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Abstract

A computational cognitive model is derived from nonlinear interactions of (Neo) Piagetian-Vygostkian constructs to explain,
and predict cognitive processes during collaborative learning. Learning is re-conceptualized as continuous perturbations of cog-
nitive state which unfolds stable cognitive trajectories near Piagetian equilibrium. The model explicates topologically equivalent
cognitive patterns, attributed to multi-modal representation of sensory information presented to the learners. Synchronization
of the cognitive model is obtained via active control functions which predicts convergence of cognitive states. The synchronized
cognitive model is stabilized using Lyapunov matrix equation. These qualitative behaviors emerged due to learner-to-learner
and instructor-to-learner scaffolding driven by cognitive executive functions. The dynamical behaviors of the cognitive model
are simulated using control parameters with estimated datasets showing viable cognitive trajectories.
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1. Introduction

Recent studies in Mathematical Psychology shows that Neo-Vygostkian and Neo-Piagetian constructs
are requisite verbalized theories that link science education research and complex nonlinear dynamical
systems [28, 31, 34]. Vygotskian constructs explain the theoretical and conceptual framework of collab-
orative learning. Collaborative learning by nature, creates opportunities for learners to develop their
cognition; thinking, reasoning, problem solving, and learning by active communication with more capa-
ble peers (instructors) [15]. Also, Piagetian cognitive processes which focused on learners’ construction
of their knowledge is intertwined with nonlinear dynamic behaviors; learners’ cognitive evolution over
nested time scale [19, 29]. Transient cognitive dynamics and cusp catastrophe are robust qualitative behav-
iors in Piagetian stage-wise cognitive development [21]. In [23], Piagetian core constructs; assimilation and
accommodation processes are being modeled as independent control parameters that determine abrupt
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shift between cognitive developmental stages. The Piagetian notion of equilibration and equilibrium of
nonlinear system are equivalent [24]. On one hand, the former is a dynamic process of moving between
cognitive state of disequilibrium to equilibrium as learners assimilate new constructs and accommodate
problem solving schemes. On the other hand, both can be expressed mathematically by setting the first
derivatives of the dynamic equations to zero within a dissipative system [24, 28]. These could be modeled
as systems of mathematical equations which incorporate the so-called nonlinear interactions between the
cognitive state variables and control parameters [5, 20].

2. Logistic dynamics of cognitive model

The simplest model applied to cognitive processes in Education is the so-called logistic map which
shows nonlinear complexities [16, 17]. This is an iterative scheme of difference equation, which re-
conceptualize learning as qualitative changes in the learner’s cognitive architecture or executive functions
over nested time interval, controlled by psychometric parameters,

xn+1 = xn +αxn(1 −βxn). (2.1)

Considering equation (2.1), xn represents learners’ cognitive state at one time period t > 0, and xn+1
represents cognitive state at the next moment t+ 1. Here α > 0 denotes neo-Piagetian constructs such as
intrinsic learning rate [16]. The parameter β > 0 denotes extraneous cognitive load acting as inhibitory
factor during cognitive adaptation processes [25]. The model assumes that mental processing capacity;
κ-capacity is inversely proportional to the extraneous cognitive load parameter, β. Thus, the independent
control parameter α generates complexities in learners’ cognitive processes for some variational values
[10]. These notions could modify the logistic map in equation (2.1) as follows;

xn+1 = xn +αxn

(
1 −

xn

κ

)
,

Figure 1: bifurcation diagram of logistic model of learners’ stage-wise cognitive behaviors.

with x0 = η ∈ R+ as the initial chunk of cognitive state. The logistic map as shown in the bifurcation Fig.
1 explains cognitive transitions in Piagetian stage-wise cognitive processes. It connotes learners’ cognitive
state and behavioural patterns from fixed point attractor to a limit cycle, and from limit cycle into chaos
[34].
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Figure 2: asymptotically stable and cyclic behavior of cognitive state variable over nested time scale.

