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Abstract

In the present article, we study the solvability of a class of fractional functional integro-differential equations of the Caputo-
Katugampola type. The existence of solutions is investigated under sufficient conditions as well as the assumptions which
guarantee the uniqueness of the solution is explained. Also, we examine the continuous dependence of the solution on the
initial condition, the lag function 0 < (t) < t, and the considered nonlinear functional. We give an example to explain our
results. The outcomes in this paper extend the results developed by El-Sayed et al. in [A. M. A. El-Sayed, R. G. Ahmed, ].
Nonlinear Sci. Appl., 13 (2020), 1-8], recently.
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1. Introduction

Differential and integral equations have become important tools for modeling many real-life phenom-
ena. Also, in ordinary and partial differential equations we can convert several initial and boundary value
problems to an equivalent integral equations. In recent years fractional differential and integral models
act an essential role in describing various processes in many real-life situations in different fields such
as mechanics, mathematical biology, economics, medicine, and many others (see [2, 5, 11, 12, 16, 18, 21]).
As a contribution to the non-fractional approach, El-Sayed et al. studied in [11] the sufficient conditions
which guarantee existence, uniqueness, and continuous dependence of solution for a Cauchy problem
of a functional differential equation of self-reference (\(t) = t), and state-dependence (\(t) < t) on the
form

dy P (t)

S -oltul] hryan), o) =w, te0T) (1.1
in the space of all continuous functions which equipped with the Chebyshev’s norm. The authors used
the Caratheodory conditions, and Schauder fixed point principle to establish the existence of at least
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one continuous solution. The uniqueness of solution was studied as well. Also, they investigated the
dependence of the solution on the delay function {(t), the functional h, and the initial condition yo. They
gave two examples to demonstrate their results. But the model (1.1) can not tell us what happens to the
state y(t) when t is a fractional time. So, in this paper, we shall answer this question. That is we will
study the following Caputo-Katugampola fractional nonlinear functional integrodifferential equation

P (t)
DRyl = gltyl| My, 0<t<T <o, 12)

subject to the initial condition
y(0)=yo, yo€R, (1.3)

where 0 < o < 1, p is a positive real number satisfying «p > 1 and the lag function, \(t), is characterized
by ¥(t) = (t —6(t)), with a vanishing lag 6(t), where 0 < 8(t) < t Vt € ] == [0, T]. The mappings g(t),
P(t), and h(t) are measurable on | and possess certain attributes which will be decided in Section 3. It
is clear that the equation (1.2) is more general than the equation (1.1), and hence we can derive all the
results developed by El-Sayed et al. in [11] as special cases of the present work. The rest of this work is
divided as follows. Section 2 presents some definitions, fundamental theorems and auxiliary results we
shall need in the subsequent sections. The existence, and uniqueness are studied in Section 3. Section 4 is
devoted to the continuous dependence of solution. An illustrative example is given in Section 5 to help
clarifying our results. Section 6 is a conclusion.

2. Preliminaries

In this section, we shall review some basic definitions and theorems we will need to prove our results.
For more details, we refer to ([4, 7, 17, 19, 20, 22]).

Definition 2.1 ([14]). Let g be a real valued integrable function defined on [0, T], where 0 < T < co. Let
o« >0, and p > 0. Then

plocJt epfl

M) Jy (tP —0p)T—= g(0)de, 0<t<T

IorPg(t) :=

is called the left Katugampola fractional integral of order o, where I'(-) is the Euler gamma function.

Remark 2.2. The right Katugampola fractional integral can be defined similarly. See [14, 15] for the defini-
tion. For simplicity, in what follows we will say the Katugampola fractional integral without mentioning
the word left. The same remark is applied to the left Katugampola and Caputo-Katugampola fractional
derivatives.

