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Abstract

We introduce a new three-parameter model called the odd inverse Pareto exponential distribution which extends the exponen-
tial distribution and provides constant, decreasing, increasing, decreasing-increasing, upside-down bathtub and bathtub failure
rate shapes. Some of its mathematical properties are derived. The maximum likelihood method is used to estimate the model
parameters. The proposed model provides better fits over some existing distributions by means of two real data sets.
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1. Introduction

The exponential (Ex) distribution has been used extensively for analyzing lifetime data because it is
analytically tractable and has the “lack of memory property”. However, with a constant hazard shape, the
Ex distribution is not able to fit data sets with different hazard shapes as increasing, decreasing, bathtub
or upside down bathtub shaped (unimodal) failure rates, often encountered in reliability, engineering and
biological studies. For many years, researchers have been developing various extensions and modified
forms of the Ex distribution, for example: the exponentiated Ex (Gupta and Kundu, [8]) and beta Ex
(Jones, [9]) distributions which can have monotone hazard rate shapes.

Several extensions of the Ex distribution have been proposed in the literature namely, the Marshall-
Olkin Ex distribution due to Marshall and Olkin [15], logistic Ex distribution due to Lan and Leemis [12],
Nadarajah-Haghighi Ex distribution due to Nadarajah and Haghighi [16], modified Ex distribution due
to Rasekhi et al. [18], odd exponentiated half-logistic Ex distribution due to Afify et al. [2], and extended
odd Weibull exponential distribution due to Afify and Mohamed [4], among others.

In this paper, we propose and study a new three-parameter model called the odd inverse Pareto-
exponential (OIPEx) distribution. The proposed model has the advantage of being capable of modeling
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various shapes of aging and failure criteria, namely, constant, increasing, decreasing, bathtub or upside-
down bathtub. Accordingly, it can be used effectively to analyze lifetime data sets. It is noted that very
few three-parameter distributions can give rise to the five main shapes of the hazard rate function (HRF).

We construct the new model based on the odd inverse Pareto-G (OIP-G) family due to Aldahlan et al.
[6].

The cumulative distribution function (CDF) of the OIP-G family is given (for x > 0) by

F(x;α,β,ϕ) = αβ

∫ G(x;ϕ)
1−G(x;ϕ)

0
tα−1 (β+ t)−α−1 dt =

G(x;ϕ)α

[1 −G(x;ϕ)]α

[
β+

G(x;ϕ)

1 −G(x;ϕ)

]−α
.

The corresponding probability density function (PDF) is given by

f(x;α,β,ϕ) =
αβg(x;ϕ)G(x;ϕ)α−1

[1 −G(x;ϕ)]α+1

[
β+

G(x;ϕ)

1 −G(x;ϕ)

]−α−1

,

where G(x;ϕ) is a baseline CDF with parameter vector ϕ, g(x;ϕ) = dG(x;ϕ)/dx, α > 0 and β > 0 are
two additional shape parameters. For β = 1, the OIP-G family reduces to the exponentiated-G family
(Gupta et al., [7]) . For α = 1, the OIP-G family becomes the Marshall-Olkin-G family (Marshall and
Olkin, [15]). Clearly, for α = β = 1, we obtain the baseline model.

The HRF of the OIP-G family is given by

τ(x;α,β,ϕ) =
αβg(x;ϕ)G(x;ϕ)α−1 [β+ (1 −β)G(xi;ϕ)]−1

[β+ (1 −β)G(xi;ϕ)]α −G(x;ϕ)α
.

The rest of the paper is outlined as follows. In Section 2, we define the OIPEx model and provide some
plots for its PDF and HRF. In Section 3, we derive some mathematical properties of the OIPEx distribution.
Estimation of the model parameters by maximum likelihood and a small simulation study are presented
in Section 4. In Section 5, we prove empirically the flexibility of the new model using two applications to
real data. Finally, some conclusions are presented in Section 6.