Fig. 2 shows a time series profile of cognitive state variable plotted against independent control
parameter (α), called bifurcation parameter [30]. The cognitive state behavior creates more patterns with
further bifurcations from chaotic period to another [8, 34]. On one hand, the cognitive state behavior is
globally asymptotically stable in Fig. 2 (a) and (b) with dynamics that are characteristics of fixed point
attractors. On the other hand, the transition point α = 2 in Fig. 1 starts the bifurcation from period 1
to period 2 where the fixed point attractor becomes a periodic cycle as α increases see Fig. 2 (c) and
(d). Towards the end of period 2, where α increases in value, the bifurcation region bifurcates repeatedly,
segmenting the profile into four smaller patterns in Fig. 1 and further cycles within cycles emerges as
seen in Fig. 3 (a).

Figure 3: profile of sensitivity of cognitive variable on initial conditions; chaotic behaviors.

Observe that, the system enters period 3, which is full-scale chaos, after one more set of bifurcation Fig.
3 (b). Also, irregular fluctuations in the model Fig. 3 (c) and (d), depicts sensitivity of learner’s cognitive
state to initial cognitive schemes. Ideally, these dynamics evolves as learners attempt to assimilate new
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knowledge to previously stable cognitive patterns, and major changes called bifurcations create new
cognitive structures [4]. The self-organizing nature of the cognitive processes facilitates the evolution of
increasing higher ordered thinking and reasoning processes that response to the external environment
through efficient and effective decision making.

In [26], coupled logistic maps were used to model synchronization of learners’ behavioral pattern
during social interactions. The coupling of individuals’ dynamics is specified in the following difference
equations; 

x1(t+ 1) =
r1x1(t)(1 − x1(t)) +αr2x2(t)(1 − x2(t))

1 +α
,

x2(t+ 1) =
r2x2(t)(1 − x2(t)) +αr1x1(t)(1 − x1(t))

1 +α
,

where the dynamical variables xi(i = 1, 2) can be interpreted as intensity of cognitive behaviors, and
the control parameters, ri(i = 1, 2) correspond to internal state (e.g., learning rate, learning style, or
any other psychometric constructs) that shapes the learners’ cognitive behaviors over time, and α is the
synchronization parameter representing the strength of coupling or degree of mutual influence during
social interactions. The results shown that at each level of coupling, synchronization increases for greater
similarity in learners internal state. Also, at each level of similarity in internal state, synchronization
increases with strong degree of coupling. Strong coupling promotes full synchronization for learners
with different internal state, which in turn guarantees convergence of their cognitive behaviors. If the
coupling were to be reduced, their dynamics would immediately diverge. Evidently, learners develop
stable cognitive state through synchronization during real-time classroom engagement [1, 3, 7, 27].

3. Mathematical formulation and parameterization of the cognitive model

The present section is focused on the assumptions and formulation of a cognitive model to explain,
interpret and predict learner-to-instructor cognitive patterns during classroom interaction. This approach
is analogous to reinforcement learning theory, and nonlinear dynamical system in education [16, 18].
It is assumed that learners could perform cognitive tasks independently, or with more capable peers
and instructors [11]. The stability patterns of learners’ cognitive behaviors depend on their internally
generated psychometric parameters as well as external stimuli or learning from peers and instructors.
Thus, the temporal cognitive model of Kolmogorov-type is given as follows;

ẋ(t) = αx
(

1 −
x

ξ1

)
+ ηxz+ µxyz,

ẏ(t) = βy
(

1 −
y

ξ2

)
+ δyz+ µxyz,

ż(t) = ρxz+ υyz+ψ(z, κ,σ),
ψ(z) = −κz− σz2,

(3.1)

with initial cognitive state defined as x(0) = φ1,y(0) = φ2, z(0) = φ3. Observe that learners explore
the learning environment with different initial conditions of cognitive states, showing unique level of
previous knowledge, and academic histories [32]. These initial conditions may change during teaching-
learning processes, with slight changes producing significant learning effects, and vice versa. The system
of nonlinear differential equations (3.1) has cognitive variables denoted by

