
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 13 (2020), 364–377

Research Article

ISSN: 2008-1898

Journal Homepage: www.isr-publications.com/jnsa

On the symmetric positive solutions of nonlinear fourth or-
der ordinary differential equations with four-point bound-
ary value conditions: a fixed point theory approach

Md. Asaduzzamana,∗, Md. Zulfikar Alib

aDepartment of Mathematics, Islamic University, Kushtia-7003, Bangladesh.
bDepartment of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.

Abstract

The purpose of this paper is to investigate the existence of symmetric positive solutions of the following nonlinear fourth
order system of ordinary differential equations{

−u(4)(t) = f(t, v),
−v(4)(t) = g(t, u), t ∈ [0, 1],

with the four-point boundary value conditions{
u(t) = u(1 − t), u′′′(0) − u′′′(1) = u′′(t1) + u′′(t2),
v(t) = v(1 − t), v′′′(0) − v′′′(1) = v′′(t1) + v′′(t2), 0 < t1 < t2 < 1.

By applying Krasnoselskii’s fixed point theorem and under suitable conditions, we establish the existence of at least one or at
least two symmetric positive solutions of the above mentioned fourth order four-point boundary value problem in cone. Some
particular examples are provided to support the analytic proof.
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1. Introduction

Boundary value problems for fourth order ordinary differential equations are used to describe a huge
number of physical, biological and chemical phenomena, see for instance [1, 7, 11, 15, 19, 21, 29] and
references therein. In recent years, there has been a noticeable interest on the solution-existence prediction
methods and it is well established that the fixed point techniques the are most important methods for
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predicting the existence of solutions of ordinary differential equations with boundary conditions, see for
instance [2–4, 6, 16, 23, 24] and their cited references. In the last few decades, symmetric positive solution
of two-point, three-point and four-point boundary value problems for second order, third order, fourth
order as well as higher order has extensively been studied by using various techniques, see for instance
[4, 5, 8, 9, 12–14, 17, 18, 20, 22, 25–28] and references therein, but only a small number of works have been
established on the existence of symmetric positive solution of system of boundary value problem (BVP
for short).

Li and Zhang [13], and Henderson and Thompson [12] studied the multiple symmetric positive so-
lutions of second order system of ordinary differential equations. Feng et al. [8] studied the existence
of multiple symmetric positive solutions to the system of four-point boundary-value problems with one-
dimensional P-Laplacian. Cetin and Topal [5], studied the symmetric positive solutions of fourth order
boundary value problems for an increasing homeomorphism and homomorphism on time-scales. In
[17, 18], Haidong studied symmetric positive solutions of second order system of nonlinear ordinary dif-
ferential equations with three-point and four-point boundary conditions by using Krasnoselskii’s fixed
point theorem [10] in cone. Recently, Feng et al. [9] established the symmetric positive solutions for
fourth-order n-dimensional differential equations with m-Laplace systems. So, from the above discussion
it is clear that there is a certain gap in literature about the solution procedure on the existence of symmet-
ric positive solutions of system of nonlinear fourth order ordinary differential equations (SNLFOODEs
for short) with four-point boundary conditions by applying fixed point theorem. To fill up this certain
gap, here we have studied the existence of symmetric positive solutions of following SNLFOODEs{

−u(4)(t) = f(t, v),
−v(4)(t) = g(t, u), t ∈ [0, 1],

(1.1)

with the four-point boundary value conditions{
u(t) = u(1 − t), u′′′(0) − u′′′(1) = u′′(t1) + u

′′(t2),
v(t) = v(1 − t), v′′′(0) − v′′′(1) = v′′(t1) + v

′′(t2), 0 < t1 < t2 < 1,
(1.2)

where, both f : [0, 1] × R+ → R+, g : [0, 1] × R+ → R+ are continuous, both f(t, v) and g(t,u) are
symmetric on [0, 1] and f(t, 0) ≡ 0, g(t, 0) ≡ 0, by applying Krasnoselskii’s fixed point theorem under
some predefined hypothesis in cone. The rest of this paper is organized as follows. In Section 2, we
provide some necessary definitions, lemmas and theorems associated with BVP given by (1.1) and (1.2).
In Section 3, the main results will be stated and proved. Finally, we give some examples to illustrate our
main results.

2. Preliminary

In this section, we recall some essential definitions and establish some lemmas which help us to
establish our main results. Throughout this paper C[0, 1] denotes the set of continuous functions on [0, 1].

