+ J),G1 \G2, 0) = 0,
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because G1 \G2 ⊆ G1 \G2 , Z(S, f∗) ⊆ G1 ∩G2 and

0 6∈
(
I− (T + J)−1(−B+ J)

)(
G1\G2

)
.

This gives
dLS(I− (T + J)−1(−B+ J),G1, 0) = dLS(I− (T + J)−1(−B+ J),Ω1, 0).

Analogously, we get

dLS(I− (T + J)−1(−B+ J),G2, 0) = dLS(I− (T + J)−1(−B+ J),Ω1, 0),

i.e., we obtain
dLS(I− (T + J)−1(−B+ J),G1, 0) = dLS(I− (T + J)−1(−B+ J),G2, 0).

The proof is completed.

Let
Z(T +A+C, f∗) = {x ∈ D(T)∩D(A)∩U : Tx+Ax+Cx 3 f∗}.

The definition of the required degree mapping is given below.

Definition 3.2. Let U be a nonempty and open subset of X. Let T : X ⊇ D(T)→ 2X
∗

and

A : X ⊇ D(A)→ 2X
∗
,

be maximal monotone operators such that T is of compact resolvents with 0 ∈ T(0), A is strongly quasi-
bounded and C : U→ X∗ be a bounded and continuous operator. Suppose

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂U).

The degree of T +A+C at f∗ with respect to U, denoted by d(T +A+C,U, f∗), is defined by

d(T +A+C,U, f∗) = lim
ε↓0+

dLS(I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J),G, 0),

where G is a bounded and open subset of U such that Z(T +A+C, f∗) ⊆ G guaranteed by Theorem 3.1.

The degree mapping satisfies the following properties.

Theorem 3.3. Let U be a nonempty and open subset of X. Let T : X ⊇ D(T)→ 2X
∗

and A : X ⊇ D(A)→ 2X
∗

be
maximal monotone operators such that T is of compact resolvents with 0 ∈ T(0), A is strongly quasibounded and
C : U→ X∗ be a bounded and continuous operator. Then the following hold:

(i) (Normalization) d(T + J,U, 0) = 1 if 0 ∈ U, and d(T + J,U, 0) = 0 if 0 6∈ U.

(ii) (Existence) If

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂U), and d(T +A+C,U, f∗) 6= 0,

then f∗ ∈ (T +A+C)(D(T)∩D(A)∩U).

(iii) (Translation Invariance) Let f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂U). Then we have

d(T +A+C,U, f∗) = d(T +A+C− f∗,U, 0).

(iv) (Decomposition) Let U1 and U2 be nonempty, disjoint and open subsets of U such that

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ (U\(U1 ∪U2))),

then
d(T +A+C,U, f∗) = d(T +A+C,U1, f∗) + d(T +A+C,U2, f∗).
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(v) (Homotopy invariance) Let B : X → X∗ be a bounded and continuous operator such that 〈Bx, x〉 > 0 for all
x ∈ X \ {0}, 〈Bx, x〉 > 0 for all x ∈ X and

H(t, x) = Tx+ t(Ax+Cx− f∗) + (1 − t)Bx,

for (t, x) ∈ [0, 1] × (D(T) ∩D(A) ∩ U), then d(H(t, .),U, 0) is independent of t ∈ [0, 1] provided that
0 6∈ H(t,D(T)∩D(A)∩ ∂U) for all t ∈ [0, 1].

Proof.

(i) We shall use T , A = {0}, C = 0 and B = J in Definition 3.2. Let G be a nonempty, bounded and open
subset of U guaranteed by (i) of Theorem 3.1. Then the definition of d gives

d(T + J,U, 0) = dLS(I− (T + J)−1(− J+ J),G, 0
)
.