(
x(t),y(t), z(t)

)
at time t > 0

as dependent variables, while the Greek letters denote Neo-Piagetian and Neo-Vygotskian control pa-
rameters. Here, α and β denote different learners’ intrinsic learning rates, ξi(i = 1, 2) denotes different
learners’ mental (information) processing capacities. It is assumed that ξ1 and ξ2 are inversely propor-
tional to their extraneous cognitive loads, respectively. Also, η and δ parameters denote learner-to-learner
scaffolding parameters, and µ represents cooperative proficiency, or coupling strength of mutual influence
during social interactions in the classroom [30]. The parameters, ρ and υ moderate instructor’s resilience
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and adaptation rates as posed by learner’s individual differences during teaching-learning process. Also,
the function ψ(z, κ,σ) generates inhibitory effects on the model; it connotes instructors’ forgetfulness, or
reluctance in response during teaching and learning processes. The cognitive model (3.1) could exhibits
complexities, if it satisfies dissipative conditions [6]. Hence, the qualitative properties of such system
could be study near their fixed points, attractors, and basin of attractions [13, 22].

3.1. Local dynamics of the cognitive model

The cognitive system continuously seeks steady state behavior during classroom interactions. Steady
state behavior connotes equilibration processes modified by Piagetian constructs such as accommodation
and assimilation; seeking the balance between previous cognitive schemata and incoming stimulus or
learning tasks [2, 12]. Define the closed-form of system (3.1) with bounded rationality condition as
follows. 

Ẋ(t) = F(X(t),
(
X(t) = ((x(t),y(t), z(t))T |(x(t) > 0,y(t) > 0, z(t) > 0)

)
,

F : R3
+ ×R+ → R3

+,

Ω =

(
X(t) ∈ R3

+|0 6 x(t) 6 ξ1, 0 6 y(t) 6 ξ2, 0 6 z(t) 6
ρξ1 + υξ2

σ

)
.

(3.2)

The equilibrium state of system (3.2) is defined as

Σ = (X(0)|F(X(x∗,y∗, z∗)) = 0),

where

x∗ =
ξ1(µσz

∗2 + κµz∗ + ηυz∗ +ακ)

µρξ1z∗ +αυ
,

y∗ =
ασz∗ +ακ− ηξ1z

∗ −αξ1ρ

µρξ1z∗ +αυ
,

P1(z
∗) = A3z

∗3 +A2z
∗2 +A1z

∗ +A0 = 0,

A3 = 1,A2 =
(δµρξ1ξ2 + ηµσξ1ξ2 + κµ

2ξ1ξ2)

µ2σξ1ξ2
,

A1 =
(αµυξ1ξ2 +βµρξ1ξ2 +αδυξ2 +βηρξ1 −αβσ)

µ2σξ1ξ2
,

A0 =
αβρξ1 +αβυξ2 −αβκ

µ2σξ1ξ2
.

(3.3)

The cognitive interaction matrix (Jacobian) Jij(i, j = 1, 2, 3) of the model linearized around Piagetian
equilibrium (x∗,y∗, z∗) yields the following matrix

Jij =


(αξ1 − 2αx∗) + ξ1(ηz

∗ + µy∗x∗)

ξ1
µx∗y∗ µx∗y∗ + ηx∗

µy∗z∗
(ξ2β− 2βy∗) + (δz∗ + µx∗z∗)

