
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 13 (2020), 284–292

Research Article

ISSN: 2008-1898

Journal Homepage: www.isr-publications.com/jnsa

Impulsive-integral inequalities for attracting and quasi-
invariant sets of neutral stochastic partial functional inte-
grodifferential equations with impulsive effects

Dimplekumar Chalishajara,∗, K. Ravikumarb, A. Angurajb

aDepartment of Applied Mathematics, Mallory Hall, Virginia Military Institute, Lexington, VA 24450, USA.
bDepartment of Mathematics, PSG College of Arts and Science, Coimbatore, 641 046, India.

Abstract

In this article, we investigate a class of neutral stochastic partial functional integrodifferential equations with impulsive
effects. The results are obtained by using the new integral inequalities, the attracting and quasi-invariant sets combined with
theories of resolvent operators. In the end, one example is given to illustrate the feasibility and effectiveness of results obtained.

Keywords: Impulsive integral inequality, attracting set, quasi-invariant set, stochastic integrodifferential equations, resolvent
operator.

2010 MSC: 35B35, 35B40, 39B82, 60H15.

c©2020 All rights reserved.

1. Introduction

The attracting set and invariant set of dynamical systems have been extensively studied over the
past few decades and various results are reported. For discrete systems, see [6, 22]. For deterministic
differential systems with or without delays, see [12, 13, 18–20, 25, 26]. For partial differential systems, see
[21]. For stochastic or random systems, see [9, 16].

Stochastic partial differential equations in Hilbert spaces were studied by some authors and many
valuable results on the existence, uniqueness and stability of the solutions were established, refer to [1–
5, 7, 10, 14, 17]. However, under impulsive perturbation, the equilibrium point sometimes does not exist in
many real physical systems, especially in nonlinear dynamical systems. Therefore, an interesting subject is
to discuss the attracting set and the invariant set of impulsive systems. Some significant progress has been
made in the techniques and methods of determining the invariant set and the attracting set for impulsive
differential systems including impulsive functional differential equations, impulsive stochastic functional
differential equations and so on [23, 24]. It should be pointed out that there are only a few works about
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the attracting and invariant set of impulsive stochastic partial differential equations (see [15] and the
reference therein). Unfortunately, the corresponding problems for neutral stochastic partial functional
integrodifferential equations with impulsive effects have not been considered prior to this work. Due to
the wide application of fractional Brownian motion (fBm) in hydrology, economics, telecommunications
and medicine, much interesting work has been carried out on stochastic differential equations driven by
fBm. Neutral stochastic functional differential equations (NSFDEs) have been also widely discussed by
many researchers because of potential applications in control theory, mechanics, engineering, economics,
etc..

Motivated by the above discussion, our objective in this paper is to determine an attracting and quasi-
invariant sets of neutral stochastic partial functional integrodifferential equations with impulsive effects
of the form:

d [x(t) + h(t, xt)] = A [x(t) + h(t, xt)] +
[∫t

0
B(t− s) [x(s) + h(s, xs)]ds+ f(t, xt)

]
dt

+ g(t, xt)dw(t), t > 0, t 6= tk,
∆x(tk) = x(t

+
k ) − x(t

−
k ) = Ik(x(tk)), t = tk, k = 1, 2, . . . ,

x(t) = ϕ(t) ∈PC B
F0

((−τ, 0]; X),

(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup (S(t))t>0 on X, B(t) is a closed
linear operator with domain D(B(t)) ⊃ D(A); f,h : [0,∞)×PC → X and g : [0,∞)×PC → L0

2 are
jointly continuous functions; the segment xt : [−τ, 0]→ X is defined by xt(θ) = x(t+ θ) for t > 0 belongs
to the phase space PC ; the fixed moments of time tk satisfies 0 = t0 < t1 < t2 < · · · < tm < · · · , and
limk→∞ tk =∞; x(t+k ) and x(t−k ) denote the right and left limits of x(t) at time tk; x(t) at each impulsive
point tk is right continuous. And ∆x(tk) = x(t+k ) − x(t

−
k ) represents the jump in the state x at time tk,

where Ik determines the size of the jump.