Remark 2.3. The Katugampola fractional integral includes the definition of fractional integral due to the
Riemann-Liouville and the other one introduced by Hadamard as special cases. Because putting p =
1 in Definition 2.1 gives the Riemann-Liouville fractional integral which is utilized in specifying both
the Riemann-Liouville and Caputo fractional derivatives. Also, if we assume p — 0", and applying
the L'hospital rule we get the Hadamard fractional integral which is used in describing the Hadamard
fractional derivative.

Definition 2.4 ([15]). Let g be a real valued integrable function defined on [0, T], where 0 < T < co. Let
0< a<1,and p > 0. Then

DEPg(t) = 10 L (117 (1)) = p“tlpdf O e)ae, 0<t<T
0 dt 0 M1 — o) dt)y (tp —0e)x ’

is called the left Katugampola fractional derivative of order «.
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Definition 2.5 ([15]). Let g be a real valued integrable function defined on [0, T], where 0 < T < oo. Let
0<a<1,and p > 0. Then

«, . «, ' pcx B d t ep—l
CDgPg(t) == D§Plg(t) — g(0)], o<t<T.ru_“flpﬁL(w_eﬂamw»—mmme

is called the left Caputo-Katugampola fractional derivative of order «.

Remark 2.6 ([1]). In definition 2.5 if the function g € C'([0, T], R), then the Caputo-Katugampola fractional
derivative of order « takes the form

Cryo,p p‘x t 1 /
D t) = 0)do.
%P 1) r(1_06)]0“9_99)069()

Lemma 2.7 ([1]). If the function g € C([0, T],R), then “Dg:® 15:°g(t) = g(t).
Lemma 2.8 ([1]). If the function g € C'([0, T],R), then 15:° “Dg:°g(t) = g(t) — ¢(0).

Definition 2.9 ([3]). A lag 6(t) : [0, T] — [0, T] is said to be a vanishing lag with respect to its domain [0, T]
if 8(0) =0, and O(t) > 0, Vt € (0, T].

Definition 2.10 ([13]). Let H: Y — Y be a mapping defined on the Banach space (Y, |- [|). Then H is said
to be a p-contraction if there exists a constant 0 < p < 1 such that

IIHy1 — Hyall < plly1 —yall, Yyi,y2 €Y.

Theorem 2.11 ([13]). Let the mapping H : Y — Y be a p-contraction defined on the Banach space (Y, || - ||). Then
the operator H has a unique fixed point in Y, (i.e. the functional equation y = Hy has only one solution in Y).

Remark 2.12. Since every closed subspace of a Banach space is also a Banach space, therefore, Theorem
2.11 is still valid if we replace the space Y by a closed subset () C Y, provided that H(Q) C Y.
The next theorem is due to the work introduced by Juliusz Schauder and called the Schauder fixed

point principle.

Theorem 2.13 ([13]). Let the set Q) be a convex closed bounded subset of the Banach space Y. Let H: Q — Y be
a continuous operator such that HQ is a compact subset contained in ). Then the operator H has at least one fixed
point y* in Q.

In what follows let ] := [0, T], and Y := C(],R) be the space of all continuous real-valued functions
defined on | and endowed with the Chebyshev’s norm . That is Vy € Y we define [ly|| = r?alx{ly (t)|}. Itis
€

clear that (Y, || -]|) is a Banach space.

3. The existence and uniqueness results

Applying the Katugampola fractional integral operator to both sides of equation (1.2), using condition
(1.3) and suppose we can use, formally, Lemma 2.8. So, it gives the following nonlinear fractional Volterra
integral equation of the CK type.

pl—oc t gr—1 P (0)
Y00 = v+ Fro | s 910u(] himylmanae. @)

Definition 3.1 ([12]). A Cauchy problem (1.2)-(1.3) is said to have mild solutions if the integral equation
(3.1) has solutions and these solutions do not satisfy the initial value problem (1.2)-(1.3).
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We need to assume the following hypotheses:

(V1) The function g is a real valued function defined on | x R such that:

(a) the function g(t, ) is continuous on R Vt € J;
(b) there exist two constants A; > 0, and A, > 0 such that V(t,y) € ] x R we have [g(t,y)| <
A1+ Aoyl .
(V2) The function h is a positive valued real function defined on J x R such that:
(a) the function h(t,-) is continuous on R Vt € J;
(b) Ih(t,y)I<1V(ty) €] xR
(V3) The delay function is a continuous self-map on J (i.e., the mapping ¥ : ] — J is continuous).