2. The OIPEx distribution

Consider the PDF and CDF (for x > 0) g(x) = λ exp (−λx) and G(x) = 1 − exp (−λx), respectively, of
the Ex distribution with positive parameters λ. Then, the PDF of the OIPEx model is given by

f(x;α,β, λ) =
αβλ exp (−λx) [1 − exp (−λx)]α−1

[1 − (1 −β) exp (−λx)]α+1 , x > 0, α,β, λ > 0. (2.1)

The corresponding CDF of (2.1) is given by

F(x;α,β, λ) =
[1 − exp (−λx)]α

[1 − (1 −β) exp (−λx)]α
, x > 0, α,β, λ > 0. (2.2)

The HRF of the OIPEx model is given by

τ(x;α,β, λ) =
αβλ exp (−λx) [1 − exp (−λx)]α−1 [1 − (1 −β) exp (−λx)]−α−1

1 − [1 − exp (−λx)]α [1 − (1 −β) exp (−λx)]−α
.

Henceforth, a random variable with PDF (2.1) is denoted by X ∼OIPEx(α,β, λ). Some special cases of the
OIPEx distribution are: the exponentiated Ex (EEx) distribution (Gupta and Kundu, [8]) for β = 1; the the
Marshall-Olkin Ex distribution (Marshall and Olkin, [15]) for α = 1; the the Ex distribution for α = β = 1.
The PDF and HRF plots of the OIPEx model are displayed in Figure 1. Figure 1 reveals that the PDF of
the OIPEx can be reversed J-shape, concave down, symmetric, unimodal, left skewed or right skewed.
The OIPEx HRF can be constant, decreasing, increasing, decreasing-increasing, upside down bathtub or
bathtub failure rate shapes.
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Figure 1: PDF and HRF plots of the OIPEx distribution for selected parameter values.

3. Properties

In this section, we provide some properties of the OIPEx distribution including quantile function (QF),
moment generating function (MGF), ordinary and incomplete moments, mean residual life (MRL), mean
inactivity time (MIT) and order statistics.

Hereafter, let Z be a random variable having the Ex distribution, g(z) = λ exp (−λz), λ, z > 0. Thus,
the rth ordinary moment, rth incomplete moment, and MGF of Z are given, respectively, by

µ′r,Z = λ−rΓ (r+ 1) , φr,Z (t) = λ−rγ (r+ 1, λt) , and MZ(t) =
λ

λ− t
, t 6= 0,

where Γ (·) and γ (·, ·) are the complete and lower incomplete gamma functions, respectively.

Remark 3.1. The PDF of the OIPEx distribution can be expressed as a mixture of Ex densities

f(x) =

∞∑
i=0

υi gi+1 (x; (i+ 1) λ) , (3.1)

where gi+1 (x; (i+ 1) λ) = (i+ 1) λ exp [− (i+ 1) λx] is the Ex density with scale parameter (i+ 1) λ and

υi =

∞∑
k,j,i=0

α(−1)j+i

(i+ 1)βk+α

(
−α− 1
k

)(
−k−α− 1

j

)(
k+ j+α− 1

i

)
.

Remark 3.1 reveals that several mathematical properties of the OIPEx distribution can be obtained
directly from those properties of the Ex distribution.

Proof. Using equation (3.5) in Aldahlan et al. [6], the PDF of the OIPEx distribution can be expressed as

f(x) =

∞∑
k,j=0

dk,j hk+j+α(x), (3.2)
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where hk+j+α (x) = (k+ j+α) λ exp (−λx) [1 − exp (−λx)]k+j+α−1 is the exponentiated Ex PDF with
power parameter (k+ j+α) and

dk,j =
α(−1)j

(k+ j+α)βk+α

(
−α− 1
k

)(
−k−α− 1

j

)
.

Using the generalized binomial series to [1 − exp (−λx)]k+j+α−1, we can write equation (3.2) as

f(x) =

∞∑
k,j,i=0

α(−1)j+i

βk+α

(
−α− 1
k

)(
−k−α− 1

j

)(
k+ j+α− 1

i

)
λ exp (− (i+ 1) λx) .

Or equivalently, we can write

f(x) =

∞∑
i=0

υi gi+1 (x; (i+ 1) λ) .

3.1. Quantile and generating functions

The QF of the OIPEx distribution follows, by inverting (2.2), as

xu = Q (u) =
−1
λ

log

(
1 −

βu
1
α

1 − (1 −β)u
1
α

)
. (3.3)

Based on (3.3), we can obtain a random sample of size n from (2.2), as Xi=Q (Ui), whereUi∼Uniform(0, 1),
i = 1, 2, . . . ,n.