Definition 2.1 ([18, 26]). Let (B, ‖.‖) be a real Banach space and K be a nonempty closed convex subset of
B. This subset B K is called a cone of B if it satisfies the following conditions:

(i) x ∈ K, µ > 0 implies µx ∈ K;
(ii) x ∈ K,−x ∈ K implies x = 0.

Example 2.2. A funnel is an example of a cone.

Definition 2.3 ([18]). The function u is said to be concave on [0, 1] if

u(λt1 + (1 − λ)t2) > λu(t1) + (1 − λ)u(t2),

for all λ, t1, t2 ∈ [0, 1].
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Definition 2.4 ([18]). The function u is said to be symmetric on [0, 1], if u(t) = u(1 − t), for all t ∈ [0, 1].

Lemma 2.5. Assume t1 and t2 are two nonnegative constants satisfying 0 6 t1 < t2 6 1. If h(t) ∈ C[0, 1] is
symmetric on [0, 1], then the following second order four-point BVP{

u′′ = −h(t), 0 6 t 6 1,
u(t) = u(1 − t), u′(0) − u′(1) = u(t1) + u(t2),

(2.1)

has a unique symmetric solution

u(t) =

∫ 1

0
G(t, s)h(s)ds,

where G(t, s) is the Green function of{
u′′ = 0, 0 6 t 6 1,
u(t) = u(1 − t), u′(0) − u′(1) = u(t1) + u(t2),

i.e., G(t, s) = G1(t, s) +G2(s) and G1(t, s) =

{
t(1 − s), 0 6 t < s 6 1,
s(1 − t), 0 6 s 6 t 6 1,

G2(s) =


1
2
[(t1 − s) + (t2 − s) − t1(1 − s) − t2(1 − s) + 1], 0 6 s 6 t1,

1
2
[(t2 − s) − t1(1 − s) − t2(1 − s) + 1], t1 6 s 6 t2,

1
2
[−t1(1 − s) − t2(1 − s) + 1], t2 6 s 6 1.

Proof. From (2.1), we have u′′ = −h(t). Integrating from 0 to 1, we get

u′(t) = −

∫ 1

0
h(s)ds+ a1. (2.2)

Since u(t) = u(1 − t) ⇒ u′(t) = −u′(1 − t), then we obtain −
∫t

0 h(s)ds+ a1 =
∫1−t

0 h(s)ds− a1, which
gives

a1 =
1
2

[∫t
0
h(s)ds+

∫ 1−t

0
h(s)ds

]
=

1
2

[∫t
0
h(s)ds−

∫t
1
h(1 − s)ds

]

=
1
2

[∫t
0
h(s)ds+

∫ 1

t

h(s)ds

]
=

∫ 1

0
(1 − s)h(s)ds.

Putting the value of a1 in (2.2), we get

u′(t) = −

∫t
0
h(s)ds+

∫ 1

0
(1 − s)h(s)ds. (2.3)

Now integrating both sides of (2.2), we obtain

u(t) = −

∫t
0
(t− s)h(s)ds+ t

∫ 1

0
(1 − s)h(s)ds+ a2. (2.4)

Using (2.3) and (2.4), in the boundary value condition of (2.1), we yield∫ 1

0
h(s)ds = −

∫t1

0
(t1 − s)h(s)ds+ t1

∫ 1

0
(1 − s)h(s)ds+ 2a2

−

∫t2

0
(t2 − s)h(s)ds+ t2

∫ 1

0
(1 − s)h(s)ds,
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which gives

a2 =
1
2

∫ 1

0
h(s)ds+

1
2

∫t1

0
(t1 − s)h(s)ds−

1
2
t1

∫ 1

0
(1 − s)h(s)ds

+
1
2

∫t2

0
(t2 − s)h(s)ds−

1
2
t2

∫ 1

0
(1 − s)h(s)ds

=
1
2

∫t1

0
[(t1 − s) + (t2 − s) − t1(1 − s) − t2(1 − s) + 1]h(s)ds

+
1
2

∫t2

t1

[(t2 − s) − t1(1 − s) − t2(1 − s) + 1]h(s)ds

+
1
2

∫ 1

t2

[−t1(1 − s) − t2(1 − s) + 1]h(s)ds.