Suppose 0 ∈ U. Since 0 ∈ T(0) ((T + J)−1(0) = 0) (i.e., 0 ∈ D(T)∩U), it follows that 0 ∈ Tx+ Jx is solvable
with x = 0 and t = 0 (i.e., 0 ∈ G) and

d(T + J,U, 0) = dLS(I,G, 0) = 1.

In addition, 0 6∈ G if 0 6∈ U, i.e., we have d(T + J,U, 0) = dLS(I,G, 0) = 0.

(ii) Suppose f∗ 6∈ (T +A+C)(D(T) ∩D(A) ∩ ∂U) and d(T +A+C,U, f∗) 6= 0. Let G be a bounded and
open subset of X such that Z(T +A+C, f∗) ⊆ G ⊂ G ⊆ U. Then by the definition of d(T +A+C,U, f∗)
we have

dLS
(
I− (T + J)−1(−Aε −CJAε + f∗ + J

)
,G, 0

)
6= 0,

for all sufficiently small ε > 0, i.e., for each εn ↓ 0+ there exist xn ∈ D(T)∩G and z∗n ∈ Txn such that

z∗n +Aεnxn +CJAε xn = f∗,

for all n. The arguments of the proof of Theorem 2.1 imply

f∗ ∈ (T +A+C)(D(T)∩D(A)∩G).

The details are omitted here.

(iii) By the definition of d, we obtain that

d(T +A+C,U, f∗) = dLS(I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J),G, 0)

= d(T +A+C− f∗,U, 0),

for all sufficiently small ε > 0 and G is an open and bounded subset of U such that Z(T +A+C, f∗) ⊆ G.

(iv) Suppose U1 and U2 are disjoint and open subsets of U satisfying the boundary condition. It follows
that

f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂U1),

and
f∗ 6∈ (T +A+C)(D(T)∩D(A)∩ ∂U2).

We shall denote the restrictions of C on U1 and U2 by the same letter C. Let G1 and G2 be bounded and
open subsets of U1 and U2, respectively, such that

Z(T +A+C, f∗) ⊆ G1 ⊆ G1 ⊆ U1,

and
Z(T +A+C, f∗) ⊆ G2 ⊆ G2 ⊆ U2.
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Clearly G1 and G2 are disjoint subsets of G = G1 ∪G2. It is not difficult to see that

0 6∈ (I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J))(∂G1),

and
0 6∈ (I− (T + J)−1(−Aε −CJ

A
ε + f∗ + J))(∂G2),

for all sufficiently small ε > 0, and

0 6∈ (I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J)

(
G\
(
G1 ∩G2

))
,

for all sufficiently small ε > 0. The decomposition property of Leary-Schauder degree mapping yields

d(T +A+C,U, f∗) = dLS(I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J),G, 0)

= dLS(I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J),G1, 0)

+ dLS(I− (T + J)−1(−Aε −CJ
A
ε + f∗ + J),G2, 0),

for all sufficiently small ε > 0, i.e., letting ε→ 0+ , Definition 3.2 implies

d(T +A+C,U, f∗) = d(T +A+C,U1, f∗) + d(T +A+C,U2, f∗).

This proves (iv). The proof of (v) is given in Theorem 3.1.

4. Surjectivity and variational inequality theorems

The degree theories developed in Sections 2 and 3 are applied to prove new existence theorems, i.e.,
Theorems 4.1 and 4.2 give surjectivity results under certain coercivity condition, while Theorem 4.5 yields
a new result on solvability of variational inequality problems. It is important to mention that these
theorems are new even if the operator A is identically zero and C is everywhere defined.

Theorem 4.1. Let U be a nonempty and open subset of X with 0 ∈ U. Let T : X ⊇ D(T)→ 2X
∗

and

A : X ⊇ D(A)→ 2X
∗
,

be maximal monotone operators such that T is of compact resolvents with 0 ∈ T(0), A is strongly quasibounded and
C : X ⊇ D(C)→ X∗ be a bounded and continuous operator. Let f∗ ∈ X∗. Then

(i) f∗ ∈ (T +A+C)(D(T)∩D(A)∩BR(0)) if D(A) ⊆ D(C) and there exists R > 0 such that

〈u∗ +Cx− f∗, x〉 > 0,

for all x ∈ D(T)∩D(A)∩ ∂BR(0) and u∗ ∈ Ax.