. A1+A .
Let us define the constants M = Tl,wpilrz(lz‘))t ST and r = |yo| + %. Now we can define the set

Qm={y e C(J,R) : |yll <, [y(t) —y(s)| < M|t—s|, M >0, Vt,s € J}. Itis clear that Q,p is a closed
bounded convex subset of C(]J,R). Let H be an integral operator defined by

P (6)

g(e,y(jo hit,y(1)dr))de. (3.2)

l—x pt ep—l
Hy(t) ==yo+ o J

Mo Jo (0 =9y

It is easy to prove H : C(]J,R) — C(J,R) under the proposed conditions V1-V3. See ([8-10]) for sim-
ilar poofs. Now, the solution of the integral equation (3.1) is equivalent to finding a fixed point to the
functional equation (3.3)

y = Hy. (3.3)

Theorem 3.2. Suppose the hypotheses V1-V3 are fulfilled. Define the integral operator H from the set Q. into
C(J,R). Then the Cauchy problem (1.2)-(1.3) has at least one mild solution y* € Q.n provided that Ay T*P <
p* 1T (e0).

Proof. First, we will show that Vy € Q,p, and Vt € |, Hy(t) € Q.m. Lety € OQ.m, t € ]. So, taking |- | to
both sides in equation (3.2), using conditions V1b, V2b, and utilizing the Beta integral implies

P (0)

g(e,y(JO hit,y(1))d7))

1—x pt epfl

P
H <
[Hy(t)] < [yol + Mo Jo [0 —e9)i—= de

l—x pt epfl

p
A A
Mo Jo (tp —oo)i | 1772

P (0)
y(J h(t,y(1))dr) —y(0)

+ A Iy(0)|] do

plfoc rt epfl
Mo Jo (tp —69)1*“
pl—oc rt ep—l

M) Jo (P —0P)1-
plfoc rt epfl

¥(0)
A1+ MAy (JO Ih(T,y(T))dT> + /A2 Iy(O)Il doé

(3.4)

A1+ MAD(8) + Az |yoll dO

A1+ A2(TM + |yol)] dO

Mo Jo (tp—ep)lia
T*Pp~*[A1 + Ao(TM + lyol)]
N1+ «)

s . A1+Azlyol
Substituting M = T a0 oo 1T (o) — AT

™ _ .
have [Hy(t)| < [yol + wp =T vVt € ], and so |ly|| < r. Now take t; € J, and t; € J such that t; < tp (without

and keep in mind that A, T*P < p* (@) = M > 0. Then we
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loss of generality). Using the assumption \(t) < t, Vt € ], and applying the Beta integral gives

el 00! o0t Ay +MAD(0) + A 0
Hy(ty) —Hy(t)| < =—— _ d
Myta) —Hyten) < Fos [ (s — gy ) A+ MADIO) + Adyol
11— rt2 p—1
p 0
A1+ MAW(0) + Azlyoll dO
e ) e P MABE) + Aol
P * (A1 + A2(TM + Jyol)] Jtl et ee! 46
h o) 0 \(ty —6P)l-x (17 —@p)l-« (3.5)
P ™% [A1 + A2 (TM + [yol)] Jtz L
(o) gy (ty —6P)l—x
%A1+ A2(TM + yol)]
< Fl o) [t — (1) —tN)* — 77 + (1) —t0)¥]
p—oc [/\1 + AZ(TM + |yo|ﬂ ‘t(xp . tocp‘
= r(1+«) 2 1

Since ap > 1, so we can apply the inequality [ty —t;°| < apty®™ Yty — 4], Vt2 =t > 0, see [6].