Putting the value of a2 in (2.4), we get

u(t) = −

∫t
0
(t− s)h(s)ds+ t

∫ 1

0
(1 − s)h(s)ds

+
1
2

∫t1

0
[(t1 − s) + (t2 − s) − t1(1 − s) − t2(1 − s) + 1]h(s)ds

+
1
2

∫t2

t1

[(t2 − s) − t1(1 − s) − t2(1 − s) + 1]h(s)ds

+
1
2

∫ 1

t2

[−t1(1 − s) − t2(1 − s) + 1]h(s)ds

=

∫ 1

0
G1(t, s)h(s)ds+

∫ 1

0
G2(s)h(s)ds =

∫ 1

0
G(t, s)h(s)ds,

which is the unique symmetric solution of the BVP given by (2.1). This completes the proof.

Lemma 2.6. Assume t1 and t2 are two nonnegative constants satisfying 0 6 t1 < t2 6 1. If h∗(t) ∈ C[0, 1] is
symmetric on [0, 1], then the following fourth order four-point BVP{

u(4) = −h∗(t), 0 6 t 6 1,
u(t) = u(1 − t), u′′′(0) − u′′′(1) = u′′(t1) + u

′′(t2),
(2.5)

has a unique symmetric solution

u(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)h∗(r)dr

)
ds,

where G(t, s) = G1(t, s) +G2(s), G1(t, s) =

{
t(1 − s), 0 6 t < s 6 1,
s(1 − t), 0 6 s 6 t 6 1,

G2(s) =


1
2
[(t1 − s) + (t2 − s) − t1(1 − s) − t2(1 − s) + 1], 0 6 s 6 t1,

1
2
[(t2 − s) − t1(1 − s) − t2(1 − s) + 1], t1 6 s 6 t2,

1
2
[−t1(1 − s) − t2(1 − s) + 1], t2 6 s 6 1,

and G∗(s, r) = G∗1(s, r) +G
∗
2(r), G

∗
1(s, r) =

{
s(1 − r), 0 6 s < r 6 1,
r(1 − s), 0 6 r 6 s 6 1,
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G∗2(r) =


1
2
[(t1 − r) + (t2 − r) − t1(1 − r) − t2(1 − r) + 1], 0 6 r 6 t1,

1
2
[(t2 − r) − t1(1 − r) − t2(1 − r) + 1], t1 6 r 6 t2,

1
2
[−t1(1 − r) − t2(1 − r) + 1], t2 6 r 6 1.

Proof. To prove this lemma first, let u′′ = w(t) then we have

u(t) =

∫ 1

0
G(t, s)w(s)ds, (2.6)

and the BVP given by (2.5) is equivalent to the following BVP{
w′′ = −h∗(t), 0 6 t 6 1,
w(t) = w(1 − t), w′(0) −w′(1) = w(t1) +w(t2).

(2.7)

Now, by Lemma 2.5, we know that the BVP given by (2.7) is equivalent to the following integral equation

w(t) =

∫ 1

0
G∗(t, r)h∗(r)dr, (2.8)

where G∗(t, r) is the Green function of{
w′′ = 0, 0 6 t 6 1,
w(t) = w(1 − t), w′(0) −w′(1) = w(t1) +w(t2),

i.e., G∗(t, r) = G∗1(t, r) +G
∗
2(r) and G∗1(t, r) =

{
t(1 − r), 0 6 t < r 6 1,
r(1 − t), 0 6 r 6 t 6 1,

G∗2(s) =


1
2
[(t1 − r) + (t2 − r) − t1(1 − r) − t2(1 − r) + 1], 0 6 r 6 t1,

1
2
[(t2 − r) − t1(1 − r) − t2(1 − r) + 1], t1 6 r 6 t2,

1
2
[−t1(1 − r) − t2(1 − r) + 1], t2 6 r 6 1.

Finally, from the combination of (2.6) and (2.8), we obtain

u(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)h∗(r)dr

)
ds.

This completes the lemma.

Lemma 2.7. Let mG2 = min {G2(t1),G2(t2)} , l =
4mG2

4mG2 + 1
, then for all t, s ∈ [0, 1], the Green function G(t, s)

satisfies the inequality
lG(s, s) 6 G(t, s) 6 G(s, s),

where G(t, s), G(s, s) and G2(s) are defined as like the Lemma 2.6.