(ii) f∗ ∈ (T +A+C)(D(T)∩D(A)∩U) if D(C) = U and

〈u∗ +Cx− f∗, x〉 > 0,

for all x ∈ D(T)∩D(A)∩ ∂U and u∗ ∈ Ax.

Proof. The proofs of (i) and (ii) are similar. We shall give the proof of (ii). Consider the homotopy inclusion

H(t, x) = Tx+ t(Ax+Cx− f∗) + (1 − t)Jx,

for (t, x) ∈ [0, 1]× (D(T)∩D(A)∩U). The boundary condition on T +A+C gives

〈z∗ + t(u∗ +Cx− f∗) + (1 − t)Jx, x〉 = 〈z∗, x〉+ t〈u∗ +Cx− f∗, x〉+ (1 − t)‖x‖2

> t〈u∗ +Cx− f∗, x〉+ (1 − t)‖x‖2

> 0,

for all t ∈ [0, 1], x ∈ D(T) ∩D(A) ∩ ∂U, z∗ ∈ Tx and u∗ ∈ Ax, i.e., 0 6∈ H(t,D(T) ∩D(A) ∩ ∂U) for
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all t ∈ [0, 1]. Thus the homotopy invariance property ((v) of Theorem 3.3 with B = J) ensures that
d(H(t, .),U, 0) is independent of t ∈ [0, 1]. This means

d(H(t, .),U, 0) = d(T +A+C,U, f∗) = d(T + J,U, 0) = 1,

for all t ∈ [0, 1]. The existence property ((ii) of Theorem 3.3) shows that

f∗ ∈ (T +A+C)(D(T)∩D(A)∩U).

The proof of (i) follows using G = BR(0).

It is not difficult to see that the conditions in Theorem 4.1 give the solvability of the variational in-

equality problem VIP(T + A + C, K, f∗) if 0 ∈ D(A) ∩
◦
K is assumed in (i) and (ii). Indeed, the condition

0 ∈ D(A) ∩
◦
K implies the strong quasiboundedness of A + ∂IK because A and ∂IK are both strongly

quasibounded, and (i) and (ii) imply analogous conditions for the operator A+ ∂IK. Consequently, The-
orem 4.1 yields f∗ ∈ R(T + A + ∂IK + C), i.e., VIP(T + A + C, K, f∗) is solvable. In addition, the same

conclusion holds if (ii) holds for D(C) = K = U with U =
◦
K. In Theorem 4.2 below the strong quasi-

boundedness assumption on A is omitted and T is assumed to be quasibounded (not necessarily strongly
quausibounded).

Theorem 4.2. Let U be a nonempty and open subset of X. Let T : X ⊇ D(T)→ 2X
∗

and A : X ⊇ D(A)→ 2X
∗

be
maximal monotone operators such that T is quasibounded and of compact resolvents and C : X ⊇ D(C)→ X∗ be a
bounded and continuous operator. Suppose f∗ ∈ X∗ and 0 ∈ U∩ T(0)∩A(0). Then

(i) f∗ ∈ (T +A+C)(D(T)∩D(A)∩BR(0)) if D(A) ⊆ D(C) and there exists R > 0 such that

〈Cx− f∗, x〉 > 0,

for all x ∈ D(A)∩ ∂BR(0).

(ii) f∗ ∈ (T +A+C)(D(T)∩D(A)∩U) if D(C) = U and

〈Cx− f∗, x〉 > 0,

for all x ∈ ∂U.