X AL+ A (TM + yol)]

p ap—1
Hy(t,) — Hy(t < t th —t
[Hy(t2) — Hy(t1)| M1t o) | 1l
X AL+ A(TM + yol)] -1
< TPty — tq] = M|ty — t4].
M+ o) op [to —t4] [to —t4]

Therefore, t; -+ t1 = Huy(tz) — Hy(t1), and hence the operator H maps the set (.p into itself (i.e.
H: Q;m — Qrm). To prove the continuity of the operator H, assume (y,)_; be a sequence in the set
Qym such that y, — y in Qypm as n — oo.

[Hyn (t) — Hy(t)|

pl—oc t ep—l
<
I"(e) Jo (tp —0P)l-x

¥ (0) (3.6)

de.

P (0)
g(e,yn(J h(T,yn(T))dT))—g(G,y(Jo h(t,y(r))d1))

0

Now from the conditions V1a, and V2a, the functions g, and h are continuous in y Vt € J. So, yn —
y = g(t,yn) — g(t,y), and h(t,yn) — h(t,y), as n — oco. Now

P (0) P (0)
<yn(J h(wnm)dﬂ—yn(L hit,y(1)dr)

P (0) P (0)
yn(J h{T, yn (1)) dT) — (j h(t,y(1))dv)
0 0

0

P (0) 1 (0)
+yn(L h(T,y(T))dT)—y(J h(t,y(1)dr)

0

< MJO (Y () ~ Rl y()ldr + &

€ —I—E—e asn —
MT T2 ¢ o0

Applying the Lebesgue dominated convergence theorem after using the hypotheses V1 and V2 implies

) pl—oc t ep—l
Aim Hyn(t) = lim = )L (t° —00)

plfcx t gr—1
" T(w) Jo (tp —@P)I—«

pl—cx t ge—1
T T(w) Jo (tp —6°)

<MT

P(o)
1(,(g(e,yn(L h(t, yn (1)) d1))
P(0)

g(8, Jim yal|  hixyn(m)an)

P (0)
1—“9(9"3(L h(t,y(1))dr)) = Hy(t).
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So when n — oo the inequality (3.6) becomes less than € and consequently the operator H is continuous.
Let (Hyn)S_; € HQm. Let ty € Jand t; € ] with t > t; such that (t; —t1) < 8. Applying similar debate
like what we have done in the inequality (3.5) implies

X AL+ A (TM + ]
Hyn (t2) — Hyn (1] < P A1 Aal Yol |5 — 77|

N1+ «)
P~ A1 + A2 TM + lyol)] 1
< TP, —
Mt o) op Ito — t]

= M|t; —t;] = 0, when t, — t;, Vn € N.

Therefore, the sequence (Hyn )X, is equicontinuous. The sequence (Hyn)_; is uniformly bounded as

well because [Hyn ()| < 1, Vn € N, and t € J. From the Arzela Ascoli theorem, we can find a uniformly
convergent subsequence (ynk);?kzl in (Yyn)X_; € HQm which proves the compactness of the set HOQ.pm.
Now the operator H satisfies all conditions of the Schauder fixed point principle. Then the integral
operator H has at least on fixed point in the set Q,pm and consequently the Cauchy problem (1.2)-(1.3)
has at least one mild solution in Q. O

Theorem 3.3. Assume the conditions V1b, V2b, and V3 are fulfilled. Define the integral operator H from the set
Q.m into C(J,R). Suppose there exist two constants Ly > 0, Ly > 0 such that:

<Lilya—vil, Y1, y2 € Orm, t €,
<Ly —vyil, Y1, y2 € Orm, t €.

l9(t,y2) —g(t,ya)

‘h(t/yZ) - h(t/y1)|

Then the Cauchy problem (1.2)-(1.3) has a unique mild solution y* € Q. provided that
LiILMT+ 1 < T~ *Pp*T (1 + ).