Proof. Since, t, s ∈ [0, 1], then we have

G(t, s) = G1(t, s) +G2(s) > G2(s) =
1

4mG2 + 1
G2(s) +

4mG2

4mG2 + 1
G2(s)

>
1
4
·

4mG2

4mG2 + 1
+

4mG2

4mG2 + 1
G2(s)

> s(1 − s) ·
4mG2

4mG2 + 1
+

4mG2

4mG2 + 1
G2(s)

= lG1(s, s) + lG2(s) = lG(s, s),
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i.e.,
lG(s, s) 6 G(t, s). (2.9)

Now from the definition of Green function, it is clear that

G(t, s) 6 G(s, s). (2.10)

Combining (2.9) and (2.10), we get
lG(s, s) 6 G(t, s) 6 G(s, s).

Remark 2.8. If we replace the Green function G(t, s) by G∗(t, s) in the Lemma 2.7, then the similar result
holds, i.e., lG∗(s, s) 6 G∗(t, s) 6 G∗(s, s) holds.

Lemma 2.9. Let h∗(t) ∈ C+[0, 1], then the unique symmetric solution u(t) of the BVP given by (2.5) is non-
negative on [0, 1] .

Proof. Suppose h∗(t) ∈ C+[0, 1], then from the fact u(4)(t) = −h∗(t) 6 0, t ∈ [0, 1], we confirm that the
graph of u(t) is concave on [0, 1]. So, from the BVP given by (2.5), we obtain

u(0) = u(1) =
∫ 1

0
G(1, s)

(∫ 1

0
G∗(1, r)h∗(r)dr

)
ds

=

∫ 1

0
G(1, s)

(
1
2

∫ 1

0
[(t1 − r) + (t2 − r) − t1(1 − r) − t2(1 − r) + 1]h∗(r)dr

)
ds

+

∫ 1

0
G(1, s)

(
1
2

∫ 1

0
[(t2 − r) − t1(1 − r) − t2(1 − r) + 1]h∗(r)dr

)
ds

+

∫ 1

0
G(1, s)

(
1
2

∫ 1

0
[−t1(1 − r) − t2(1 − r) + 1]h∗(r)dr

)
ds > 0,

and since u(t) is concave, thus u(t) > 0, for all t ∈ [0, 1] . This completes the proof.

Lemma 2.10. Let h∗(t) ∈ C+[0, 1], then the unique symmetric solution u(t) of the BVP given by (2.5) satisfies

min
t∈[0,1]

u(t) > l‖u‖, (2.11)

where l is defined as like the Lemma 2.7.

Proof. For any t ∈ [0, 1], from the Lemma 2.7 and Remark 2.8, we have

G(t, s) 6 G(s, s) and G∗(t, s) 6 G∗(s, s),

which implies that

u(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)h∗(r)dr

)
ds 6

∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)h∗(r)dr

)
ds.

Therefore,

‖u‖ 6
∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)h∗(r)dr

)
ds. (2.12)

Again, for any t ∈ [0, 1], from the Lemma 2.7 and Remark 2.8, we obtain

lG(s, s) 6 G(t, s) and lG∗(s, s) 6 G∗(t, s),
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which implies that

u(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)h∗(r)dr

)
ds > l

∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)h∗(r)dr

)
ds.

Therefore,
u(t) > l‖u‖. (2.13)

Hence, the inequalities (2.12) and (2.13), ensure that (2.11) holds.

Remark 2.11. From the Lemma 2.6, it is clear that (u, v) ∈ C2[0, 1]×C2[0, 1] is a solution of the SNLFOODEs
given by (1.1) if and only if (u, v) ∈ C[0, 1]×C[0, 1] is the solution of the system of integral equationsu(t) =

∫1
0 G(t, s)

(∫1
0 G
∗(s, r)f(r, v(r))dr

)
ds,

v(t) =
∫1

0 G
†(t, s)

(∫1
0 G
†∗(s, r)g(r,u(r))dr

)
ds.

(2.14)

If we combine the integral equations defined by (2.14), then we yield the nonlinear integral equation

u(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds.

Remark 2.12. Let K=
{
u ∈ C+[0, 1] : u(t) is symmetric, concave on [0, 1], and mint∈[0,1] u(t)> l‖u‖

}
. Then

it is noticeable that K is a positive cone in C[0, 1]. If we define an integral operator T : K→ C[0, 1] by

Tu(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds, (2.15)

then it is clear that the BVP introduced by (1.1) and (1.2) has a symmetric positive solution u = u(t) if
and only if u is a fixed point of the integral operator T defined by (2.15).

Lemma 2.13. The operator T : K→ K defined by (2.15) is completely continuous.

