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Abstract
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1. Introduction

Let E be a real reflexive Banach space with norm ‖ · ‖ and E∗ the dual space of E. Throughout this
paper, we shall assume f : E→ (−∞,+∞] is a proper, lower semi-continuous and convex function. We
denote by dom(f) := {x ∈ E : f(x) < +∞} the domain of f. Let x ∈ int(dom(f)); the subdifferential of f at
x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗,y− x〉 6 f(y), ∀y ∈ E},

where the fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by

f∗(x∗) = sup{〈x∗, x〉− f(x) : x ∈ E}.

A function f on E is coercive [12] if the sublevel set of f is bounded, equivalently,

lim
‖x‖→+∞ f(x) = +∞.
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A function f on E is said to be strongly coercive [27] if

lim
‖x‖→+∞

f(x)

‖x‖
= +∞.

For any x ∈ int(dom(f)) and y ∈ E, the right-hand derivative of f at x in the direction of y is defined by

f◦(x,y) := lim
t→0+

f(x+ ty) − f(x)

t
.

The function f is said to be Gâteaux differentiable at x if limt→0
f(x+ty)−f(x)

t exists for any y. In
this case, the gradient of f at x is the function ∇f(x) : E → (−∞,+∞] defined by 〈∇f(x),y〉 = f◦(x,y)
for any y ∈ E. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for any
x ∈ int(dom(f)). The function f is said to be Fréchet differentiable at x if this limit is attained uniformly
in y, ‖y‖ = 1. The function f is said to be uniformly Fréchet differentiable on a subset C of E if the
limit is attained uniformly for x ∈ C and ‖y‖ = 1. It is well known that if f is Gâteaux differentiable
(resp. Fréchet differentiable) on int(dom(f)), then f is continuous and its Gâteaux derivative ∇f is norm-
to-weak∗ continuous (resp. norm-to-norm continuous) on int(dom(f)) (see [2, 5]). We will need the
following results.

Lemma 1.1 ([18]). If f : E→ R is uniformly Fréchet differentiable and bounded on bounded subsets of E, then ∇f
is uniformly continuous on bounded subsets of E from the strong topology of E to the strong topology of E∗.

Definition 1.2 ([4]). The function f is said to be:

(1) essentially smooth, if ∂f is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is strictly convex on

every subset of domf;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 1.3. If E is reflexive Banach space. Then we have the following results:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex (see [4] Theorem 5.4);
(ii) (∂f)−1 = ∂f∗ (see [5]);

(iii) f is Legendre if and only if f∗ is Legendre (see [4, Corrolary 5.5]);
(iv) if f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f∗)−1, ran∇f = dom∇(f∗) = int(dom(f∗))

and ran ∇f∗ = dom(f) = int(dom(f)) (see [4, Theorem 5.10]).

Examples of Legendre functions were given in [3, 4] . One important and interesting Legendre function
is 1
p‖ · ‖

p (1 < p <∞) when E is a smooth and strictly convex Banach space. In this case the gradient
∇f of f is coincident with the generalized duality mapping of E, i.e, ∇f = Jp (1 < p <∞). In particular,
∇f = I the identity mapping in Hilbert spaces.

In the rest of this paper, we always assume that f : E→ (−∞,+∞] is Legendre. Let f : E→ (−∞,+∞]
be a convex and Gateaux differentiable function. The function Df : domf× intdomf→ (−∞,+∞], defined
as follows:

Df(x,y) := f(x) − f(y) − 〈∇f(y), x− y〉,

is called the Bregman distance with respect to f (see [10] ). It is obvious from the definition of Df that

Df(z, x) := Df(z,y) +Df(y, x) + 〈5f(y) −5f(x), z− y〉. (1.1)

A point p ∈ C is said to be asymptotic fixed point of a map T , if there exist a sequence {xn} in C which
converges weakly to p such that limn→+∞ ‖xn − Txn‖ = 0. We denote by F̂(T) the set of asymptotic
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fixed points of T . A point p ∈ C is said to be strong asymptotic fixed point of a map T , if there exists
a sequence {xn} in C which converges strongly to p such that limn→+∞ ‖xn − Txu‖ = 0. We denote by
F̃(T) the set of strong asymptotic fixed points of T . A map T : C→ C is called quasi-Bregman relatively
nonexpansive [16] if F(T) 6= ∅, F̂(T) = F(T) and Df(Tx,p) 6 Df(x,p) for all x ∈ C and p ∈ F(T). T is said
to be quasi-Bregman strictly pseudocontractive [26] if there exists a constant λ ∈ [0, 1) and F(T) 6= ∅ such
that Df(p, Tx) 6 Df(p, x) + λDf(x, Tx) for all x ∈ C and p ∈ F(T).

Let E be a reflexive Banach space and A : E → 2E
∗

multi-valued map, A is said to be monotone if
〈x − y,u − v〉 > 0 for all x,y ∈ Dom(A), u ∈ Ax and v ∈ Ay. A monotone operator A is said to be
maximal if the graph of A is not properly contain in the graph of any other monotone operator on E.