Using (3.1) and the MGF of Z, the MGF of the OIPEx model can be rewritten as

MX (t) =

∞∑
i=0

υi
(i+ 1) λ

(i+ 1) λ− t
.

3.2. Ordinary and incomplete moments

The sth ordinary moment of X follows from equation (3.1) as

µ′s =

∞∑
i=0

υi [(i+ 1) λ]−s Γ (s+ 1) .

The mean, variance, skewness and kurtosis of the OIPEx distribution are given in Table 1. The values of
these measures are computed numerically for λ = 1 and some selected values of α and β using the R
software. Table 1 shows that the skewness of the OIPEx distribution can range in the interval (0.90, 3.4),
whereas the spread for the OIPEx kurtosis is much larger ranging from 4.8 to 20.4.

Further, the sth incomplete moment of X can be rewritten as

φs (t) =

∞∑
i=0

υi [(i+ 1) λ]−s γ (s+ 1, (i+ 1) λt) .

The first incomplete moment follows from the above equation with s = 1 as

φ1 (t) =

∞∑
i=0

υi
γ (2, (i+ 1) λt)

[(i+ 1) λ]
. (3.4)
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Table 1: Mean, variance, skewness and kurtosis of the OIPEx model for λ = 1.
α β Mean Variance Skewness Kurtosis

0.5 0.5 0.4134 0.4477 3.4198 20.404
1.5 0.7600 0.9064 2.2620 10.326
2.5 0.9769 1.1992 1.8672 7.8668
5 1.3302 1.6696 1.4297 5.7148

1.5 0.5 0.9063 0.8351 2.2451 10.671
1.5 1.5374 1.3502 1.5127 6.5866
2.5 1.8986 1.5914 1.2648 5.6093
5 2.4463 1.8857 0.9993 4.8034

2.5 0.5 1.2254 1.0221 1.9096 8.6525
1.5 1.9825 1.4735 1.3464 6.0027
2.5 2.3953 1.6497 1.1669 5.3933
5 3.0006 1.8358 0.9881 4.9120

5 0.5 1.7375 1.2432 1.5952 7.0798
1.5 2.6303 1.5658 1.2302 5.6508
2.5 3.0894 1.6655 1.1275 5.3409
5 3.7399 1.7556 1.0363 5.1041

3.3. Mean residual life and mean inactivity time

The life expectancy at age t or MRL of X is defined by

mX (t) = [1 −φ1 (t)] /F(t) − t, t > 0, (3.5)

where F(.) is the survival function.
By using (3.4) in equation (3.5), the MRL of X can be determined as

mX (t) =
1
F(t)

∞∑
i=0

υi
γ (2, (i+ 1) λt)

(i+ 1) λ
− t.

The MIT of X is defined by
m′X (t) = t− [φ1 (t) /F(t)] , t > 0.

By inserting (3.4) in the last equation, the MIT of X follows as

m′X (t) = t−
1
F(t)

∞∑
i=0

υi
γ (2, (i+ 1) λt)

(i+ 1) λ
.

3.4. Order statistics

Order statistics are important in several areas of statistical theory and practice. Let X1, . . . ,Xn be a
random sample from the OIPEx distribution. The PDF of Xi:n can be written as

fi:n (x) =
f (x)

B (i,n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

)
F (x)j+i−1 , (3.6)

where B(·, ·) is the beta function. Based on equations (2.1) and (2.2), and after some algebra, we can write

f (x) F(x)j+i−1 = α

∞∑
k,l=0

(−1)l

βk+α(j+i)

(
−α (j+ i) − 1

k

)(
−k−α (j+ i) − 1

l

)



M. A. Aldahlan, A. Z. Afify, J. Nonlinear Sci. Appl., 13 (2020), 258–269 263

× λ exp (−λx) [1 − exp (−λx)]k+l+α(j+i)−1 .