Proof. From Remark 2.12, it is clear that Tu is symmetric on [0, 1], (Tu)′′− f(t, v(t)) 6 0, and Tu is concave.
Now applying Lemma 2.9 for Tu, we obtain Tu ∈ C+[0, 1]. Thus, from Lemma 2.7 and non-negativity of
f and g, we get

Tu(t) =

∫ 1

0
G(t, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

6
∫ 1

0
G(s, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

6
∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds.

Hence, we obtain

‖Tu‖ 6
∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds. (2.16)

Again, from another part of Lemma 2.7, we get

Tu > l
∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds. (2.17)
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Hence, from (2.16) and (2.17), we have
Tu > l‖Tu‖.

Thus, T [K] ⊂ K Now, since G(t, s),G∗(t, s),G†(t, s),G†∗(t, s), f(t, v(t)) and g(t,u(t)) all are continuous,
then it is easy to prove that the operator T : K → K is completely continuous. This completes the
proof.

Now, we state two fixed point theorems of Krasnoselskii’s according to Guo [10], which are crucial to
our main results.

Theorem 2.14 ([10]). Let B be a Banach space and K ⊂ B be a cone in B. Assume that Ψ1 and Ψ2 are two bounded
open subsets of B with 0 ∈ Ψ1 and Ψ̄1 ⊂ Ψ2. Let operator T : K ∩

(
Ψ̄2 \Ψ1

)
→ K be completely continuous.

Suppose that one of the following two conditions are satisfied:

‖Tu‖ 6 ‖u‖, ∀u ∈ K∩ ∂Ψ1 and ‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ2 (i)

and
‖Tu‖ 6 ‖u‖, ∀u ∈ K∩ ∂Ψ2 and ‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ1. (ii)

Then T has at least one fixed point u∗ ∈ K∩
(
Ψ̄2 \Ψ1

)
and u∗ > 0.

Theorem 2.15 ([10]). Let B be a Banach space and K ⊂ B be a cone in B. Assume that Ψ1, Ψ2 and Ψ3 are three
bounded open subsets of B with 0 ∈ Ψ1, Ψ̄1 ⊂ Ψ2 and Ψ̄2 ⊂ Ψ3. Let operator T : K∩

(
Ψ̄3 \Ψ1

)
→ K be completely

continuous. Suppose the following conditions are satisfied:

‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ1, (i)
‖Tu‖ 6 ‖u‖, Tu 6= u, ∀u ∈ K∩ ∂Ψ2, (ii)
‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ3. (iii)

Then T has at least two fixed points u∗, u∗∗ in K ∩
(
Ψ̄3 \Ψ1

)
and more specifically u∗ ∈ K ∩ (Ψ2 \Ψ1) , u∗∗ ∈

K∩
(
Ψ̄3 \ Ψ̄2

)
.

3. Main results

In this section, we establish three theorems which prove the existence of at least one or at least two
symmetric positive solutions of the BVP given by (1.1) and (1.2).

Theorem 3.1. If following assumptions

lim
u→0+

sup
t∈[0,1]

f(t,u)
u

= 0, lim
u→0+

sup
t∈[0,1]

g(t,u)
u

= 0, (A1)

and

lim
u→∞ inf

t∈[0,1]

f(t,u)
u

=∞, lim
u→∞ inf

t∈[0,1]

g(t,u)
u

=∞ (A2)

are satisfied, then the BVP given by (1.1) and (1.2) has at least one symmetric positive solution

(u, v)∈C2([0, 1], R+)×C2([0, 1], R+),

where u(t) > 0, v(t) > 0.
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Proof. First, suppose that (A1) holds. Then from (A1), we get a number m1 ∈ (0, 1) such that for each
(s,u) ∈ [0, 1]× (0,m1), f(s,u) 6 λ1u, g(s,u) 6 λ1u, ∀λ1 > 0 satisfies

λ1

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)drds 6 1, λ1

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)dr∗ds∗ 6 1,

and for every u ∈ K and ‖u‖ = m1
2 from Lemma 2.7 we note that∫ 1

0
G†(r, s∗)

∫ 1

0
G†∗(s∗, r∗)g(r∗,u(r∗))dr∗ds∗ 6

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)g(r∗,u(r∗))dr∗ds∗

6 λ1

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)u(r∗)dr∗ds∗

6 ‖u‖ = m1

2
< m1.