Let A be a maximal monotone mapping with A−1(0) 6= ∅ and f : E→ (−∞,+∞) be a uniformly
Fréchet differentiable and bounded on bounded subsets of E, then the resolvent with A and any λ > 0 is
defined by

ResfA(x) = (∇f+A)−1 ◦∇f(x)
is single valued Bregman quasi-nonexpansive mapping from E onto D(A) and F(ResfA) = A−1(0) (for
details see [20]).

In 1967, Bregman [6] introduced an effective technique using the Bregman distance function Df for
designing and analyzing feasibility and optimization algorithms. This opened a growing area of research
in which Bregman’s technique is applied in various ways in order to design and analyze iterative algo-
rithm for solving not only feasibility and optimization problems, but also algorithms for solving fixed
point problems for nonlinear mappings (see, e.g., [1, 8, 15, 20, 21, 26] and the references therein).

Let H be a real Hilbert space and C a nonempty closed and convex subset of H. A map T : C → H is
said to be inverse strongly monotone if there exists λ > 0 such that

〈x− y, Tx− Ty〉 > λ||Tx− Ty||2, ∀x,y ∈ C.

Let H1 and H2 be real Hilbert spaces. Let C and Q be nonempty, closed and convex subsets of H1 and H2,
respectively. Let U : H1 → H2 be a bounded linear operator. Then the split feasibility problem is to find
z ∈ H1 such that z ∈ C∩U−1Q. Also let A : H1 → 2H1 and B : H2 → 2H2 be maximal monotone mappings,
respectively, let U : H1 → H2 be a bounded linear operator. The split common null point problem is to find
z ∈ H1 such that z ∈ A−1(0) ∩U−1B−1(0), where A−1(0) and B−1(0) are the null point sets of A and B,
respectively. Given the mappings T : H1 → H1 and G : H2 → H2, respectively and U : H1 → H2 bounded
linear operator, the split common fixed point problem is to find z ∈ H1 such that z ∈ F(T) ∩A−1F(G),
where F(T) and F(G) are fixed point sets of T and G, respectively. Let M = U∗(I − PQ)B be the split
feasibility problem we have that M : H1 → H1 is an inverse strongly monotone operator where U∗ is an
adjoint operator of U and PQ is a metric projection of H2 onto Q. Again if C ∩U−1Q is nonempty then
for λ > 0, z ∈ C∩U−1Q is equivalent to

z = PC(I− λU
∗(I− PQ)A)z, (1.2)

where PC is a metric projection of H1 onto C. Also if A−1(0)∩U−1B−1(0) is nonempty, then z ∈ A−1(0)∩
U−1B−1(0) is equivalent to

z = Jλ(I− γU
∗(I−Qµ)U)z, (1.3)

where γ > 0 and Jλ and Qµ are resolvents of A for λ > 0 and B for γ > 0, respectively. Several authors
have studied split feasibility problem, split common null point problem and split common fixed point
problem (see, e.g., [9, 11, 24] and the references therein). Hojo and Takahashi [13] extended (1.2) and (1.3)
in Hilbert space to Banach space using the following iterative algorithm

zn = Jλn
(
xn − λnT

∗JF(Txn −QµnTxn)
)
,

yn = αnxn + (1 −αn)zn,
Cn+1 = {z ∈ H : ||yn − z|| 6 ||xn − z||}∩Cn,
xn+1 = PCn+1un+1, n ∈N,
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under some appropriate conditions they proved that sequence {xn} converges strongly to a point z ∈
A−1(0)∩ T−1B−1(0).

Let E be a smooth Banach space and let J be the duality mapping on E. The Lyapunov functional
φ : E× E→ R is define by

φ(x,y) = ||x||2 − 2〈x, Jy〉+ ||y||2, ∀x,y ∈ E.

Let η and s be real numbers with η ∈ (−∞, 1) and s ∈ [0,∞), respectively. Then the mapping T : C→ E

with F(T) 6= ∅ is called (η, s)-demigeneralized, if for any x ∈ C and q ∈ F(T),

〈x− q, Jx− JTx〉 > (1 − η)φ(x, Tx) + sφ(Tx, x), (1.4)

where F(T) is the set of fixed points of T . In particular if s = 0 in (1.4) then the mapping T becomes

〈x− q, Jx− JTx〉 > (1 − η)φ(x, Tx)

for any x ∈ C and q ∈ F(T). (η, 0)-demigeneralized mappings are very important class of demigeneralized
mappings.

Takahashi [23] studied the following iterative algorithm for solving split common null point problem
and proved a strong convergence theorem for generalized resolvents in Banach spaces.

zn = J−1
E

(
JExn − rnA

∗(JFTxn − JFQµnAxn
))

,
yn = Jλnzn,
Cn = {y∈ E : 2〈xn − z, JExn − JEzn〉 > rnφX(Axn,QµnAxn)};
Dn = {y∈ E : 〈yn − z, JEzn − JEyn〉 > 0};
Qn = {y∈ E : 〈xn − z, JEx1 − JExn〉 > 0};
xn+1 = ΠCn∩Dn∩Qnx1, n> 1,

under some mild conditions the sequence {xn} converges strongly to a point z ∈ G−1(0)∩A−1B−1(0).
The following shrinking projection method was studied by Takahashi [22] for solving split common

fixed point problem using demigeneralized mapping in Banach spaces

zn = J−1
E

(
JExn − rnA

∗(JFAxn − JFUAxn
))