2. Preliminaries

Let X and Y be two real separable Hilbert spaces and let L(Y, X) be the space of bounded linear
operator from Y to X. Let (Ω, F , {Ft}t>0 , P) be a complete probability space with a filtration {Ft}t>0
satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-null sets). Let {W(t), t > 0}
denote a Y-valued {Ft}t>0-Wiener process defined on (Ω, F , {Ft}t>0 , P) with covariance operatorQ, i.e.,

E 〈W(t), x〉Y 〈W(t),y〉Y = (t∧ s) 〈Qx,y〉Y for all x,y ∈ Y,

where Q is a positive, self-adjoint, trace class operator on Y. In particular, we shall call such {W(t), t > 0},
a Y-valued {Ft}t>0-Wiener process with respect to {Ft}t>0. In order to define stochastic integrals with

respect to the Q-Wiener process W(t), we introduce the subspace Y0 = Q
1
2 (Y) which, endowed with the

inner product

〈u, v〉Y0
=
〈
Q

−1
2 u,Q

−1
2 v
〉

Y
,

is a Hilbert space. Let L0
2 = L2(Y0, X) denote the space of all Hilbert-Schmidt operators from Y0 into X.

It turns out to be a separable Hilbert space equipped with the norm

‖ϕ‖2
L0

2
= tr

((
ϕQ

1
2
)(
ϕQ

1
2
)∗) for all ϕ ∈ L0

2.

Clearly, for any bounded operators ϕ ∈ L(Y, X), this norm reduces to ‖ϕ‖2
L0

2
= tr(φQϕ∗). Let R+ =

[0,∞) and C (X, Y) denotes the space of continuous mappings from the topological space X to the topo-
logical space Y. Especially, C = C ([−τ, 0]; R) denotes the family of all continuous R-valued functions ϕ
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defined on [−τ, 0] with the norm ‖ϕ‖τ = sup−τ6θ60 ‖ϕ(θ)‖ denote by C = C ([−τ, 0]; X) equipped with
the norm

‖ϕ‖C = sup
−τ6θ60

‖ϕ(θ)‖ .

PC (J, Rn) =
{
ϕ : J → Rn is continuous for all but at most a finite number of point t ∈ J and at

these points t ∈ J, ϕ(t+) and ϕ(t−) exist, ϕ(t+) = ϕ(t)
}

, where J ⊂ R is a bounded interval, ϕ(t+)
and ϕ(t−) denote the right-hand and left-hand limits of the function ϕ(t), respectively. Especially, let
PC = PC ([−τ, 0]; X). Let PC = PC ([−τ, 0]; X) denotes the family of all bounded F0-measurable,
PC ([−τ, 0]; X)-value random variables ϕ, satisfying

‖ϕ‖p = sup
−τ<θ<0

E ‖ϕ(θ)‖p <∞ for p > 0.

2.1. Partial integro-differential equations in Banach spaces
In this subsection, we recall some knowledge on partial integrodifferential equations and the related

resolvent operators. Let X and Y be two Banach spaces such that

‖y‖ = ‖Ay‖+ ‖y‖ , y ∈ Y.

A and B(t) are closed linear operator on X. Let C ([0,∞); Y), B(Y, X) stand for the space of all continuous
functions from [0,∞) into Y and the set of all bounded linear operators from Y into X, respectively. In
what follows, we suppose the following assumptions.

(H1) A is the infinitesimal generator of a strongly continuous semigroup on X.
(H2) For all t > 0, B(t) is a continuous linear operator from (Y, | · |Y) into (X, | · |X). Moreover, there exists

an integrable function C : [0,∞)→ R+ such that for any y ∈ Y, t 7→ B(t)y belongs to W1,1([0,∞), X)
and ∣∣∣∣ ddtB(t)(t)y

∣∣∣∣
X

6 C (t)|y|Y for y ∈ Y and t > 0.

By Grimmer [11], under the assumptions (H1) and (H2), the following Cauchy problem v ′(t) = Av(t) +

∫t
0
B(t− s)v(s)ds for t > 0,

v(0) = v0 ∈ X,
(2.1)

has an associated resolvent operator of bounded linear operator valued function R(t) ∈ L(X) for t > 0.

Definition 2.1. A resolvent operator associated with (2.1) is a bounded linear operator valued function
R(t) ∈ L(X) for t > 0, satisfying the following properties:

(i) R(0) = I and ‖R(t)‖ 6Meβt for some constants M and β;
(ii) for each x ∈ X, R(t)x is strongly continuous for t > 0;

(iii) for x ∈ Y, R(·)x ∈ C 1([0,∞); X)∩C ([0,∞); Y) and

R ′(t)x = AR(t)x+

∫t
0
B(t− s)R(s)xds = R(t)Ax+

∫t
0
R(t− s)B(s)xds for t > 0.