Hence from (2.15), we have

Tu(x) =

∫ 1

0
G(x, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

6 λ1

∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)

∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗dr

)
ds

6 λ2
1

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

∫ 1

0
G† (s∗, s∗)

∫ 1

0
G†∗ (r∗, r∗)u (r∗)dr∗ds∗drds 6 ‖u‖.

Now, if put Ψ1 =
{
u ∈ C+[0, 1] : ‖u‖ < m1

2

}
, then we have

‖Tu‖ 6 ‖u‖, ∀u ∈ K∩ ∂Ψ1. (3.1)

Next, suppose that (A2) holds, then we get a number m2 >
√
lm1, where l is defined as Lemma 2.7, such

that for each (s,u) ∈ [0, 1]× (m2,+∞), f(s,u) > λ2u, g(s,u) > λ2u, ∀λ2 > 0 satisfies

λ2l

3
2
∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)drds > 1, λ2l

3
2
∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)dr∗ds∗ > 1,

and for every u ∈ K and ‖u‖ = 2m2√
l

, from Lemma 2.7 and Lemma 2.10, we have

∫ 1

0
G†(r, s∗)

∫ 1

0
G†∗(s∗, r∗)g(r∗,u(r∗))dr∗ds∗ > l2λ2

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)‖u‖dr∗ds∗

=
√
l‖u‖

l32λ2

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)dr∗ds∗


>
√
l‖u‖ = 2m2 > m2.

Hence, from (2.15), we have

Tu(z) =

∫ 1

0
G(z, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

> l2λ2
2

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

∫ 1

0
G† (r, s∗)

∫ 1

0
G†∗ (s∗, r∗)u (r∗)dr∗ds∗drds

> l3λ2
2

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

∫ 1

0
G† (s∗, s∗)

∫ 1

0
G†∗ (r∗, r∗) ‖u‖dr∗ds∗drds > ‖u‖.
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Now, if put Ψ2 =

{
u ∈ C+[0, 1] : ‖u‖ < 2m2√

l

}
, then we have

‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ2. (3.2)

Therefore, from (3.1), (3.2) and Theorem 2.14, we obtain that the operator T has at least one positive fixed
point in K ∩

(
Ψ̄2 \Ψ1

)
, i.e., the BVP given by (1.1) and (1.2) at least has one symmetric positive solution.

This completes the proof.

Theorem 3.2. If following assumptions

lim
u→0+

inf
t∈[0,1]

f(t,u)
u

=∞, lim
u→0+

inf
t∈[0,1]

g(t,u)
u

=∞, (A3)

and

lim
u→∞ sup

t∈[0,1]

f(t,u)
u

= 0, lim
u→∞ sup

t∈[0,1]

g(t,u)
u

= 0 (A4)

are satisfied, then the BVP given by (1.1) and (1.2) has at least one symmetric positive solution

(u, v) ∈ C2([0, 1], R+)×C2([0, 1], R+),

where u(t) > 0, v(t) > 0.

Proof. First, suppose that (A3) holds. Then from (A3), we get a number m̄3 ∈ (0, 1) such that for each
(y,u) ∈ [0, 1]× (0, m̄3), f(y,u) 6 λ3u, g(y,u) 6 λ3u, ∀λ3 > 0 satisfies

l

3
2λ3

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)drds > 1, l

3
2λ3

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)dr∗ds∗ > 1.

Since g(y, 0) = 0, so from the continuity of g(y,u), we obtain a number m3 ∈ (0, m̄3) such that g(y,u) 6
m̄3∫1

0 G
†(s, s)

∫1
0 G
†∗(y,y)dyds

, for each (y,u) ∈ [0, 1]× (0,m3]. Then for every u ∈ K and ‖u‖ = m3, from

Lemma 2.7 we note that∫ 1

0
G†(r, s∗)

∫ 1

0
G†∗(s∗, r∗)g(r∗,u(r∗))dr∗ds∗

6
∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)g(r∗,u(r∗))dr∗ds∗

6
∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)

m̄3∫1
0 G
†(s∗, s∗)

∫1
0 G
†∗(r∗, r∗)dr∗ds∗

dr∗ds∗

= m̄3.