,
yn = Tzn,
Cn = {y∈ E : 2〈xn − z, JExn − JEzn〉 > rn(1 − η)φF(Axn,UAxn)};
Dn = {y∈ E : 2〈yn − z, JEzn − JEyn〉 > (1 − τ)φE(zn,yn)};
Qn = {y∈ E : 〈xn − z, JEx1 − JExn〉 > 0};
xn+1 = ΠCn∩Dn∩Qnx1, n> 1,

under some appropriate conditions the sequence {xn} converges strongly to a point z ∈ F(T)∩A−1F(U).
Motivated and inspired by the above mentioned results, we studied the split common fixed point

problem in reflexive Banach spaces, we obtained a strong convergence theorem for approximating a
solution of the split common fixed point problem for (η, 0)-Bregman demigeneralized mapping. Our
result extends and improves the result of Takahashi [22] and many recently announced results.

2. Preliminaries

Recall that the Bregman projection [6] of x ∈ intdomf onto nonempty, closed and convex set C ⊂ domf
is the unique vector PC(x) ∈ C satisfying

Df(PK(x), x) = inf{Df(y, x) : y ∈ C}.

Concerning the Bregman projection, the following are well known.



B. Ali, G. C. Ugwunnadi, M. S. Lawan, J. Nonlinear Sci. Appl., 13 (2020), 270–283 274

Lemma 2.1 ([8]). Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let f : E→ R be a
Gâteaux differentiable and totally convex function and let x ∈ E. Then

(b) z = PK(x) if and only if 〈∇f(x) −∇f(z),y− z〉 6 0, ∀y ∈ C;
(b) Df(y,PC(x)) +Df(PC(x), x) 6 Df(y, x), ∀x ∈ E, y ∈ C.

Let f : E→ (−∞,+∞] be a Gâteaux differentiable function. The modulus of total convexity of f at x ∈
intdomf is the function vf(x, ·) : [0,+∞] defined by

vf(x, t) := inf{Df(x,y) : y ∈ domf, ‖y− x‖ = t}.

The function f is called totally convex at x if vf(x, t) > 0 whenever t > 0. The function f is called
convex if it is totally convex at any point x ∈ intdomf and is said to be totally convex on bounded set if
vf(B, t) > 0 for any nonempty bounded subset B of E and t > 0, where the modulus of total convexity of
the function f on the set B is the function vf : intdomf× [0,+∞)→ [0,+∞) defined by

vf(B, t) := inf{vf(x, t) : x ∈ B ∩ domf}.

Lemma 2.2 ([17]). Let E be a Banach space and f : E→ R be a Gâteaux differentiable function which is uniformly
convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded sequences in E. Then

lim
n→∞Df(xn,yn) = 0 if and only if lim

n→∞||xn − yn|| = 0.

Lemma 2.3 ([19]). Let f : E→ R be Gâteaux differentiable and totally convex function. If x0 ∈ E and the sequence
{Df(xn, x0)} is bounded the sequence {xn} is bounded too.

Recall that the function f is called sequentially consistent if for any two sequences {xn} and {yn} in E
such that the first one is bounded

lim
n→+∞Df(yn,un) = 0 implies lim

n→+∞ ‖yn − un‖ = 0.

Lemma 2.4 ([7]). The function f is totally convex on bounded sets if and only if the function f is sequentially
consistent.

The following definition is slightly different from that in Butnariu and Iusem [7].

Definition 2.5 ([14]). Let E be a Banach space. The function f : E→ R is said to be a Bregman function if
the following conditions are satisfied:

(i) f is continuous, strictly convex and Gâteaux differentiable;
(ii) the set {y ∈ E : Df(x,y) 6 r} is bounded for all x ∈ E and r > 0.

The following lemma follows from Butnariu and Iusem [7] and Zǎlinescu [27].

Lemma 2.6. Let E be a reflexive Banach space and f : E→ R be a strongly coercive Bregman function. Then

(i) ∇f : E→ E∗ is one-to-one, onto and norm-to-weak∗ continuous;
(ii) 〈x− y,∇f(x) −∇f(y)〉 = 0 if and only if x = y;

(iii) {x ∈ E : Df(x,y) 6 r} is bounded for all y ∈ E and r > 0;
(iv) dom f∗ = E∗, f∗ is Gâteaux differentiable and ∇f∗ = (∇f)−1.

The following two results are well known; see [27].

Theorem 2.7. Let E be a reflexive Banach space and let f : E → R be a convex function which is bounded on
bounded subsets of E. Then the following assertions are equivalent:

(1) f is strongly coercive and uniformly convex on bounded subsets of E;
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(2) domf∗ = E∗, f∗ is bounded on bounded subsets and uniformly smooth on bounded subsets of E∗;
(3) domf∗ = E∗, f∗ is Frechet differentiable and ∇f∗ is norm-to-norm uniformly continuous on bounded subsets

of E∗.