ξ2
µx∗y∗ + δy∗

ρz∗ υz∗ ρx∗ − 2σz∗ − κ

 (3.4)

with characteristic polynomial

P2(λ) = λ
3 + Trace(Jij)λ+ (A11 +A22 +A33)λ− det(Jij) = 0,

Aij = cof(Jij), ∀ i = j(i, j = 1, 2, 3).
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Definition 3.1 ([14]). Let A ∈ Rn×n be a real matrix, with P(λ) = det |λI−A| = a0λ
n + a1λ

n−1 + · · ·+
an−1λ+ an = 0. If ai > 0(i = 1, 2, . . . ,n), then P(λ) is Hurwitzian if and only if



∆1 = a1 > 0, ∆2 =

∣∣∣∣∣a1 a0

a3 a2

∣∣∣∣∣ > 0,∆3 =

∣∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣ > 0,

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0 · · · 0 0 0 0
a3 a2 a1 0 0 0 · · · 0 0 0
a5 a4 a3 a2 a1 0 0 · · · 0 0
· · · · · · · · · · · ·
· · · · · · an−1 an−2

a2n−1 a2n−2 · · · · · · · · · · · · · · · · · · · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ∆n−1an > 0,

where as = 0 ∀ s < 0 or s > n.

Definition 3.2 ([33]). A four tuple dynamical system (T , R3
+, A,φt∗) is topologically equivalent near an

equilibrium point E∗(x∗,y∗, z∗) to a dynamical system (T , R3
+, A,φt) near an equilibrium point E(x∗,y∗, z∗)

if there exists a homeomorphism h : R3
+ → R3

+ that

1. is defined in a small neighborhood U ⊂ R3
+ of E∗(x∗,y∗, z∗);

2. satisfies E(x∗,y∗, z∗) = h(E∗(x∗,y∗, z∗));
3. maps orbits of the first system in U onto orbits of the second system in V = F(U) ⊂ R3

+, preserving
the direction of time.

Remark 3.3. Definition (3.2) provides a way of characterizing two vector fields of the same qualitative
dynamics

Lemma 3.4 ([33]). ”Consider the sequence of coefficient of real polynomial Pn(λ) = anλ
n + an−1λ

n−1 + · · ·+
a1λ+ a0 text defined as {an}

i=n
i=0 . Let k be the total number of sign changes from one coefficient to the next in the

sequence, then the number of positive roots of the polynomial is either equal to k or k− 2m, where m is an even
integer. (Note, if k = 1, then there is exactly one positive real root)”.

Proposition 3.5 ([35]). The cognitive model (system) (3.1) is locally stable and dissipative if

3∑
i=1

λi < 0,

where λi are eigenvalues of the model (3.1).

Proof. Let us assume that µ = 0, the Piagetian equilibrium points of system (3.3) reduces to the following
x∗ =

ξ1(−αδυξ2 +βηυξ2 +αβσ−βηκ)

αβσ−ασυξ2 −βηρξ1
,

y∗ =
ξ2(ασρξ1 −βηρξ1 +αβσ−αδκ)

αβσ−ασυξ2 −βηρξ1
,

z∗ =
αβ(ρξ1 + υξ2 − κ)

αβσ−ασυξ2 −βηρξ1
,

and evaluating the cognitive interaction matrix Jij of system (3.4) at the equilibrium points yields the
following matrix.

α[(αβ−δυξ2)+ηβ(υξ2−κ)]
α(δυξ1−βσ)+βηρξ2

0 ηξ1(αβδ−βηκ−αδυξ2+βηυξ2)
αβσ−αδυξ−2−βηρξ1

0 β[(αβσ+αδ(ρξ1−κ)−βηρξ1)]
βηρξ1+α(δυξ1−βσ)

δξ2[βηρξ1−αρξ1δ+κδα−βασ]
βηρξ1+α(δυξ1−βσ)

αβρ[ρξ1+υξ2−κ]
αβσ−αδυξ2−βηρξ1

αβυ(ρξ1+υξ2−κ)
βηρξ1+α(δυξ1−βσ)

σαβ(κ−ρξ1−υξ2)
βηρξ1+α(δυξ1−βσ)