Proof. Suppose (i) holds. Let ε > 0, Aε and JAε be the Yosida approximant and resolvent of A, respectively.
Then it follows that Aε + C : D(C) → X∗ is a bounded and continuous operator. Since 0 ∈ T(0) ∩A(0)
and, T and A are maximal monotone, it follows that Aε(0) = 0 and 〈u∗, x〉 > 0 and 〈Aεx, x〉 > 0 for all
x ∈ D(T) and u∗ ∈ Tx. Consequently, we see that

〈u∗ + t(Aεx+Cx− f∗) + (1 − t)Jx, x〉 = 〈u∗, x〉+ t〈Cx− f∗, x〉+ (1 − t)‖x‖2

> t〈Cx− f∗, x〉+ (1 − t)‖x‖2 > 0,

for all t ∈ [0, 1] and x ∈ D(T)∩D(A)∩ ∂BR(0) and u∗ ∈ Tx, i.e., we have

0 6∈ (T + t(Aε +C− f∗) + (1 − t)J)(D(T)∩D(A)∩ ∂BR(0)),

for all t ∈ [0, 1] and sufficiently small ε > 0. The homotopy invariance and normalization properties of
the degree given in Definition 2.2 imply

d(T +Aε +C,BR(0), f∗) = d(T + J,BR(0), 0) = 1,
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for all sufficiently small ε > 0, i.e., for each εn ↓ 0+ there exist xn ∈ D(T)∩BR(0) and z∗n ∈ Txn such that

z∗n +Aεnxn +Cxn = f∗,

for all n. It is clear that {xn} and {Cxn} are bounded. The boundedness of {z∗n} follows based on the
quasiboundedness of T , i.e., {Aεnxn} is bounded. One can follow the arguments used in the proof of
Theorem 2.1 to conclude that

f∗ ∈ (T +A+C)(D(T)∩D(A)∩BR(0)).

The details are omitted here.
Suppose (ii) holds. Then as in the proof of (i) it follows that

〈u∗ + t(Aεx+Cx− f∗) + (1 − t)Jx, x〉 > 0,

for all t ∈ [0, 1] and x ∈ D(T) ∩ ∂U and u∗ ∈ Tx. The normalization and homotopy invariance of the
degree constructed in Section 3 give

d(T +Aε +C,U, f∗) = d(T + J,U, 0) = 1.

Let G be a bounded and open subset of U guaranteed by (i) of Theorem 3.1 such that Z(T +A+C, f∗) ⊆ G.
It can be proved (as in the proof of Theorem 3.1) that

Z(T +Aε +C, f∗) ⊆ G,

for all sufficiently small ε > 0, i.e., for each εn ↓ 0+ there exist xn ∈ D(T)∩G and z∗n ∈ Txn such that

z∗n +Aεnxn +Cxn = f∗,

for all n. Analogous arguments can be applied to conclude that

f∗ ∈ (T +A+C)(D(T)∩D(A)∩G).

The proof is completed.

Corollary 4.3 gives a surjectivity result.

Corollary 4.3. Suppose hypotheses on T , A and C are satisfied in Theorems 4.1 and 4.2 with 0 ∈ D(A) ⊆ D(C),
and (i) is replaced by coercivity of C, i.e.,

inf
x∈D(A)

〈Cx, x〉
‖x‖

→∞, as ‖x‖ →∞.

Then T +A+C is surjective.

Proof. Let f∗ ∈ X∗. Choose b∗0 ∈ A(0). The monotonicity of A and coercivity of C imply

inf
x∈D(A), u∗∈Ax

〈u∗ +Cx− f∗, x〉
‖x‖

= inf
x∈D(A), u∗∈Ax

(
〈u∗ − b∗0 +Cx, x〉

‖x‖
+
〈b∗0 − f∗, x〉
‖x‖

)

> inf
x∈D(A)

〈Cx, x〉
‖x‖

− (‖f∗‖+ ‖b∗0‖)→∞,

as ‖x‖ →∞, i.e., there exits R = R(f∗) > 0 such that

〈u∗ +Cx− f∗, x〉 > 0,

for all x ∈ D(A)∩ ∂BR(0). Then (i) of Theorem 4.1 is satisfied, i.e., we get

f∗ ∈ (T +A+C)(D(T)∩D(A)∩BR(0)).