Proof. Using the debate we used to deduce equations (3.4) and (3.5) we can prove HQ.pm € Q:m. Let yg
and y; be two functions in the set Q. So we have

[Hy2(t) — Hyy(t)]

plﬂx t gr—1 W (0) P (0)

S @) L (tp —or)—« g(e,yz(L h(Tfyz(T))dT))g(G,yl(L h(t,y1(7))dT))| dO
plﬂx t gr—1 W (0) P (0)

S T Jo (P —op)i= 9(6'92(J0 h(Wz(T))dﬂ)—g(e,yz(Jo h(t,y1(1))dv))| de
M ?l(ocjjot (tpfpepl)lcx g(e'UZ(J:)(e)h(T/UI(T))dT))—9(9/91(J:)(9)h(T,yl(T))dT)) do

P(6)

P (0)
yz(L h(T,yz(T))dT)—yz(L h(t, 1 (1)) dt)

do

LlplocJt epfl
Ma) Jo (tP—6p)l-a

Llpl_‘x t gr—1 P (0) ¥ (0)
h - h
e ) @ ), @ -] k)
LlMpl—ocJt gr—1 JIJ,)(G) L p—oTap
S h ’ —h ’ 0 _ —
M) Jo (tp—ee)i—« | |, Ih(t,y2(1)) —h(t,yi (7))l dT | A6 + T o ly2 =yl
LlLZMpl_“Jt gr—1 Jw(e) Lip XTxP
S E R L T
M) Jo (t° —ee)i—« | ], lya(T) —yi(t)ldT | O+ FiTa Iy2 —yal

T“pp_“(LlLQMT + Ll)
= N1+ )

Ily2 —yall.
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Taking the maximum over t € ] and applying the condition L;L[o,MT +L; < T-*Pp*I'(1 + ) implies
T*Pp *(L1L,MT+1Lq)

IIHy2 — Hy1ll < plly2 —y1ll, with p = Fito) < 1. Then the operator H is p-contraction. From
Theorem 2.11 with remark 2.12 the operator H has a unique fixed point in Q.p and thus the Cauchy
problem (1.2)-(1.3) has a unique mild solution in Q.. O

4. Dependence of solution on the initial starting point y(0), the lag function 0 < {y(t) < t, and the
nonlinear functional h(t),t €]

In what follows let y(t) := Y(t;yo, P, h) to indicate that the solution depends on the initial value yo, the
lag function 1, and the functional h. In this part, we shall adapt the definition of continuous dependence
stated in [11].

Definition 4.1 ([11]). A solution y(t;yo, P, h) of the integral equation (3.1) is said to be continuously
dependent on the initial value yq if for every e > 0, there exists & > 0 depends on ¢, such that
lly(t;yo, ¥, h) —y(t;yd, P, h)ll < €, t €], whenever [lyp —yll < 8.

Lemma 4.2. A solution of an integral equation (3.1) is continuously dependent on the initial starting value yo
provided that the conditions of Theorem 3.3 are fulfilled.

Proof. Let y(t) ==y(t;yo, P, h), and y*(t) = y(t;yg, b, h) be two solutions of (3.1). So,

1-a pt 1 p(0)
y(t)—yo+p“)J ( - T« 9(9,y(J0 h(t,y(1))dT))de,

I'( o (tP—06r)
1—x pt or 1 1 (0)
Y0 =i+ | g 90| Ry tanae,
y(t) —y* (1) < lyo — gl
pl—oc t gP— P (6 . 1 (0) y
] e o] R ye) g0y (L Rty (7)) | a8
Llpl—oc t gLip—1 P(o P (0
S R e ][ o
Llpl—oc t ep—l ¥ (0) P (0
T L [ ooy = ‘J(L hmylr L T)d)) dd

Lip~*TxP .
m”g -yl

<5+ do +

1—a t —1 P (0)
LilaMp j o U y(1) —y*(1)d7)

o) o (tP—oP)l=e
T“ppio((LleMT-i-Lﬂ

<8 —y*| =5 —y*.
+ Lt o) Iy —y*ll +plly =yl

Taking the maximum over t € J, and choosing & = (1 —p)e, where p is the contraction constant, implies
lly —y*ll < e, whenever [[yp —y;ll < 8. Then the required result follows. O