Hence, from (2.15), we have

Tu(x1) =

∫ 1

0
G(x1, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

> lλ3

∫ 1

0
G(s, s)

(∫ 1

0
G∗(r, r)

∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗dr

)
ds

> l3λ2
3

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

∫ 1

0
G† (s∗, s∗)

∫ 1

0
G†∗ (r∗, r∗) ‖u‖dr∗ds∗drds > ‖u‖.



M. Asaduzzaman, M. Zulfikar Ali, J. Nonlinear Sci. Appl., 13 (2020), 364–377 374

Now, if put Ψ3 = {u ∈ C+[0, 1] : ‖u‖ < m3}, then we have

‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ3. (3.3)

Next, suppose that (A4) holds, then there exist e1 > 0 and e2 > 0 such that for each (y1,u) ∈ [0, 1]×
(0,∞), f(y1,u) 6 λ4u+ e1, g(y1,u) 6 λ4u+ e2, ∀λ4 > 0 satisfies

λ4

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)drds 6 1, λ4

∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)dr∗ds∗ 6 1.

Hence, for u ∈ C+[0, 1] from (2.15), we have

Tu(z1) =

∫ 1

0
G(z1, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

6 λ4

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

(∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗ + e1

)
drds

6 λ4

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

(∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
drds+ e3

6 λ4

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

∫ 1

0
G† (s∗, s∗)

∫ 1

0
G†∗ (r∗, r∗) (λ4u (r

∗) + e2)dr
∗ds∗drds+ e3

6 λ2
4

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)

∫ 1

0
G† (s∗, s∗)

∫ 1

0
G†∗ (r∗, r∗) ‖u‖dr∗ds∗drds+ e4

6 ‖u‖+ e4.

Thus, Tu 6 ‖u‖ as ‖u‖ →∞.
Now, if put Ψ4 = {u ∈ B, ‖u‖ < m4}, then for each u ∈ K and ‖u‖ = m4 > m3, we have

‖Tu‖ 6 ‖u‖, ∀u ∈ K∩ ∂Ψ4. (3.4)

Therefore, from (3.3), (3.4) and Theorem 2.14, we obtain that the operator T has at least one positive fixed
point in K ∩

(
Ψ̄4 \Ψ3

)
, i.e., the BVP given by (1.1) and (1.2) at least has one symmetric positive solution.

This completes the proof.

Theorem 3.3. If (A2) of Theorem 3.1, (A3) of Theorem 3.2, and following assumption

there exists a constantM1 > 0, such that f(s,u) 6
M1∫1

0 G(s, s)
∫1

0 G
∗(r, r)drds

(A5)

for every (s,u) ∈ [0, 1]× [lM1,M1], are satisfied, then the BVP given by (1.1) and (1.2) have at least two symmetric
positive solutions (u∗, v∗), (u∗∗, v∗∗) ∈ C2([0, 1], R+)× C2([0, 1], R+), where u∗(t) > 0, v∗(t) > 0,u∗∗(t) >
0, v∗∗(t) > 0.

Proof. Suppose that (A2) of Theorem 3.1 holds, then according to the proof of Theorem 3.1, we get

‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ5, (3.5)

where, Ψ5 = {u ∈ C+[0, 1] : ‖u‖ < m4} and m4 ∈ (M2,∞), M2 > 0.
Now, suppose that (A3) of Theorem 3.2 holds, then according to the proof of Theorem 3.2, we get

‖Tu‖ > ‖u‖, ∀u ∈ K∩ ∂Ψ6, (3.6)

where, Ψ6 = {u ∈ C+[0, 1] : ‖u‖ < m5} and m5 ∈ (0,M3), M3 > 0.
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Next, suppose that (A5) holds and let Ψ7 = {u ∈ C+[0, 1] : ‖u‖ < M1}, then for all u ∈ K ∩ ∂Ψ7, we
have u(s) ∈ [lM1,M1]. Now, from the Lemma 2.7, Lemma 2.10 and (2.12), we get∫ 1

0
G†(s∗, r∗)

(∫ 1

0
G†∗(r∗, r∗)g(r∗,u(r∗))dr∗

)
ds∗

> l
∫ 1

0
G†(s∗, s∗)

(∫ 1

0
G†∗(r∗, r∗)g (r∗,u(r∗))dr∗

)
ds∗ > l‖u‖,

and ∫ 1

0
G†(s∗, r∗)

(∫ 1

0
G†∗(r∗, r∗)g(r∗,u(r∗))dr∗

)
ds∗

6
∫ 1

0
G†(s∗, s∗)

(∫ 1

0
G†∗(r∗, r∗)g (r∗,u(r∗))dr∗

)
ds∗

6
∫ 1

0
G†(s∗, s∗)

∫ 1

0
G†∗(r∗, r∗)dr∗ds∗

M1∫1
0 G
†(s∗, s∗)

∫1
0 G
†∗(r∗, r∗)dr∗ds∗

=M1.