Theorem 2.8. Let E be a reflexive Banach space and let f : E → R be a continuous convex function which is
strongly coercive. Then the following assertions are equivalent:

(1) f is bounded on bounded subsets and uniformly smooth on bounded subsets of E;
(2) f∗ is Frechet differentiable and f∗ is uniformly norm-to-norm continuous on bounded subsets of E∗;
(3) domf∗ = E∗, f∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Lemma 2.9 ([19]). Let f : E→ R be a Gâteaux differentiable and totally convex function, x0 ∈ E and let C be a
nonempty, closed and convex subset of E. Suppose that the sequence {xn} is bounded and any weak subsequential
limit of {xn} belongs to C. If Df(xn, x0) 6 Df(PC(x0), x0) for any n ∈ R, then {xn} converges strongly to PC(x0).

Definition 2.10. Let E be a reflexive Banach space, C a nonempty closed and convex subset E, let η be
a real number with η ∈ (−∞, 1). Then the mapping T : C → E with F(T) 6= ∅ is called (η, 0)-Bregman
demigeneralized mapping, if for any x ∈ C and q ∈ F(T),

〈x− q,∇f(x) −∇f(Tx)〉 > (1 − η)Df(x, Tx),

where F(T) is the set of fixed points of T .

The following examples illustrate that the class of Bregman demigeneralized mappings are very im-
portant.
(i). [26] Let C be a nonempty closed convex subset of reflexive Banach space E. Let k be a real number in
(0, 1), the map T : C → E is called quasi-Bregman strictly pseudocontractive mapping if F(T) 6= ∅, ∀x ∈ C
and p ∈ F(T),

Df(p, Tx) 6 Df(p, x) + kDf(x, Tx), (2.1)

in fact T is (k, 0)-Bregman demigeneralized mapping, from (1.1) and (2.1) we have,

Df(p, Tx) 6 Df(p, x) +Df(x, Tx) −Df(x, Tx) + kDf(x, Tx),

which implies

(1 − k)Df(x, Tx) 6 Df(p, x) +Df(x, Tx) −Df(p, Tx) = 〈x− p,∇f(x) −∇f(Tx)〉.

This shows that T is (k, 0)-Bregman demigeneralized mapping.
(ii).Let E be a reflexive Banach space, let f : E→ R be strongly coercive function and let A be a maximal
monotone operator with A−1 6= ∅ . Let λ > 0 ResfλA is (0, 0)-Bregman demigeneralized mapping, for any
x ∈ E and z ∈ A−1(0) we have

〈ResfλA(x) − z,∇f(x) −∇f(ResfλA(x))〉 > 0,

which gives
〈ResfλA(x) − x+ x− z,∇f(x) −∇f(ResfλA(x))〉 > 0,

hence,

〈x− z,∇f(x) −∇f(ResfλA(x))〉 > 〈x− ResfλA(x),∇f(x) −∇f(ResfλA(x))〉
= Df(x, ResfλA(x)) +Df(ResfλA(x), x) > Df(x, ResfλA(x)).

This shows that ResfλA is (0, 0)-Bregman demigeneralized mapping.
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(iii).Let E be a reflexive Banach space and C a nonempty closed convex subset of E and let f : E→ R be a
Fréchet differentiable convex function. A map T : C→ E is called quasi-Bregman nonexpansive mapping
if F(T) 6= ∅ and for all x ∈ C, p ∈ F(T),

Df(p, Tx) 6 Df(p, x),

then T is (0, 0)-Bregman demigeneralized mapping. For all x ∈ C, p ∈ F(T) we have

Df(p, Tx) 6 Df(p, x),

which by (1.1) we get

Df(p, x) +Df(x, Tx) + 〈p− x,∇f(x) −∇f(Tx)〉 6 Df(p, x)

and hence

Df(x, Tx) 6 〈x− p,∇f(x) −∇f(Tx)〉.

This implies that T is (0, 0)-Bregman demigeneralized mapping.

Example 2.11. Let E = R, C = [−1, 0] and define T , f : [−1, 0] → R by f(x) = x3 and Tx = 2x, for all
x ∈ [−1, 0]. Then T is (η, 0)-Bregman demigeneralized mapping but not (η, 0)-demigeneralized mapping.

Proof. It is clear from the definition that f is proper, lower semi-continuous, and convex, also F(T) = {0}.
From the definition (η, 0)-Bregman demigeneralized mapping, we have for any η ∈ (−∞, 1) such that

〈x− q,∇f(x) −∇f(Tx)〉 > (1 − η)Df(x, Tx) for all x ∈ C, q ∈ F(T).

But

〈x− 0,∇f(x) −∇f(Tx)〉 = 〈x− 0,∇f(x) −∇f(2x)〉
= 〈x,∇(x3) −∇(8x3)〉
= 〈x, 3x2 − 24x2〉
= 〈x,−21x2〉 = −21x3

(2.2)

and

Df(x, Tx) = f(x) − f(Tx) − 〈∇f(Tx), x− Tx〉
= x3 − f(2x) − 〈24x2, x− 2x〉
= x3 − 8x3 − 〈24x2,−x〉
= −7x3 + 24x3 = 17x3.

(2.3)

Therefore from (2.2) and (2.3) we have

〈x− 0,∇f(x) −∇f(Tx)〉 = −21x3

> (1 − η)17x3, ∀x ∈ [−1, 0], η ∈ (−∞, 1)
> (1 − η)Df(x, Tx), ∀x ∈ [−1, 0], η ∈ (−∞, 1),

−21x3 > (1 − η)17x3 =⇒ 21 = (1 − η)17 =⇒ (1 − η) =
21
17

=⇒ η =
4

17
.