 .
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It satisfies the characteristic polynomial,

P3(λ) = λ
3 + p1λ

2 + p2λ+ p3 = 0, (3.5)

where

p1 =
αβδρξ1 −α

2δυξ2 +αβηυξ2 +αβρυξ1 +αβυσξ2 −β
2ηρξ1 +α

2 +α2βσ+αβ2σ−αβδκ−αβηκ−αβκσ

αβσ−αδυξ2 −βηρξ1
,

p2 =
−αδ2ρυξ2

1ξ2 −αδ
2ρυ2ξ2

1ξ
2
2 +αδρ

2υξ2
1ξ2 +αδηρυ

2ξ1ξ
2
2 +βδηρ

2υξ2
1ξ2 +βδρυ

2ξ1ξ
2
2 −βη

2ρ2υξ2
1ξ2

(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
−α2δ2ρυξ1ξ2 −α

2δρσυξ1ξ2 −α
2δσυ2ξ2

2 + 2αβδηρξ1ξ2 +αβδρ
2σξ2

1 −αβδσυ
2ξ2

2 −αβηρ
2σξ2

1
(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
αβηρσυ2ξ2

2 + 2αδ2κρυξ1ξ2 +αδ
2κυ2ξ2

2 −αδκρυξ1ξ2 −β
2η2ρυξ1ξ2 −β

2ηρ2σξ2
1 −βη

2ρυ2ξ1ξ
2
2

(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
−β2ηρσυξ1ξ2 −βδηκρυξ1ξ2 +βη

2κρ2ξ2
1 + 2βη2κρυξ1ξ2 +α

2βδρσξ1 −α
2βδσυξ2 +α

2βρσ2ξ1

(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
α2βσ2υξ2 +α

2δ2κυξ2 +α
2δκσυξ2 −αβ

2ηρσξ1 +αβ
2ησυξ2 +αβ

2ρσ2ξ1 +αβ
2σ2υξ2

(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
−αβδηκρξ1 −αβδηκυξ2 − 2αβδκρσξ1 − 2αβηκσυξ2 −αδ

2κ2υξ2 +β
2η2κρξ1 +β

2ηκρσξ1

(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
α2β2σ2 −βη2κ2ρξ1 −α

2βδκυ−α2βκσ2 −αβ2ηκσ2 −αβ2κσ2 +αδβηκ2 +αβδκ2σ+αβηκ2σ

(αβ)−1(αβσ−αδυξ2 −βηρξ1)2 ,

p3 =
2αβδηρυξ1ξ2 −α

2δ2ρυξ1ξ2 −β
2η2ρυξ1ξ2 +α

2βδρσξ1 −α
2ρδσυξ2 −α

2βδκσ−αβ2ηκσ

(ρξ1 + υξ2 − κ)−1(αβ)−1(αβσ−αδυξ2 −βηρξ1)2

+
α2δ2κυξ2 −αβ

2ηρσξ1 +αβ
2 +αβ2ησυξ2 −αβδηρκξ1 −αβδηκυξ2 +β

2η2κρξ1 +α
2β2σ2 +αβδηκ2

(ρξ1 + υξ2 − κ)−1(αβ)−1(αβσ−αδυξ2 −βηρξ1)2 ,

(3.6)

whose eigenvalues are required to ensure stability and local dissipativity of the model. Let us consider,
the discriminant of equation (3.5) indicated by Φ(P3) as

Φ(P3) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p1 p2 p3 0

0 1 p1 p2 p3

3 2p1 p2 0 0

0 3 p1 p2 0

0 0 3 2p1 p2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 18p1p2p3 + (p1p2)

2 − 4p3
1p3 − 4p3

2 − 27p2
3.