By Grimmer [11], we can establish the existence and uniqueness of the mild solution to the following
integrodifferential equation v′(t) = Av(t) +

∫t
0
B(t− s)v(s)ds+ q(t) for t > 0,

v(0) = v0 ∈ X,
(2.2)

where q : [0,∞)→ X is a continuous function.
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The resolvent operators play an important role to study the existence of solutions and to give a vari-
ation of constants formula for nonlinear systems. We need to know when the linear system (2.1) has a
resolvent operator. For more details on resolvent operators, we refer the reader to [11].

Next, we shall get the global attracting and quasi-invariant set and exponential p-th stability of system
(1.1), we firstly introduce the concept of the global attracting and quasi-invariant set and exponential p-
stability.

Definition 2.2. The set S ⊂ X is called a quasi-invariant set of (1.1), if there exist positive constants k and
b, such that for any initial value ϕ ∈PC B

F0
((−τ, 0]; X), the solution kx(t,ϕ) + b ∈ S, t > 0.

Definition 2.3. The set S ⊂ X is called a global attracting set of (1.1), if for any initial value ϕ ∈
PC B

F0
((−τ, 0]; X), the solution kx(t,ϕ) converges to S as t → ∞. This is, dist(xt(0,ϕ),S) → 0 as t → ∞,

where dist(x,S) = infy∈S E ‖x− y‖.

Definition 2.4. The mild solution of system (1.1) is said to be exponentially stable in p(p > 2)th moment
if there exists a pair of positive constants λ > 0 and M > 1 such that for any solution x(t,ϕ) with the
initial condition ϕ ∈ D̂,

E ‖x(t,ϕ)‖p 6M ‖ϕ‖Lp e
−λt, t > 0, p > 2.

Especially, system (1.1) is said to be exponentially stable in mean square when p = 2.

Lemma 2.5 ([7]). Let y : R+ → R+ be Borel measurable. If y(t) is a solution of the delay integral inequality

y(t) =


‖ϕ‖τ e−r(t−t0) + b1 ‖yt‖τ + b2

∫t
t0

e−r(t−s) ‖ys‖τ ds

+
∑

0<tk<t cke
−r(t−tk)y(t−k ) + J, t > t0,

ϕ(t), t ∈ [t0 − τ, t0],

(2.3)

where ϕ(t) ∈ PC ([t0 − τ, t0]; R+), r > 0, b1,b2, ck (k = 1, 2, . . .) and J are nonnegative constants and if
‖ϕ‖τ 6 K for some constant K > 0 and

b1 +
b2

r
+

∞∑
k=1

ck = ρ < 1,

then there are constants λ ∈ (0, r) and N > K such that

y(t) 6 Ne−λ(t−t0) +
J

1 − ρ
, ∀t > t0,

where λ and N satisfy that

ρλ = b1e
λτ +

b2e
λt

r− λ
+

∞∑
k=1

ck < 1 and N >
K

1 − ρλ
,

or b2 6= 0 and

ρλ 6 1 and N >
(r− λ)

[
K− b2J

r(1−ρ)

]
b2eλτ

.

Remark 2.6. Let t0 = 0, b1 = 0, b2 6= 0, J = 0 in Lemma 2.5, then we get the Lemma 3.1 in Chen [7].

Definition 2.7. A stochastic process {x(t), t ∈ [0, T ]}, 0 6 T 6∞, is a mild solution of (1.1) if

(i) x(t) is Ft-adapted, t > 0;
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(ii) x(t) satisfies the integral equation

x(t) = R(t) [ϕ(0) + h(0,ϕ)] − h(t, xt) +
∫t

0
R(t− s)f(s, xs)ds+

∫t
0
R(t− s)g(s, xs)dw(s)

+
∑

0<tk<t

R(t− tk)Ik(x(tk)).
(2.4)

In the sequel, we impose the following assumptions.

(H3) There exist constants λ > 0 and M > 1 such that ‖R(t)‖ 6Me−λt.
(H4) There exists constants Lf > 0, Lg > 0, bf > 0 and bg > 0 such that for any x,y ∈PC and t > 0,

‖f(t, xt) − f(t,yt)‖ 6 Lf ‖x− y‖PC , ‖f(t, 0)‖X 6 bf
‖g(t, xt) − g(t,yt)‖L0

2
6 Lg ‖x− y‖PC , ‖g(t, 0)‖L0

2
6 bg.