Therefore
〈x− 0,∇f(x) −∇f(Tx)〉 > (1 − η)Df(x, Tx), ∀x ∈ [−1, 0], η ∈ (−∞, 1).



B. Ali, G. C. Ugwunnadi, M. S. Lawan, J. Nonlinear Sci. Appl., 13 (2020), 270–283 277

Hence T is (η, 0)-Bregman demigeneralized mapping. Further

〈x− 0, Jx− JTx〉 = 〈x− 0, J(x) − J(2x)〉
= 〈x, J(x)〉− 〈x, J(2x)〉
= |x|2 − 2|x|2 = −|x|2

and

φ(x, Tx) = |x|2 − 2〈x, J(Tx)〉+ |Tx|2

= |x|2 − 2〈x, J(2x)〉+ |2x|2

= |x|2 − 4〈x, J(x)〉+ 4|x|2

= |x|2 − 4|x|2 + 4|x|2 = |x|2.

Since −|x|2 < (1 − η)|x|2, ∀x ∈ [−1, 0], and for all η ∈ (−∞, 1),

〈x− 0, Jx− JTx〉 > (1 − η)φ(x, Tx), ∀x ∈ [−1, 0],

can not hold for any η ∈ (−∞, 1). Hence T is not a demigeneralized mapping.

Assumption 2.12. Let E be a reflexive Banach space and C a nonempty closed convex subset of E. A mapping
T : C → E is called demiclosed if for any sequence {xn} ∈ C such that xn ⇀ p and xn − Txn → 0, then p = Tp

holds.

3. Main result

Lemma 3.1. Let E be a reflexive Banach space and C a nonempty closed and convex subset of E. Let f : E→ R

be a strongly coercive, Legendre function, which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subset of E. Let η be a real number with η ∈ (−∞, 1) and T an (η, 0)-Bregman demigeneralized mapping
of C onto E. Then F(T) is closed and convex.

Proof. We first show that F(T) is closed. For a sequence {qn} in F(T) such that qn → q and in C, we have
from the definition of T that

〈q− qn,∇f(q) −∇f(Tq)〉 > (1 − η)Df(q, Tq),

from qn → qwe have 0 > (1−η)Df(q, Tq). From 1−η > 0, we get 0 > Df(q, Tq) and hence 0 = Df(q, Tq).
Since E is reflexive, we have q = Tq. This implies that F(T) is closed. Secondly we show that F(T) is convex.
Let p,q ∈ F(T) and set x = αp+ (1−α)q, where α ∈ [0, 1]. From the definition of T we have that for x ∈ C
and q ∈ F(T),

〈x− q,∇f(x) −∇f(Tx)〉 > (1 − η)Df(x, Tx).

This implies from (1.1) that

Df(q, x) +Df(x, Tx) −Df(q, Tx) > (1 − η)Df(x, Tx),

which implies
Df(q, x) +Df(x, Tx) −Df(x, Tx) + ηDf(x, Tx) > Df(q, Tx)

and hence
Df(q, x) + ηDf(x, Tx) > Df(q, Tx).

Using this, we have for x = αp+ (1 −α)q, and p,q ∈ F(T)

Df(x, Tx) = f(x) − f(Tx) − 〈∇f(Tx), x− Tx〉
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= f(x) − f(Tx) − 〈∇f(Tx), (αp+ (1 −α)q) − Tx〉
= f(x) − f(Tx) −α〈∇f(Tx),p− Tx〉− (1 −α)〈∇f(Tx),q− Tx〉
= f(x) +αf(p) −αf(Tx) −α〈∇f(Tx),p− Tx〉
+ (1 −α)f(q) − (1 −α)f(Tx) − (1 −α)〈∇f(Tx),q− Tx〉−αf(p) − (1 −α)f(q)

= f(x) +αDf(p, Tx) + (1 −α)Df(q, Tx) − f(x)
6 α(Df(p, x) + ηDf(x, Tx)) + (1 −α)(Df(q, x) + ηDf(x, Tx))
= αf(p) −αf(x) −α〈∇f(x),p− x〉+αηDf(x, Tx)
+ (1 −α)f(q) − (1 −α)f(x) − (1 −α)〈∇f(x),q− x〉+ (1 −α)ηDf(x, Tx)

= αf(p) + (1 −α)f(q) − f(x) − 〈∇f(x), (αp+ (1 −α)q) − x〉+ ηDf(x, Tx))
= ηDf(x, Tx),

this implies 0 6 (η− 1)Df(x, Tx) we have from the fact 0 > (η− 1) that Df(x, Tx) = 0 and from Lemma
7.3 in [4] it follows that x = Tx. Therefore F(T) is convex.