Using lemma (3.4), the statement of proposition (3.5) is satisfied for Φ(P3) > 0, p1 > 0, p2 > 0, p3 > 0
in (3.6). Similarly, let µ 6= 0, then equation (3.3) gives the required equilibrium points. Suppose the
equilibrium points in (3.3) are numerical tractable, and matrix (3.4) is Hurwitzian at the equilibrium
points, then the statement of proposition (3.5) is satisfied.

4. Synchronization dynamics and stability of the cognitive model

Using definition (3.2), the cognitive system (3.1) has a topologically equivalent system given as follows
dx̂

dt̂
= x̂− x̂2 + η̂x̂ẑ+ µ̂x̂ŷẑ,

dŷ

dt̂
= β̂ŷ− β̂ŷ2 + δ̂ŷẑ+ ξ̂x̂ŷẑ,

dẑ

dt̂
= ρ̂x̂ẑ+ υ̂ŷẑ− κ̂ẑ− σ̂ẑ2,

(4.1)
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where η̂ =
η

ασ
, µ̂ =

µξ2

ασ
, β̂ =

β

α
, δ̂ =

δ

ασ
, ξ̂ =

µξ1

ασ
, ρ̂ =

ρξ1

α
, υ̂ =

υξ2

α
, κ̂ =

κ

α
, σ̂ =

1
α

, t̂ = αt, x(t) =

x̂(t̂)

ξ1
, y(t) =

ŷ(t)

ξ2
, z(t) = αẑ(t̂) via non-dimensionalization. An associative system (slave) of the master

equations (4.1) yields 
dx̂1

dt̂
= x̂1 − x̂

2
1 + η̂x̂1ẑ1 + µ̂x̂1ŷ1ẑ1 +ψx(t),

dŷ1

dt̂
= β̂ŷ1 − β̂ŷ

2
1 + δ̂ŷ1ẑ1 + ξ̂x̂1ŷ1ẑ1 +ψy(t),

dẑ1

dt̂
= ρ̂x̂1ẑ1 + υ̂ŷ1ẑ1 − κ̂ẑ1 − σ̂ẑ

2
1 +ψz(t),

(4.2)

where ψx(t), ψy(t), ψz(t) are the active control functions to be determined later. Then, the synchroniza-
tion error approximation of the two subsystems (4.1) and (4.2) yields,

x2 = x1 − x, y2 = y1 − y, z2 = z1 − z,

then, subtracting systems (4.1) and (4.2) for simplicity yields

dx2

dt
= x2 −x2

1 + x
2 + ηx1z1 − ηxy+ µx1y1z1 − µxyz︸ ︷︷ ︸

nonlinear

+ ψx(t)︸ ︷︷ ︸
noncommon

,

dy2

dt
= βy2 −βy2

1 +βy
2 + δy1z1 − δyz+ ξx1y1z1 − ξxyz︸ ︷︷ ︸

nonlinear

+ ψy(t)︸ ︷︷ ︸
noncommon

,

dz2

dt
= −κz2 + ρx1y1 − ρxy+ υy1z1 − υyz− σz

2
1 + σz

2︸ ︷︷ ︸
nonlinear

+ ψz(t)︸ ︷︷ ︸
noncommon

.

(4.3)

System (4.3) describes the error dynamics and can be considered as a control problem where the system
to be controlled is a linear system with active controller input function as

(
Ψ(t) = (ψx(t),ψy(t),ψz(t)

)T .
Suppose the matrix equation of the feedback control system defined as(

ψx,ψy,ψz
)T

= A
(
x2,y2, z2

)T , (4.4)

where

A =


(αξ1 − 2αx∗) + ξ1(ηz

∗ + µy∗x∗)

ξ1
µx∗y∗ µx∗y∗ + ηx∗

µy∗z∗
(ξ2β− 2βy∗) + (δz∗ + µx∗z∗)

ξ2
µx∗y∗ + δy∗

ρz∗ υz∗ ρx∗ − 2σz∗ − κ


is Hurwitzian, then the error dynamic is stabilized for(

ẋ2(t), ẏ2(t), ż2(t)
)T

= (A+B)
(
x2(t),y2(t), z2(t)