The surjectivity of T +A+C follows because f∗ ∈ X∗ is arbitrary. The proof under conditions of Theorem
4.2 follows analogously.
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Let φ : X → (−∞,∞] be a proper, convex and lower semicontinuous function. The domain of φ,
denoted by D(φ), is given by D(φ) = {x ∈ X : φ(x) <∞}. The subdifferential of φ (in the sense of convex
analysis), denoted by ∂φ : X ⊇ D(∂φ)→ 2X

∗
is defined as

∂φ(x) = {u∗ ∈ X∗ : 〈u∗, x− y〉 > φ(x) −φ(y), ∀ y ∈ X}.

For a nonempty, closed and convex subset K of X, let IK : X → (−∞,∞] be the indicator function on K,
i.e., IK(x) = 0 for all x ∈ K, and IK(x) =∞ for all x 6∈ K. It is known that IK is a proper, convex and lower
semicontinuous function with domain K. Clearly (x,w∗) ∈ G(∂IK) if 〈w∗, x− y〉 > 0 for all y ∈ K.

Next recall Definition 4.4.

Definition 4.4. Let K be a nonempty, closed and convex subset of X, φ : X → (−∞,∞] be a proper,
convex and lower semicontinuous function and S : X ⊇ D(S) → 2X

∗
and f∗ ∈ X∗. The variational

inequality problem, denoted by VIP (S,K,φ, f∗), is said to be “solvable” in D(S)∩D(∂φ)∩K if there exist
x0 ∈ D(S)∩D(∂φ)∩K and v∗0 ∈ Sx0 such that

〈v∗0 − f∗, x− x0〉 > φ(x0) −φ(x), ∀ x ∈ K.

The solvability of the problem VIP(S,K,φ, f∗) is equivalent to the solvability of the inclusion problem

Su+ ∂φ(u) + ∂IK(u) 3 f∗ in D(S)∩D(∂φ)∩K.

The reader can compare inclusion and/or variational inequality results for (S+) and/or pseudomonotone
perturbations of maximal monotone operators in the papers by Kenmochi [20, 21], Le [24], Asfaw and
Kartsatos [7, 8], Asfaw [2, 3, 5, 6] and the references therein.

Theorem 4.5 yields an existence result for a variational inequality problem. The maximal monotonicity

condition on A+ ∂IK + ∂φ in Theorem 4.5 is achieved if 0 ∈ D(A)∩
◦
K∩

◦
D(∂φ) (c.f., [31]).

Theorem 4.5. Let U be a nonempty and open subset of X and K be a nonempty, closed and convex subset of X. Let
T : X ⊇ D(T)→ 2X

∗
and A : X ⊇ D(A)→ 2X

∗
be maximal monotone operators such that T is quasibounded and of

compact resolvents, and C : X ⊇ D(C)→ X∗ be a bounded and continuous operator. Suppose φ : X→ (−∞,∞] is
a proper, convex and lower semicontinuous function such that 0 ∈ U∩K∩ T(0)∩A(0)∩ ∂φ(0) and A+ ∂IK+ ∂φ
is maximal monotone. Let f∗ ∈ X∗. Then the problem VIP(T +A+C,K,φ, f∗) is solvable if exactly one of the
following holds.

(i) D(A) ⊆ D(C) and there exists R > 0 such that

〈Cx− f∗, x〉 > 0,

for all x ∈ D(A)∩ ∂BR(0).

(ii) D(C) = U and
〈Cx− f∗, x〉 > 0,

for all x ∈ ∂U.