Theorem 3.2. Let E and X be reflexive Banach spaces, f : E→ R and g : X→ R be strongly coercive Legendre
functions which are bounded uniformly Fréchet differentiable and totally convex on bounded subsets of E and X,
respectively. Let η and τ be real numbers with η, τ ∈ (−∞, 1). Let G : E→ E be (η, 0)-Bregman demigener-
alized mapping with F(G) 6= ∅ and let T : X→ X be (τ, 0)-Bregman demigeneralized mapping with F(T) 6= ∅.
Let B : E→ X be a bounded linear operator such that ||B|| 6= 0 and let B∗ be the adjoint operator of B. Suppose
Ω = F(G)∩B−1F(T) 6= ∅. Let {xn} be a sequence generated by the following algorithm and x1 ∈ E

zn = ∇f∗
(
∇f(xn) − rnB∗

(
∇g(Bxn) −∇g(TBxn)

))
,

yn = Gzn,
Cn = {y∈ E : 〈xn − y,∇f(xn) −∇f(zn)〉 > rn(1 − η)Dg(Bxn, TBxn)}
Dn = {y∈ E : 〈zn − y,∇f(zn) −∇f(yn)〉 > (1 − τ)Df(zn,yn)}
Qn = {y∈ E : 〈xn − y,∇f(x1) −∇f(xn)〉 > 0}
xn+1 = PfCn∩Dn∩Qnx1, n> 1,

(3.1)

where rn ⊂ (0,∞) and a ∈ (0,∞) satisfying the following inequalities

0 < a 6 rn 6
1

||B||2
, ∀n ∈N.

Then {xn} converges strongly to p ∈ Ω where p = PfΩx1.

Proof. It is easy to see that Cn ∩Dn ∩Qn is closed and convex for all n > 1. To show Ω ∈ Cn for all
n > 1, we need to show that

〈xn − p,∇f(xn) −∇f(zn)〉 > rn(1 − η)Dg(Bxn, TBxn)

for all p ∈ B−1F(T) and n > 1. Thus we have

〈xn − p,∇f(xn) −∇f(zn)〉 = rn〈xn − p,B∗
(
∇g(Bxn) −∇g(TBxn)

)
〉

= rn〈Bxn −Bp,∇g(Bxn) −∇g(TBxn)〉
> rn(1 − η)Dg(Bxn, TBxn).

This shows Ω ⊂ B−1F(T) ⊂ Cn for all n > 1. We next show that Ω ⊂ Dn for all n > 1, we show that

〈zn − p,∇f(zn) −∇f(yn)〉 > (1 − τ)Df(zn,yn)
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for all p ∈ F(G) and n > 1. Thus we have

〈zn − p,∇f(zn) −∇f(yn)〉− (1 − τ)Df(zn,yn) = 〈zn − p,∇f(zn) −∇f(Gzn)〉− (1 − τ)Df(zn,Gzn)
> (1 − τ)

(
Df(zn,Gzn) −Df(zn,Gzn)

)
= 0.

This implies that Ω ⊂ F(G) ⊂ Dn for all n > 1. We now show that Ω ⊂ Qn for all n > 1. From (3.1) we
have

Q1 = {p∈ E : 〈x1 − p,∇f(x1) −∇f(x1)〉 > 0} = E.

Clearly Ω ⊂ Q1. Suppose that Ω ⊂ Qk for some k ∈ N. Then Ω ⊂ Ck ∩Dk ∩Qk. From xk+1 =
PfCk∩Dk∩Qkx1, we have

〈xk+1 − p,∇f(x1) −∇f(xk+1)〉 > 0, ∀p ∈ Ck ∩Dk ∩Qk,

then
〈xk+1 − p,∇f(x1) −∇f(xk+1)〉 > 0, ∀p ∈ Ω.

This implies Ω ⊂ Qk+1. Therefor by induction Ω ⊂ Qn for all n > 1. Thus, we have Ω ⊂ Cn ∩Dn ∩Qn.
This shows that {xn} is well defined.

Since by Lemma 3.1, F(G) and F(T) are closed and convex, hence Ω is nonempty, closed and convex.
This implies there exists p ∈ Ω such that p = PfΩx1. Since xn+1 = PfCn∩Dn∩Qnx1, from Lemma 2.1 and
the fact that p ∈ Ω ⊂ Cn ∩Dn ∩Qn for all n > 1 we have

Df(p, xn+1) +Df(xn+1, x1) 6 Df(p, x1),

which implies

Df(xn+1, x1) 6 Df(p, x1).

This shows {Df(xn, x1)} is bounded, by Lemma 2.3, {xn} is bounded too. Since the functions f and g are
bounded on bounded subsets of E and therefore ∇f and ∇g are also bounded on bounded subsets of E∗

this implies the sequences {∇f(xn)}, {∇f(yn)}, {∇f(zn)}, {∇g(Bxn)} and {∇g(TBxn)} are bounded in E∗.
Since xn = PfQnx1 and xn+1 = PfCn∩Dn∩Qnx1, we have xn+1 ∈ Cn for all n > 0. Using Lemma 2.1, we

have

Df(xn+1, xn) +Df(xn, x1) 6 Df(xn+1, x1),

which implies

Df(xn, x1) 6 Df(xn+1, x1),

this shows that {Df(xn, x1)} is nondecreasing, consequently {Df(xn, x1)} is convergent. From Lemma 2.1
we have

Df(xn+1, xn) = Df(xn+1,PfQnx1) 6 Df(xn+1, x1) −Df(P
f
Qn
x1, x1) 6 Df(xn+1, x1) −Df(xn, x1)

for all n > 1. Which implies
lim
n→∞Df(xn+1, xn) = 0.