Using the binomial expansion to [1 − exp (−λx)]k+l+α(j+i)−1, the above equation reduces to

f (x) F(x)j+i−1 = α

∞∑
k,l,p=0

(−1)l+p

βk+α(j+i)

(
−α (j+ i) − 1

k

)(
−k−α (j+ i) − 1

l

)

×
(
k+ l+α (j+ i) − 1

p

)
λ exp (− (p+ 1) λx) .

Inserting the last equation in (3.6), the PDF of Xi:n follows as

fi:n(x) =

∞∑
p=0

mp gp+1(x; (p+ 1) λ), (3.7)

where gp+1(x; (p+ 1) λ) is the Ex density with scale parameter (p+ 1) λ and

mp = α

∞∑
k,l=0

n−i∑
j=0

(−1)j+l+pβ−k−α(j+i)

(p+ 1)B (i,n− i+ 1)

(
n− i

j

)(
−α (j+ i) − 1

k

)

×
(
−k−α (j+ i) − 1

l

)(
k+ l+α (j+ i) − 1

p

)
.

Hence, the PDF of the OIPEx order statistics is a linear combination of Ex densities. Based on equation
(3.7), the qth moment of Xi:n can be expressed as

E
(
X
q
i:n

)
=

∞∑
p=0

mp [(p+ 1) λ]−q Γ (q+ 1) .

4. Estimation and simulation

Let X1, . . . ,Xn be a random sample from the OIPEx distribution with parameters α, β and λ. Let
ϕ =(λ,α,β)ᵀ be the p× 1 parameter vector. Then, the log-likelihood function for ϕ is given by

`(ϕ) =n log (αβλ) − λ

n∑
i=1

xi + (α− 1)
n∑
i=1

log (1 − exp (−λxi))

− (α+ 1)
n∑
i=1

log (1 − (1 −β) exp (−λxi)) .

The score vector components, U (ϕ) = ∂`
∂ϕ =

(
Uλ,Uα,Uβ

)ᵀ, are given by

Uλ =
n

λ
−

n∑
i=1

xi + (α− 1)
n∑
i=1

xi exp (−λxi)

1 − exp (−λxi)
− (α+ 1)

n∑
i=1

(1 −β) xi exp (−λxi)

1 − (1 −β) exp (−λxi)
,

Uα =
n

α
+

n∑
i=1

log (1 − exp (−λxi)) −

n∑
i=1

log (1 − (1 −β) exp (−λxi)) ,

and

Uβ =
n

β
− (α+ 1)

n∑
i=1

exp (−λxi)

1 − (1 −β) exp (−λxi)
.
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Setting the nonlinear system of equations Uλ = Uα = Uβ = 0 and solving them simultaneously yields
the MLE ϕ̂ = (̂λ, α̂, β̂)ᵀ. For doing this, it is usually more convenient to adopt nonlinear optimization
methods such as the quasi-Newton algorithm to maximize ` numerically. For interval estimation of the
parameters, we obtain the p× p observed information matrix J(ϕ) = { ∂

2`
∂r∂s } (for r, s = λ,α,β), whose

elements can be computed numerically.
Now, we perform a small Monte Carlo simulation study to assess the performance of the ML esti-

mators (MLEs) of the unknown parameters for the OIPEx distribution. The performance of the MLEs is
evaluated in terms of their average values and mean squared errors (MSEs). The Mathcad program is
used to generate 1000 samples of the OIPEx distribution for different sample sizes, n = (50, 100, 150),
and for different parameters combinations, λ =(0.5, 1.0), α =(0.35, 0.5, 0.75, 1.5) and β =(0.25, 0.35, 0.5,
1.0, 1.5, 3.5). The average values of estimates and MSEs are provided in Table 2. We noted, from Table 2,
that the MSE decreases as the sample size increases. Thus, the MLE method works very well to estimate
the model parameters of the OIPEx distribution.