Definition 4.3 ([11]). A solution Y(t;yo, P, h) of the integral equation (3.1) is said to be continuously
dependent on the lag function 1 if for every € > 0, there exists 5 > 0 depending on €, such that
||Y(t/y0/ 11)/ h) _Y(t/y()/ll)*/h)n <€, te J/ whenever ||ll) _ll)*|| <.

Lemma 4.4. The solution of the integral equation (3.1) is continuously dependent on the lag function P(t), t € J,
provided that the conditions of Theorem 3.3 are fulfilled.
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Proof. Let y(t) :=y(t;yo, P, h), and y*(t) :=y(t;yo,P*, h) be two solutions of (3.1). So,

B plfoc t epfl P(0)
Y0 =vo+ s | r—geys 90u(| h(rym)ar)a0

. pl—oc t ep—l i P*(0) §
y (t) =yo+ Mo JO T g(6,y (L h(t,y*(7))dT))d6,
) ol=at el (0) O
e~y (01 < Fros | ey 910l hmyimian) —giey*( iy (r)an) a0

P (6)

P (0)
u J hit,y(7)dv) —y(j hit,y* (7)) dv)
0 0

do

Llpl—oc t ep—l
<
I(e) Jo (tP —0P)l-x

Liplxt  prl }*(0) V*(0)
") Jo (tP —0P)l-x H(L [Ty (m)dr) —y (L (v, y*(1))dT)|d
Lip™*T*P .
X WHU_U I
h(T, dt— h(t,y*(1))dt)| do
e )y (o eeyia |), Moy(@dr—| o hny*(t)dr)
Lp oTe
X WHU*U I
T W )y oo |), Moy h(ny(0)d)do

do

LlMplfcx t epfl
T T Jo (t° —op)I—

LlpfocTocp LlMplocJt epfl JLI)(G)
< —

M1+« Flo)  Jo (tP—0°)1= | (o)

LlLZMplftx t epfl P*(0)

o) Jo (tp—ep)l“J

L Mp— TP
ST+ «)

L Mp— TP
ST+ «)

P*(0) )*(0)
J h(T,y(T))dTJ h(t,y*(1))dT)
0 0

lly —y*ll+ Ih(t,y(T))|dTde

; ly(t) —y*(7)[dTd0

b — ™[I+ plly =yl

5+ plly —y7ll.

Taking the maximum over t € |, and choosing § = %e implies |y — y*|| < €, whenever |{p —

P*|| < 8. Then the required result follows. O

Definition 4.5 ([11]). A solution Y(t;yo,, h) of the integral equation (3.1) is said to be continuously de-
pendent on the functional h if for every e > 0, there exists 5 > 0 depending on ¢, such that |[Y(t; yo, P, h) —
Y(t;yo, ¥, h*)|| < €, t € ], whenever |[h —h*|| < 9.

Lemma 4.6. The solution of the integral equation (3.1) is continuously dependent on the functional h(t),t € J,
provided that the conditions of Theorem 3.3 are fulfilled.

Proof. Let y(t) :=y(t;yo, P, h), and y*(t) :=y(t;yo, P, h*) be two solutions of (3.1). So,
P (0)

g(e,y(jo h(t, y(t))d))do,

11— pt ep—l
y(t) =yo + 2 j

M(e) Jo (tP—0P)1—e
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. pl—oc t ge—1 . P (0) . .
Y =vo+ S| s 90| Wryeanae,
. pl—cx t gr—1 P (0) . P (0) . .
Wt~y 101 < Foo | e 90w Ry —g@,y*(|  Winyt(m)an)| a0

Lipl=t  ghie-! ¥(0) e
M) Jo (o —0o) U(L hirylr))dr) U(L R (t,y*(7))d7)| dO
Lipl-x(t  ge1 weey e

") Jo (tp —Be)T- ‘J(L W (nyi(m)dn) —y (L n*(,y*(1))d7)| do

Lip TP . LlMpl—cx t gr—1 P(0) i} .