(H5) There exists constants Lh > 0 such that the function h is Y-valued and satisfies for any x,y ∈PC
and t > 0,

‖h(t, xt) − h(t,yt)‖ 6 Lh ‖x− y‖PC , h(t, 0) = 0.

(H6) There exists some positive constants dk such that for any x,y ∈ X and
∑∞
k=1 dk <∞,

‖Ik(x(tk)) − Ik(y(tk))‖ 6 dk ‖x− y‖ and Ik(0) = 0,k = 1, 2, . . . .

3. Main results

Theorem 3.1. Assume that (H1)-(H6) are satisfied, then S =
{
ϕ ∈PC B

F0
([−τ, 0], X) : ‖ϕ‖p 6 (1 − ρ̂)−1Ĵ

}
is

a global attracting set of the mild solution of (1.1) and S1 =
{
ϕ ∈PC B

F0
([−τ, 0], X) : ‖ϕ‖p 6 r, r > 0

}
is a

quasi-invariant set of the mild solution of (1.1) if the following inequality

ρ̂ = 5p−1L
p
h + 5p−12p−1Mpλ−pL

p
f

+ 5p−12p−1MpLpg

(
p(p− 1)

2

)p
2
(

p− 2
2λ(p− 1)

)p/2−1
λ−p/2

+ 5p−1Mp

 ∑
0<tk<t

dk

p/q+1

< 1

holds for p > 2, and Ĵ := 10p−1Mpλ−pL
p
f + 10p−1MpL

p
g

(
p(p−1)

2

)p
2
(
p−2

2(p−1)

)p/2−1
λ−p/2b

p
g, 1/p+ 1/q = 1.

Proof. From (2.4), we can get

E ‖x(t)‖pX = 5p−1E ‖R(t) [ϕ(0) + h(t, xt)]‖pX + 5p−1E ‖h(t, xt)‖pX

+ 5p−1E
∥∥∥∥∫t

0
R(t− s)f(s, xs)ds

∥∥∥∥p
X

+ 5p−1E
∥∥∥∥∫t

0
R(t− s)g(s, xs)dw(s)

∥∥∥∥p
X

+ 5p−1E
∥∥∥∥ ∑

0<tk<t

R(t− tk)Ik(x(tk))

∥∥∥∥p
X

= 5p−1
5∑
i=1

Qi.

(3.1)

We first evaluate the first term of the right-hand side

Q1(t) = E ‖R(t) [ϕ(0) + h(t, xt)]‖pX
6Mpe−pλtE [‖ϕ(0)‖+ ‖h(0,ϕ)‖]p

6Mpe−pλtE [‖ϕ(0)‖+ Lh ‖ϕ‖PC ]
p

6M∗ ‖ϕ‖pLp e
−λt,

(3.2)
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where M∗ > 1 is an appropriate constant. From (H5), we can obtain

Q2(t) = E ‖h(t, xt)‖pX 6 LphE ‖xt‖pC . (3.3)

From (H4) and Holder’s inequality, we get

Q3(t) = E
∥∥∥∥∫t

0
R(t− s)f(s, xs)ds

∥∥∥∥p
X

6 E
(∫t

0
Me−λ(t−s) [Lf ‖xs‖C + ‖f(s, 0)‖]ds

)p
6 2p−1Mpλ1−pL

p
f

∫t
0
e−λ(t−s)E ‖xs‖pC ds+ 2p−1Mpλ−pL

p
f

(3.4)

and

Q4(t) = E
∥∥∥∥∫t

0
R(t− s)g(s, xs)dw(s)

∥∥∥∥p
X

6Mp

(
p(p− 1)

2

)p
2
(∫t

0
e−λp(t−s)E ‖g(s, xs)‖pL0

2

)p
2

6Mp

(
p(p− 1)

2

)p
2
(∫t

0
e2λ(p−1)/(p− 2)(t− s)ds

)p/2−1 ∫t
0
e−λ(t−s)E ‖g(s, xs)‖pL0

2
ds

6 2p−1MpLpg

(
p(p− 1)

2

)p
2
(

p− 2
2λ(p− 1)

)p/2−1 ∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 2p−1MpLpg

(
p(p− 1)

2

)p
2
(
p− 2

2(p− 1)

)p/2−1

λ−p/2bpg.