)T (4.5)

and

B =

1 0 0
0 β 0
0 0 −κ

 ,

then, denote (4.5) as (
ẋ2(t), ẏ2(t), ż2(t)

)T
= C

(
x2(t),y2(t), z2(t)

)T for C = A+B. (4.6)

Hence, synchronization of the cognitive system (4.1) with its associated subsystem (4.2) is achieved. The
following propositions give sufficient conditions for the system (4.1), and (4.2) to be asymptotically, and
globally synchronized for all initial conditions.
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Proposition 4.1. If there exists the feedback gain matrix B such that the eigenvalues of the matrix C = A+ B
are negative real or complex with negative real parts, then the dynamical system (4.1) asymptotically synchronizes
system (4.2) for all initial conditions.

Remark 4.2. The proof of the theorem is direct. Assuming that the parameters of the cognitive system (4.1)
and its associative systems (4.2) are known. The synchronization can be achieved by selecting an active
control function (4.4) such that the eigenvalues of the matrix C are negative or complex with negative real
parts.

On the other hand, a global synchronization dynamics of the cognitive systems could be achieved
using Lyapunov matrix equation defined for positive definite matrix Q = QT , and a positive definite
symmetric matrix P such that,

CTP + PC = −Q. (4.7)

The direct and explicit solution of the algebraic Lyapunov matrix equation (4.7) involves using Cayley-
Hamilton approach to calculate the matrix exponential function eC

Tt which satisfies the closed form
solution of the matrix P defined as

P =

∫∞
0
eC

TtQeCtdt. (4.8)

Proposition 4.3. The synchronized cognitive model (4.6) is globally stabilized in the sense of Lyapunov for all
initial conditions if and only if for any matrix Q = QT � 0, there exist a unique matrix P = PT � 0 such that (4.7)
is satisfied.

Proof. To show sufficiency, assume that the synchronized cognitive model (4.6) is time-invariant and
proposition (4.1) is satisfied. Let Q be a positive definite matrix such that Q = QT , and equation (4.8) is
well defined. Moreover the integral

P = lim
T→∞

∫T
t=0

eC
TtQeCtdt

6

∥∥∥∥∥
∫T
t=0

eC
TtQeCtdt

∥∥∥∥∥
6
∫T
t=0

∥∥∥eCTtQeCt∥∥∥
6 ‖Q‖

∫T
t=0

∥∥eCt∥∥2
dt

6 ‖Q‖
∫T
t=0

e2λmax(C)tdt

6 ‖Q‖
∫T
t=0

e2αtdt

6 ‖Q‖
∫T
t=0

e−2|α|tdt =
1

2|α|
‖Q‖ 6∞,

where λmax(C) 6 −min<e|λi| = α 6 0. So P < ∞ as T → ∞. Hence, there exists a quadratic Lyapunov
functional (positive definite), V(X(t)) = (x1(t),y2(t), z3(t)), defined to ensure the boundedness of the
matrix function in (4.8), say,

V(X(t)) = XT (t)PX(t) for some P = PT � 0. (4.9)

Taking the time derivative of (4.9) along the solution trajectories of system (4.6) yields,

d

dt
V(X(t)) = ẊT (t)CTPX(t) +XT (t)PCẊ(t)
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= XT (t)
(
CTP+ PC

)
X(t)

6 −XT (t)(t)QX(t) 6 −λmin(Q)‖X(t)‖2
3, ∀ X(t) ∈ R3

+.

By Lyapunov direct method [9], the time derivative of system (4.9) is negative definite. To show necessity,
assume that the matrix C = A+ B is hurwitzian (see definition (3.1)), then the matrix functional defined
in (4.8) is a bounded solution of eqn (4.7). That is

CTP+ PC =

∫∞
0
CTeC

TtQeCtdt+

∫∞
0
eC

TtQeCtCdt =

∫∞
0

d

dt

(
eC

TtQeCt
)
dt = −Q.