Table 2: Average values of the estimates and the corresponding MSEs for the OIPEx distribution.
n Parameters Average Estimates MSEs

λ α β λ α β λ α β

50 0.50 0.35 0.25 0.588 0.369 0.311 0.334 0.007 0.223
100 0.500 0.364 0.250 0.133 0.003 0.058
150 0.425 0.361 0.207 0.077 0.002 0.026
50 0.50 0.35 0.35 0.614 0.368 0.479 0.240 0.006 0.342
100 0.505 0.360 0.368 0.097 0.002 0.115
150 0.471 0.361 0.329 0.071 0.002 0.064
50 1.00 0.50 0.50 1.090 0.536 0.693 0.469 0.019 0.643
100 0.959 0.527 0.518 0.206 0.009 0.152
150 0.927 0.517 0.499 0.172 0.006 0.109
50 1.00 0.50 1.00 1.113 0.536 1.364 0.204 0.020 1.760
100 1.037 0.521 1.100 0.082 0.008 0.391
150 0.999 0.516 1.030 0.048 0.005 0.236
50 1.00 0.75 1.50 0.839 0.800 1.505 0.285 1.550 1.849
100 0.828 0.776 1.399 0.234 0.938 1.242
150 0.868 0.775 1.441 0.181 0.543 0.963
50 1.00 1.50 3.50 1.004 2.050 3.836 0.035 0.919 1.049
100 0.995 1.761 3.543 0.018 0.526 0.562
150 0.991 1.664 3.474 0.011 0.149 0.214

5. Two applications

We illustrate the flexibility of the OIPEx model using to real lifetime data sets. The first data set
contains 40 observations and represents time to failure (103h) of turbocharger of one type of engine (Xu et
al., [19]). These data were analyzed by Afify et al. [1] and Nassar et al. [17]. The second data set consists
of n = 74 observations and represents the gauge lengths of 20 mm (Kundu and Raqab, [8]). These
data were analyzed by Afify et al. [2]. The OIPEx distribution will be compared with some competitive
models namely: the exponentiated exponential (EEx) due to Gupta and Kundu [8], beta exponential (BEx)
due to Jones [9], transmuted generalized exponential (TGEx) due to Khan et al. [10], Kumaraswamy
transmuted exponential (KTEx) due to Afify et al. [3], alpha power exponential (APEx) due to Mahdavi
and Kundu [13], Marshall-Olkin logistic-exponential (MOLEx) due to Mansoor et al. [14], gamma (Ga),
and Ex distributions whose PDFs are given by

EEx :f(x) = αλexp(−λx) [1 − exp(−λx)]α−1 ,
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BEx :f(x) =
λ

B(a,b)
exp(−bλx) [1 − exp(−λx)]a−1 ,

TGEx :f (x) = αλexp(−λx) [1 − exp(−λx)]α−1
{1 + θ− 2θ [1 − exp(−λx)]α} ,

KTEx :f(x) =
abλexp(−λx) [1 − θ+ 2θexp(−λx)]

{[1 − exp(−λx)] [1 − θexp(−λx)]}1−a

× (1 − {[1 − exp(−λx)] [1 + θexp(−λx)]}a)b−1 ,

APEx :f(x) =
log (α) λexp(−λx)

(α− 1)
α1−exp(−λx), α > 0,α 6= 1,

MOLEx :f (x) = αθλexp(λx) [exp(λx) − 1]−α−1 {1 + θ [exp(λx) − 1]−α
}−2

,

Ga :f(x) =
b−a

Γ (a)
xa−1 exp (−x/b) .

The parameters of the above densities are all positive real numbers except for the KTEx and TGEx distri-
butions for which |θ| 6 1.

The fitted distributions are compared using some goodness-of-fit criteria including the −̂̀ (where ̂̀ is
the maximized log-likelihood), CVM (Cramér-Von Mises), AD (Anderson-Darling) and KS (Kolmogorov
Smirnov with its p-value (PV)) statistics.

The values of −̂̀, CVM, AD, KS, PV , MLEs and their standard errors (SEs) (in parentheses) for both
data sets are listed in Tables 3 and 4. The figures in these tables show that the OIPEx distribution has the
lowest values for all goodness-of-fit statistics among all fitted distributions. So, it can be chosen as the
best model to fit both data sets.

The plots of the fitted PDF of the OIPEx model and other fitted PDFs are displayed in Figures 2 and
3, respectively. The corresponding probability probability (PP) plots, for both data sets, are displayed in
Figures 4 and 5, respectively. These plots reveal that the OIPEx distribution provides the best fits to these
data and it can be considered a very competitive model to other distributions with positive support.