Proof. The proof can be completed using the operator A+ ∂IK + ∂φ instead of A in the proof of Theorem
4.2. The details are omitted here.

We like to compare Theorem 4.5 with Theorem 2.7 due to Asfaw [6]. In [6], Asfaw proved the solv-
ability of the problem VIP(T +C,K,φ, f∗) provided that D(T) ⊆ D(C), T is quasibounded and of compact
resolvent, ∂IK + ∂φ is maximal monotone and there exist u0 ∈ D(∂φ)∩K and R > 0 such that

〈u∗ +Cx− f∗, x− u0〉 > 0,
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for all x ∈ D(T)∩∂BR(0) and u∗ ∈ Tx. One can see that [6, Theorem 2.7] follows from Theorem 4.5 (under
condition (i)) if we use 1

2T instead of T and 1
2T instead of A with u0 = 0. In addition the condition that

∂IK + ∂φ is maximal monotone is stronger than the maximal monotonicity of T + ∂IK + ∂φ because T is
quasibouned with 0 ∈ D(T), i.e., Theorem 4.5 used weaker conditions as compared to those used in [6]
except using u0 = 0. In fact, condition (ii) in Theorem 4.5 provides a new result because no restriction is
imposed on D(C) = U except that U is nonempty and open. In addition, Theorems 4.1, 4.2 and 4.5 hold

if
◦

D(C) is nonempty with appropriate boundary conditions.
It is easy to see that for each f∗ ∈ X∗ the problem VIP(T +A+C,K,φ, f∗) is solvable if conditions of

Theorem 4.5 are satisfied with D(A) ⊆ D(C) and (i) is replaced by the coercivity of C.

5. An Application

Suppose p > 1 and p′ is the conjugate exponent of p (i.e., 1/p + 1/p′ = 1), V = W
1,p
0 (Ω), X =

Lp(0, T ;V), H = L2(Ω) and X∗ = Lp
′
(0, T ;V∗), i.e., V ⊆ H ⊆ V∗. For u ∈ X and v∗ ∈ X∗, the norm of u and

v∗ is given by,

‖u‖pX =

∫T
0
‖u(t)‖pVdt, and ‖v∗‖p

′

X∗ =

∫T
0
‖v∗(t)‖p

′

V∗dt.

In addition, the pairing between w ∈ X∗ (i.e., w(t) ∈ V∗ for all t ∈ [0, T ]) and u ∈ X (i.e., u(t) ∈ V for all
t ∈ [0, T ]), denoted by 〈w, v〉, is understood as

〈w,u〉 =
∫T

0
〈w(t),u(t)〉Vdt.

In this section we shall apply the degree theories developed in Sections 2 and 3 to prove existence of
solution for the variational inequality problem of finding u ∈ D(L)∩D(∂φ)∩K such that

〈Lu+Cu− f∗, v− u〉 > Φ(u) −Φ(v), (5.1)

for all v ∈ K, where K is a nonempty, closed and convex subset of X with 0 ∈
◦
K and L : X ⊇ D(L)→ X∗ is

defined by Lu = u′, where u′ is understood in the sense of distributions, i.e.,∫T
0
u′(t)ψ(t)dt = −

∫T
0
u(t)ψ′(t)dt, ψ ∈ C∞0 (0, T),

with D(L) = {u ∈ X : u′ ∈ X∗,u(0) = u(T)} and

〈Lu,φ〉 =
∫T

0
〈u′(t),φ(t)〉Vdt, u ∈ D(L), φ ∈ X. (5.2)

Let C : X→ X∗ be generated by the differential operator

Su = −

N∑
i=1

∂

∂xi
ai(x,u,∇u), u ∈ X,

given by

〈Cu, v〉 =
N∑
i=1

∫
Q

ai(x, t,u(x, t),∇u(x, t))
∂v

∂xi
dxdt, u ∈ X, v ∈ X. (5.3)