Hence from (2.15), we have

Tu(p) =

∫ 1

0
G(p, s)

(∫ 1

0
G∗(s, r)f

(
r,
∫ 1

0
G† (r, s∗)

(∫ 1

0
G†∗ (s∗, r∗)g (r∗,u (r∗))dr∗

)
ds∗

)
dr

)
ds

6
∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)f (r,M1)drds

=

∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)f (r,u)drds

6
∫ 1

0
G(s, s)

∫ 1

0
G∗(r, r)drds

M1∫1
0 G(s, s)

∫1
0 G
∗(r, r)drds

=M1

i.e., Tu(p) 6M1. Then for all u ∈ K∩ ∂Ψ7, we have

‖Tu‖ 6 ‖u‖. (3.7)

Therefore, from (3.5), (3.6), (3.7) and Theorem 2.15, we obtain that the operator T has at least two positive
fixed points in K∩

(
Ψ̄5 \ Ψ̄7

)
and K∩ (Ψ7 \Ψ6), respectively, that is the BVP given by (1.1) and (1.2) at least

has two symmetric positive solutions. This completes the proof.

4. Examples

In this section, we present some particular examples to explain our main results.

Example 4.1. Consider the following SNLFOODEs:
−u(4)(t) = v4 +

v4
[
1 + t2(1 − t)2

]
1 + v4 ,

−v(4)(t) = 4u4 +
4u4

[
1 + t2(1 − t)2

]
1 + u4 , t ∈ [0, 1],

(4.1)

with the four-point boundary value conditions
u(t) = u(1 − t), u′′′(0) − u′′′(1) = u′′

(
1
8

)
+ u′′

(
1
4

)
,

v(t) = v(1 − t), v′′′(0) − v′′′(1) = v′′
(

1
8

)
+ v′′

(
1
4

)
.

(4.2)
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Now, if we choose l =
5
64

, then all conditions of Theorem 3.1 are satisfied. Hence from Theorem 3.1, we
can say that the system of BVP given by (4.1) and (4.2) has at least one symmetric positive solution.

Example 4.2. Consider the following SNLFOODEs:
−u(4)(t) = v

5
2 +

v4
[
1 + t2(1 − t)2

]
1 + v4 ,

−v(4)(t) = 4u
5
2 +

4u4
[
1 + t2(1 − t)2

]
1 + u4 , t ∈ [0, 1],

(4.3)

with the four-point boundary value conditions
u(t) = u(1 − t), u′′′(0) − u′′′(1) = u′′

(
1
8

)
+ u′′

(
1
4

)
,

v(t) = v(1 − t), v′′′(0) − v′′′(1) = v′′
(

1
8

)
+ v′′

(
1
4

)
.

(4.4)

Now, if we choose l =
5
64

, then all conditions of Theorem 3.2 are satisfied. Hence from Theorem 3.2, we
can say that the system of BVP given by (4.3) and (4.4) has at least one symmetric positive solution.

Example 4.3. Consider the following SNLFOODEs:
−u(4)(t) =

85
64
[
1 + t2(1 − t)2

]v5
2 + v4

 ,

−v(4)(t) =
81
64
[
1 + t2(1 − t)2

]u5
2 + u4

 , t ∈ [0, 1],

(4.5)

with the four-point boundary value conditions
u(t) = u(1 − t), u′′′(0) − u′′′(1) = u′′

(
1
8

)
+ u′′

(
1
4

)
,

v(t) = v(1 − t), v′′′(0) − v′′′(1) = v′′
(

1
8

)
+ v′′

(
1
4

)
.

(4.6)

Now, if we choose l =
5
64

and M1 = 1, then all conditions of Theorem 3.3 are satisfied. Hence from
Theorem 3.3, we can say that the system of BVP given by (4.5) and (4.6) has at least two symmetric
positive solutions.

5. Conclusion

In this work, we established general approaches for checking the existence of symmetric positive
solutions of SNLFOODEs for four-point boundary value conditions with the help of Krasnoselskii’s fixed
point theorem under suitable conditions. Theorems 3.1 and 3.2 have been used to examine the existence
of single symmetric positive solution of BVP given by (1.1) and (1.2), whereas Theorem 3.3 has been used
to check the existence of double symmetric positive solutions of that BVP. Corresponding three justifying
examples also discussed here.
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