Table 3: The goodness-of-fit statistics and estimates (PV and SEs in parentheses) for time to failure data.

Distribution −̂̀ CVM AD KS Estimates
OIPEx 80.870 0.0516 0.3260 0.0937 0.1899 581876500 2.4253
(α,β, λ) (0.8732) (0.0324) (150.3) (0.0694)
KTEx 86.235 0.0725 0.5422 0.1059 2.9155 2145.5 0.0334 -0.8222
(a,b, λ, θ) (0.7605) (1.0753) (5616.4) (0.0241) (0.3080)
MOLEx 86.598 0.0853 0.6136 0.0910 0.9174 290.353 0.9654
(α, θ, λ) (0.8944) (0.9091) (246.807) (0.9878)
Ga 89.410 0.2052 1.3616 0.1277 7.7227 1.2351
(a,b) (0.5311) (1.6908) (0.2794)
BEx 90.417 0.2054 1.3626 0.1283 7.7267 54.659 0.0213
(a,b, λ) (0.5252) (1.6926) (56.135) (0.0203)
APEx 91.283 0.2187 1.4392 0.1640 20457 0.4460
(α, λ) (0.2318) (12390) (0.0321)
TGEx 91.670 0.2333 1.5194 0.1448 8.5465 0.5000 -0.6507
(α, λ, θ) (0.3707) (3.1707) (0.0621) (0.2560)
EEx 92.142 0.2757 1.7600 0.1541 9.5142 0.4498
(α, λ) (0.2975) (2.8959) (0.0577)
Ex 114.31 0.2065 1.3689 0.3631 0.1599
(λ) (0.000) (0.0252)
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Figure 2: The fitted OIPEx PDF and other fitted PDFs for first data set.
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Figure 3: The fitted OIPEx PDF and other fitted PDFs for first data set.
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Table 4: The goodness-of-fit statistics and estimates (PV and SEs in parentheses) for gauge lengths data.

Distribution −̂̀ CVM AD KS Estimates
OIPEx 51.835 0.0368 0.2355 0.0591 0.7950 27297 3.9576
(α,β, λ) (0.9577) (0.2023) (34546) (0.3913)
MOLEx 54.923 0.0451 0.2770 0.0593 1.8250 7243.76 1.9614
(α, θ, λ) (0.9569) (1.9746) (7213.1) (2.2110)
KTEx 55.131 0.0267 0.2097 0.0575 8.8699 112.54 0.3562 -0.1036
(a,b, λ, θ) (0.9673) (16.810) (627.38) (0.9223) (4.9790)
BEx 56.177 0.0874 0.5737 0.0682 24.317 92.491 0.0947
(a,b, λ) (0.8809) (3.9884) (154.90) (0.1426)
Ga 55.165 0.0871 0.5718 0.0681 24.228 9.7800
(a,b) (0.8821) (3.9559) (1.6134)
TGEx 59.771 0.1759 1.1229 0.0843 90.153 2.2154 -0.6975
(α, λ, θ) (0.6684) (38.889) (0.1876) (0.2062)
EEx 60.803 0.2172 1.4053 0.0953 89.435 2.0192
(α, λ) (0.5121) (32.476) (0.1716)
APEx 75.306 0.1158 0.7520 0.1919 1938073 1.2587
(α, λ) (0.0086) (16777) (0.0549)
Ex 142.129 0.0875 0.5749 0.4495 0.4037
(λ) (0.0000) (0.0469)
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Figure 4: PP plots of the OIPEx distribution and other competitive distributions for first data set.
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Figure 5: PP plots of the OIPEx distribution and other competitive distributions for second data set.

6. Conclusions

We propose a new three-parameter model called odd inverse Pareto exponential (OIPEx) distribution
with two extra shape parameters. The OIPEx density function can be expressed as a linear mixture of
exponential densities. We derive some of its mathematical properties including the quantile and gener-
ating functions, ordinary and incomplete moments, mean residual life, mean inactivity time and order
statistics. The model parameters are estimated by the maximum likelihood estimation method. We assess
the performance of the maximum likelihood estimators via a simulation study. Two applications illustrate
that the new OIPEx distribution provides better fits than other competitive models.
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