< m”y—y |+ Mo Jo (P ooy UO lh(t,y(t)) —h*(t,y*(7))IdT)| dO
Lip XTxP . LlMpl—oc t gr—1 P(o) i}

< mlly—y ||+ o) L [0 g0« UO Ih(T,y(T)) — h(t,y*(7))|dT)| dO

Lll\/lpl—"‘Jt ge—1 Jw(e)
h(t,y* —h*(t,y* d de
T )y ey |J,  MEY @I myTn)idT)
L M *ocTcxp+1 . .
<= r?1+a) I —h*[ +plly =yl

LlMp—ocTocp—H
< ) —y*.
M T o +plly —y”ll

Taking the maximum over t € J, and choosing & = %

implies [y —y*|| < €, whenever [[h —h*|| < §. Then the required result follows. O

€, where p is the contraction constant,

5. Illustrative example

Example 5.1. Given the following fractional functional initial value problem

1S 1 1 thet s +sin(y(s))
D22 _ = - 5.1
o W =g g aene 0 0asl a0l ©1)
subject to the initial staring condition

y(0) =0. (5.2)

Comparing equations 5.1, and 5.2 with equations (1.2), and (1.3) implies o = %, p = %, T =1, and
yo = 0. The function {(t) = qte ' is continuous self-map on [0,1] and qte™* =t — (1 —qe ")t =
the lag 8(t) = (1—qge )t > 0, Vt € [0,1] = the lag is vanishing with respect to [0,1]. Fur-
thermore P(0) = 0, and P(t) > 0, Vt € (0,1] == P(t) is a vanishing lag function = con-
t+sin(y(t))
(t+1)2 +3elu(t)l
tinuous in y Vt € [0,1], and moreover |h(t,y)| < % —> condition V2 is satisfied. The function

qtet .
L L s +sin(y(s))
g(t,y) = 6(2t+3) + ZU(JO (S+1)2+3e\y(s)|

[0,1], and |g(t,y)| < %+ %Iyl = A = %, and Ay = % — condition V1 is fulfilled. Now
p* 1M () — ApT*P = (2.5)7951(0.5) — 0.5 = 0.6210 > 0 = all conditions of Theorem 3.2 are met.
Consequently the Cauchy problem (5.1) and (5.2) has at least one continuous mild solution in Q. with

M = Tl,“p/;}:f}z(‘z‘;l_ AT = 1.3419, and = Jyo| + % = 1.0735. If the functions g, and h are Lipschitz in

their second independent variable we can guarantee the uniqueness. In this example, we can prove that

dition V3 is verified. The function h(t,y) = is measurable on [0,1] Yy € R, con-

ds) is measurable on [0, 1] Yy € R, continuous in y Vt €
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g(t,y) satisfies lipschitz condition with respect to y with constant L; = % and h(t,y) is Lipschitz function

xp H— —0.5
in y with constant L, = % as well. Now p = e r((LlliiZ\)/lTjLLl) =25 [(0'1??{(51)'3419”0'5] =04765<1 =

all assumptions of Theorem 3.3 are fulfilled. Therefore the initial value problem (1.2)-(1.3) has a unique
mild solution in Q,.zpm with M = 1.3419, and r = 1.0735.

6. Conclusion

In the current paper, we have investigated a fractional model of the Caputo-Katugampola type. We
utilized the Schauder fixed point principle together with the Caratheodory conditions to establish the
existence of at least one continuous mild solution under some sufficient weak conditions. We proved
the uniqueness of the solution using the Banach fixed point. The results developed by El-Sayed et al. in
[11] are special cases of our work. Our work studied the fractional evolution of the model developed by
El-Sayed et al. in [11] which was not studied in their work [11].
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