(3.5)

From (H6) and Holder’s inequality, we get

Q5(t) = E
∥∥∥∥ ∑

0<tk<t

R(t− tk)Ik(x(tk))

∥∥∥∥p
X

6MpE

 ∑
0<tk<t

dke
−λ(t−tk)

∥∥x(t−k )∥∥
2

6Mp

 ∑
0<tk<t

dk


p
q ∑

0<tk<t

dke
−λ(t−tk)E

∥∥x(t−k )∥∥p .

(3.6)

Substituting (3.2)-(3.6) into (3.1), we obtain

E ‖x(t)‖p 6 5p−1M∗ ‖ϕ‖pLp e
−λt + 5p−1L

p
hE ‖xt‖pC + 5p−12p−1Mpλ1−pL

p
f

∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 5p−12p−1MpLpg

(
p(p− 1)

2

)p
2
(

p− 2
2λ(p− 1)

)p/2−1 ∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 5p−1Mp

 ∑
0<tk<t

dk


p
q ∑

0<tk<t

dke
−λ(t−tk)E

∥∥x(t−k )∥∥p + Ĵ.
(3.7)

Let â := 5p−1M∗, b̂1 := 5p−1L
p
h, b̂2 := 5p−12p−1Mpλ1−pL

p
f + 5p−12p−1MpL

p
g

(
p(p−1)

2

)p
2
(

p−2
2λ(p−1)

)p/2−1
,

δk := 5p−1Mp
(∑

0<tk<t dk
)p
q dk. From (2.3), we know ρ̂ := b̂1 + b̂2/r +

∑∞
k=1 δk < 1. Since ϕ ∈
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PC B
F0

([−τ, 0]; X), so there exist K̂ > 0, N̂ > 0, γ ∈ (0, λ) such that â ‖ϕ‖pLp 6 K̂, ρ̂λ := b̂1e
λτ + b̂2e

λτ

λ−γ +∑∞
k=1 δk 6 1 and

(λ−γ)[K̂−
b̂2

λ(1−ρ) ]

b̂2eλτ
6 N̂. It follows from Lemma 2.5 that

E ‖x(t)‖p 6 N̂e−λt +
Ĵ

1 − ρ̂
.

So, by Definition 2.3 we know that S is a attracting set of the mild solution to (1.1). When ϕ ∈ S1 ={
ϕ ∈PC B

F0
([−τ, 0], X) : ‖ϕ‖p 6 r, r > 0

}
, then we can write (3.7) in the following form:

E ‖x(t)‖p 6 5p−1M∗r+ 5p−1L
p
hE ‖xt‖pC + 5p−12p−1Mpλ1−pL

p
f

∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 5p−12p−1MpLpg

(
p(p− 1)

2

)p
2
(

p− 2
2λ(p− 1)

)p/2−1 ∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 5p−1Mp

 ∑
0<tk<t

dk


p
q ∑

0<tk<t

dke
−λ(t−tk)E

∥∥x(t−k )∥∥p + Ĵ.
Thus, from Lemma 2.5, Remark 2.6, and Definition 2.2, we have

E ‖x(t)‖p 6 (1 − ρ̂)−1(5p−1M∗r+ Ĵ) = 5p−1M∗(1 − ρ̂)−1r+ (1 − ρ̂)−1Ĵ.

So, by Definition 2.2 we know that S1 is a quasi-invariant set of the mild solution to (1.1). The proof is
complete.

Theorem 3.2. Assume that (H1)-(H6) hold and bf = bg = 0 are satisfied. Then the mild solution of system (1.1)
is exponentially stable in pth moment, where p > 2, 1/p+ 1/q = 1 and the following inequality holds:

ρ̂ = 5p−1L
p
h + 5p−12p−1Mpλ−pL

p
f

+ 5p−12p−1MpLpg

(
p(p− 1)

2

)p
2
(

p− 2
2λ(p− 1)

)p/2−1

λ−p/2

+ 5p−1Mp

 ∑
0<tk<t

dk

p/q+1

< 1.

(3.8)

Proof. From (2.4), we can get

E ‖x(t)‖pX = 5p−1E ‖R(t) [ϕ(0) + h(t, xt)]‖pX + 5p−1E ‖h(t, xt)‖pX

+ 5p−1E
∥∥∥∥∫t

0
R(t− s)f(s, xs)ds

∥∥∥∥p
X

+ 5p−1E
∥∥∥∥∫t

0
R(t− s)g(s, xs)dw(s)

∥∥∥∥p
X

+ 5p−1E
∥∥∥∥ ∑

0<tk<t

R(t− tk)Ik(x(tk))

∥∥∥∥p
X

= 5p−1
5∑
i=1

Qi.