Since f is totally convex on bounded subsets of E, f is sequentially consistent (see [7]). It follows that

lim
n→∞ ||xn+1 − xn|| = 0. (3.2)

Again, from the fact that xn+1 = PfCn∩Dn∩Qnx1, we have xn+1 ∈ Cn for all n > 0

〈xn − xn+1,∇f(xn) −∇f(zn)〉 > rn(1 − η)Dg(Bxn, TBxn).
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Since {rn} > 0, from (3.2) we have
lim
n→∞Dg(Bxn, TBxn) = 0.

Since f is totally convex on bounded subsets of E, f is sequentially consistent it follows that

lim
n→∞ ||Bxn − TBxn|| = 0. (3.3)

Since ∇f is norm-to-norm uniformly continuous on bounded subsets of E∗ we have

lim
n→∞ ||∇g(Bxn) −∇g(TBxn)|| = 0. (3.4)

From (3.1) we have

||∇f(xn) −∇f(zn)|| = ||rnB
∗(∇g(Bxn) −∇g(TBxn))||.

Since {rn} is bounded, from (3.4) we have

lim
n→∞ ||∇f(xn) −∇f(zn)|| = 0.

Since ∇f is norm-to-norm uniformly continuous on bounded subsets of E∗ we have

lim
n→∞ ||xn − zn|| = 0. (3.5)

But
||zn − xn+1|| 6 ||zn − xn||+ ||xn − xn+1||.

From (3.2) and (3.5) we have
lim
n→∞ ||zn − xn+1|| = 0. (3.6)

Again, we have from xn+1 ∈ Dn that

〈zn − xn+1,∇f(zn) −∇f(yn)〉 > (1 − τ)Df(zn,yn).

From (3.6) we have
lim
n→∞Df(zn,yn) = 0.

Since f is totally convex on bounded subsets of E, f is sequentially consistent, it follows that

lim
n→∞ ||zn −Gzn|| = 0. (3.7)

Since {xn} is bounded and the fact that E is reflexive, there exists a sub-sequence {xnk} of {xn} such that
xnk ⇀ x∗ as k → ∞. From (3.5) there exists a sub-sequence {znk} of {zn} such that znk ⇀ x∗ as k → ∞.
From (3.7) and the assumption G is demiclosed, we have x∗ ∈ F(G). Furthermore, since B is a bounded
linear map, we have Bxnk ⇀ Bx∗ as k → ∞. From demiclosedness of T and (3.3) we have Bx∗ ∈ F(T)
which implies x∗ ∈ B−1F(T). Hence x∗ ∈ Ω.

Finally, we show that p = PΩx0. With p = PfΩx1 and x∗ ∈ Ω, we have

Df(p, x1) 6 Df(x
∗, x1), (3.8)

also, since xn = PfΩx1 and p ∈ Ω ⊂ Cn ∩Dn ∩Qn, we have

Df(xn, x1) 6 Df(p, x1).

Since xn ⇀ x∗, we have
Df(x

∗, x1) 6 Df(p, x1). (3.9)

From (3.8) and (3.9) we obtain that Df(x∗, x1) = Df(p, x1). Thus p = x∗ = PfΩx1. This completes the
proof.
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Corollary 3.3. Let E and X be uniformly convex and uniformly smooth real Banach spaces. Let JE and JX be the
duality mappings on E and X, respectively. Let η and τ be a real numbers with η, τ ∈ (−∞, 1). Let G : E→ E

be (η, 0) demigeneralized mapping with F(G) 6= ∅ and let T : X→ X be (τ, 0) demigeneralized mapping with
F(T) 6= ∅. Let B : E→ X be a bounded linear operator such that B 6= 0 and let B∗ be the adjoint operator of B.
Suppose Ω = F(G)∩B−1F(T) 6= ∅. Let {xn} be a sequence generated by the following algorithm, and x1 ∈ E

zn = J−1
E

(
JExn − rnB

∗(JXBxn − JXTBxn
))

,
yn = Gzn,
Cn = {y∈ E : 〈xn − y, JExn − JEzn〉 > rn(1 − η)φX(Bxn, TBxn)}
Dn = {y∈ E : 〈zn − y, JEzn − JEyn〉 > (1 − τ)φE(zn,yn)}
Qn = {y∈ E : 〈xn − y, JEx1 − JExn〉 > 0}
xn+1 = ΠCn∩Dn∩Qnx1, n> 1,

where rn ⊂ (0,∞) and a ∈ R satisfy the following inequalities

0 < a 6 rn 6
1

||B||2
, ∀n ∈N.

Then {xn} converges strongly to p ∈ Ω and where p = ΠΩx1.