Suppose that

(a) for each i = 1, 2, · · · ,N, ai(x, t,η, ζ) is Carathèodory function, i.e., (x, t) 7→ ai(x, t,η, ζ) is measurable
for almost all (η, ζ) ∈ RN+1 and (η, ζ) 7→ ai(x, t,η, ζ) is continuous for almost all (x, t) ∈ Ω× [0, T ];
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(b) there exist c1 > 0 and k1 ∈ Lp
′
(Ω× [0, T ]) such that

|ai(x, t,η, ζ)| 6 c1(|η|
p−1 + |ζ|p−1 + k1(x, t)),

for all (x, t) ∈ Ω× [0, T ], η ∈ R, ζ ∈ RN and i = 1, 2, · · · ,N;

(c) there exists γ > 0 such that
N∑
i=1

ai(x, t,η, ζ)ζi > γ|ζ|p,

for all (x, t) ∈ Ω× [0, T ], ζ ∈ RN and i = 1, 2, · · · ,N.

(d) Φ : X → (−∞,∞] is a proper, convex and lower semicontinuous function of compact type (i.e., ∂Φ

is of compact resolvents) and ∂Φ : X ⊇ D(∂Φ) → 2X
∗

is quasibounded (e.g., 0 ∈
◦

D(∂Φ)) such that
0 ∈ ∂Φ(0).

Next we give the following existence theorem.

Theorem 5.1. Let K be a nonempty, closed and convex subset of X with 0 ∈
◦
K and, L and C be defined in (5.2) and

(5.3), respectively. Suppose (a) through (d) hold. Then for each f∗ ∈ X∗ problem (5.1) is solvable.

Proof. The operator L : X ⊇ D(L)→ X∗ is known to be densely defined and maximal monotone. The proof
of this fact and more details can be found in the book by Zeidler [34, pp. 354–918]. It is also true that
condition (a) and (b) imply that the operator C : X = D(C) → X∗ is a bounded and continuous operator.

The operator L+ ∂IK is maximal monotone because 0 ∈
◦
K∩D(L) 6= ∅ (c.f., [31]). We shall apply Corollary

4.3 of Theorem 4.2 using the operators T = ∂Φ, A = L+ ∂IK and C. It is sufficient to show that C is
coercive. Indeed condition (c) gives

〈Cu,u〉 > γ
∫T

0
‖u(t)‖pVdt = γ‖u‖

p,

for all u ∈ X, i.e., we have
〈Cu,u〉
‖u‖

> ‖u‖p−1,

for all x ∈ X \ {0}. Since p > 1, letting ‖u‖ →∞ implies the coercivity of C. Then Corollary 4.3 yields the
surjectivity of the operator T +A+C = ∂Φ+ L+ ∂IK +C, i.e., for each f∗ ∈ X∗ we get the solvability of
VIP(L + C, K, Φ, f∗) in D(L)∩D(∂Φ)∩K, i.e., (5.1) is solvable. The proof is completed.

It can been seen that the proof of Theorem 4.5 does not require the operator C to satisfy pseudomono-
tonicity condition. It is essential to highlight here that pseudomonotonicity of the operator C is achieved
if (a) and (b) are satisfied, and

N∑
i=1

(
ai(x, t,η, ζ) − ai(x, t,η, ζ′

)(
ζi − ζ

′
i

)
> 0, (5.4)

for all (x, t,η) ∈ Ω× [0, T ]×R, ζ ∈ RN and ζ′ ∈ RN. In addition, C satisfies the (S+) condition if (a),
(b), (c) and (5.4) hold. Notice here that condition (5.4) is not required in the proof of Theorem 4.5 because
of the resolvent compactness condition on ∂Φ. The reader can find further details about differential
operators of type (S+) in the paper by Berkovits and Mustonen [10], Hu and Papageorgiou [18], Landes
and Mustonen [23], and the references therein.
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