(3.9)

Noticing that bf = bg = 0, substituting (3.2)-(3.6) into (3.1), we obtain

E ‖x(t)‖p 6 5p−1M∗ ‖ϕ‖pLp e
−λt + 5p−1L

p
hE ‖xt‖pC + 5p−12p−1Mpλ1−pL

p
f

∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 5p−12p−1MpLpg

(
p(p− 1)

2

)p
2
(

p− 2
2λ(p− 1)

)p/2−1 ∫t
0
e−λ(t−s)E ‖xs‖pC ds

+ 5p−1Mp

 ∑
0<tk<t

dk


p
q ∑

0<tk<t

dke
−λ(t−tk)E

∥∥x(t−k )∥∥p .

(3.10)
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Let â := 5p−1M∗ ‖ϕ‖pLp , b̂1 := 5p−1L
p
h, b̂2 := 5p−12p−1Mpλ1−pL

p
f + 5p−12p−1MpL

p
g

(
p(p−1)

2

)p
2

×
(

p−2
2λ(p−1)

)p/2−1
, δk := 5p−1Mp

(∑
0<tk<t dk

)p
q dk. From (2.3), we know ρ̂ := b̂1 + b̂2/r+

∑∞
k=1 δk < 1.

Since ϕ ∈ PC B
F0

([−τ, 0]; X), so there exist K̂ > 0, N̂ > 0, γ ∈ (0, λ) such that â ‖ϕ‖pLp 6 K̂, ρ̂λ :=

b̂1e
λτ + b̂2e

λτ

λ−γ +
∑∞
k=1 δk 6 1 and (λ−γ)K̂

b̂2eλτ
6 N̂.

Combining (3.8), (3.10) with Lemma 2.5, by Definition 2.4 we know that the conclusion of Theorem 3.2
is true. The proof is complete.

4. Example

We consider the following neutral stochastic partial functional integrodifferential equations with im-
pulsive effects:

d [x(t) + u1xt] =
[
∂2

∂z2x(t) + u1xt + u2xt + v1

]
dt+

∫t
0
B(t− s)

∂2

∂z2 [x(s) + u1xs]ds

+u3xt + v2dw(t), 0 6 z 6 π, t > 0, t 6= tk,
∆x(tk) = Ik(x(t

−
k )) =

v3
k2x(t

−
k ), t = tk, k = 1, 2, . . . ,

x(t) = ϕ(t) ∈PC B
F0

([−τ, 0],L2[0,π]), x(t, 0) = x(t,π) = 0, τ 6 t 6 0,

(4.1)

where ui > 0, vi > 0, i = 1, 2, 3 are constants. Let X = L2[0,π], x1 = W2,2(0,π) ∩W1,2
0 (0,π). Define

bounded linear operator A : X→ X1 by

Ax =
∂2x

∂z2 ∈ X, ∀x ∈ X1.

Then we get

Ax =

∞∑
n=1

n2 〈x, en〉X en, x ∈ X1,

where en(z) =
√

2
πsinnz, n = 1, 2, . . . is the set of eigenvector of −A. It is well known that A is the

infinitesimal generator of a strongly continuous semigroup on X, thus (H1) is true. Let B : D(A) ⊂ X→ X

be the operator defined by

B(t)(z) = b(t)Az for t > 0 and z ∈ D(A).

Let

h(t, xt) = u1xt, f(t, xt) = u2xt + v1, g(t, xt) = u3xt + v2.

Then we can get

M = 1, r = π2, Lh = u1, Lf = u2, bf = v1, Lg = u3, bg = v2, qk =
v3

k2 .

Let p = 2, then we get

ρ̂ = 5L2
h + 5M2

( ∞∑
k=1

qk

)2

+ 10M2λ−2L2
f + 10M2λ−1L2

g

6
5u2

1
π

+
π4v2

3
5

+
10u2

2
π4 +

10u2
3

π2 = ρ̂0,
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Ĵ :=
10v2

1
π4 +

10v2
2

π2 .

From Theorem 3.1, we knows S =
{
x(t) ∈ X|E ‖x(t)‖2 6 (1 − ρ̂)−1Ĵ

}
is a global attracting set of system

(4.1) provided that ρ̂0 < 1. In additional, if v1 = v2 = 0 and ρ̂0 < 1, then by Theorem 3.2, we know the
mild solution of system (4.1) is exponentially stable in 2nd moment.
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