4. Applications

Theorem 4.1. Let E and X be reflexive Banach spaces f : E→ R and g : X→ R are strongly coercive Legendre
functions which are bounded uniformly Fréchet differentiable and totally convex on bounded subsets of E and X,
respectively. Let G : E→ E be quasi-Bregman nonexpansive mapping with F(G) 6= ∅ and let T : X→ X be quasi-
Bregman strictly pseudocontractive mapping with F(T) 6= ∅. Let B : E→ X be a bounded linear operator such that
B 6= 0 and let B∗ be the adjoint operator of B. Suppose Ω = F(G) ∩ B−1F(T) 6= ∅, with the assumption that T is
demiclosed. Let {xn} be a sequence generated by the following algorithm, and x1 ∈ E

zn = ∇f∗
(
∇f(xn) − rnB∗

(
∇g(Bxn) −∇g(TBxn)

))
,

yn = Gzn,
Cn = {y∈ E : 〈xn − y,∇f(xn) −∇f(zn)〉 > rn(1 − η)Dg(Bxn, TBxn)}
Dn = {y∈ E : 〈zn − y,∇f(zn) −∇f(yn)〉 > Df(zn,yn)}
Qn = {y∈ E : 〈xn − y,∇f(x1) −∇f(xn)〉 > 0}
xn+1 = PfCn∩Dn∩Qnx1, n> 1,

where rn ⊂ (0,∞) and a ∈ R satisfy the following inequalities

0 < a 6 rn 6
1

||B||2
, ∀n ∈N.

Then {xn} converges strongly to p ∈ Ω and where p = PfΩx1.

Proof. Since T is quasi-Bregman strictly pseudocontractive mapping with F(T) 6= ∅, then T is (k, 0)-
Bregman demigeneralized mapping. Furthermore T is democlosed from the assumption. Also we have
quasi-Bregman nonexpansive mapping G is (0, 0)-Bregman demigeneralized and demiclosed mapping.
Therefore the result follows from Theorem 3.1.

Theorem 4.2. Let E and X be reflexive Banach spaces f : E→ R and g : X→ R are strongly coercive Legendre
functions which are bounded uniformly Fréchet differentiable and totally convex on bounded subsets of E and X,
respectively. Let U and A be maximal monotone operators of E into E∗ and X into X∗, respectively. Let ResfλU be the
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resolvent of U for λ > 0 and let ResfµA be the resolvent of A for µ > 0. Let B : E→ X be a bounded linear operator
such that B 6= 0 and let B∗ be the adjoint operator of B. SupposeΩ = U−1(0)∩B−1(A−1(0)) 6= ∅, with the assump-
tion that ResfλU and ResfµA are demiclosed. Let {xn} be a sequence generated by the following algorithm, and x1 ∈ E

zn = ∇f∗
(
∇f(xn) − rnB∗

(
∇g(Bxn) −∇g(ResfµA(Bxn))

))
,

yn = ResfλU(zn),
Cn = {y∈ E : 〈xn − y,∇f(xn) −∇f(zn)〉 > rnDg(Bxn, ResfµA(Bxn))}
Dn = {y∈ E : 〈zn − y,∇f(zn) −∇f(yn)〉 > Df(zn,yn)}
Qn = {y∈ E : 〈xn − y,∇f(x1) −∇f(xn)〉 > 0}
xn+1 = PfCn∩Dn∩Qnx1, n> 1,

where rn ⊂ (0,∞) and a ∈ R satisfy the following inequalities

0 < a 6 rn 6
1

||B||2
, ∀n ∈N.

Then {xn} converges strongly to p ∈ Ω and where p = PfΩx1.

Proof. Since ResfλU is the resolvent of U on E is (0, 0)-Bregman demigeneralized mapping. Also since
ResfµAis the resolvent of A on X is (0, 0)-Bregman demigeneralized mapping. Furthermore ResfλU and
ResfµA are demiclosed. Therefore the result follows from Theorem 3.1.

Theorem 4.3. Let E and X be reflexive Banach spaces f : E→ R and g : X→ R are strongly coercive Legendre
functions which are bounded uniformly Fréchet differentiable and totally convex on bounded subsets of E and X,
respectively. Let G : E→ E and T : X→ X be quasi-Bregman nonexpansive and demiclosed mappings, respectively.
Let B : E→ X be a bounded linear operator such that B 6= 0 and let B∗ be the adjoint operator of B. Suppose
Ω = F(G)∩B−1F(T) 6= ∅. Let {xn} be a sequence generated by the following algorithm, and x1 ∈ E

zn = ∇f∗
(
∇f(xn) − rnB∗

(
∇g(Bxn) −∇g(TBxn)

))
,

yn = Gzn,
Cn = {y∈ E : 〈xn − y,∇f(xn) −∇f(zn)〉 > rnDg(Bxn, TBxn)}
Dn = {y∈ E : 〈zn − y,∇f(zn) −∇f(yn)〉 > Df(zn,yn)}
Qn = {y∈ E : 〈xn − y,∇f(x1) −∇f(xn)〉 > 0}
xn+1 = PfCn∩Dn∩Qnx1, n> 1,

where rn ⊂ (0,∞) and a ∈ R satisfy the following inequalities

0 < a 6 rn 6
1

||B||2
, ∀n ∈N.

Then {xn} converges strongly to p ∈ Ω and where p = PfΩx1.

Proof. Since G and T are quasi-Bregman nonexpansive mappings, G and T are (0, 0)-Bregman demigen-
eralized mappings. Furthermore G and T are democlosed. Therefore the result follows from Theorem
3.1.
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