Hence, the solution of the algebraic Lyapunov function exists for the synchronized cognitive model (4.6).
To show that P � 0, note that

XT (t)PX(t) =

∫∞
0
XT (t)eC

TtQTQeCtX(t)dt =

∫∞
0
‖QeCtX(t)‖2dt,

which shows that P = PT and P � 0. Now, suppose, ad absurdum, that P is not positive semi-definite. Then,
there exists X(0) ∈ R3, X(t) 6= 0, such that XT (t)PX(T) = 0, which implies that QeCtCX(t) = 0, ∀ t > 0.
For t = 0, it follows that QX(t) = 0, which implies that QTQX(t) = 0, and hence, X(t) = 0, which is a
contradiction. Hence, P � 0.

Finally, assume the observability of the pair (C,Q), then there exist a unique solution of the algebraic
Lyapunov equation (4.7). Suppose ad absurdum, that there exist two solutions, say, P1, P2 and using (4.7)
yields; {

CTP1 + P1C = −Q,
CTP2 + P2C = −Q,

subtracting yields,

CT (P1 − P2) + (P1 − P2)C = 0,

eC
T (
CT (P1 − P2) + (P1 − P2)C

)
eCt = 0,

d

dt

(
eC

Tt(P1 − P2)e
Ct
)
= 0,∫∞

0

d

dt

(
eC

Tt(P1 − P2)e
Ct
)
= 0,

−(P1 − P2) = 0.

This leads to the contradiction P1 = P2, and hence, there exists a unique solution of the algebraic Lyapunov
(4.7), and numerically tractable.

5. Discussion of results and numerical simulations of the cognitive model

Table 1 shows cognitive variables and parameters with estimated data-sets of two cognitive typologies
used to demonstrate stability patterns, and synchronization dynamics of the model.

Figure 4 shows the cognitive trajectories of the first cognitive loop (*) in Table 1 exhibiting a stable
pattern over time in the neighborhood of Piagetian equilibrium point; (1.5320, 2.5884, 0.15744) with
cognitive interaction matrix defined as;−3.4725 0.0289 0.7056

0.0489 −7.7651 4.3589
0.079 0.2047 −2.4121

 . (5.1)
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Then, its characteristic polynomial

λ3 + 12.17909168λ2 + 36.64538318λ+ 22.23627034

has negative spectra (−0.8107,−3.4749,−7.8935) which guarantees local stability and dissipativity of the
cognitive model.

Table 1: (Neo)Piagetian-Vygotskian qualitative variables/estimated parameters.
cognitive state* cognitive state** descrip., of psychometric parameters values* values**

x(t) x2(τ) learner’s cognitive state at time τ, t > 0 variable variable
z(t) z2(τ) instructor’s cognitive state at time τ, t > 0 variable variable
z(t) z2(τ) instructor’s cognitive state at time τ, t > 0 variable variable
x(0) x2(0) learner’s initial cognitive state (1) 3.0000 3.0000
y(0) y2(0) learner’s initial cognitive state (2) 2.0000 2.0000
z(0) z2(0) instructor’s initial cognitive state 7.0000 7.0000
α α̂ learner’s intrinsic learning rates(1) 3.4000 1.0000
β β̂ learner’s intrinsic learning rate (2) 7.5000 2.2059
ξ1 ξ̂1 learner’s mental processing capacities(1) 1.5000 1.0000
ξ2 ξ̂2 learner’s mental processing capacities (2) 2.5000 1.0000
η, η̂ instructor to learner scaffolding parameters(1) 0.1500 0.0074
δ δ̂ instructor to learner scaffolding parameters(2) 1.5000 0.0836
µ µ̂, ξ̂ cooperative proficiencies 0.1200 0.0148

0.0089
ρ ρ̂ instructor’s adaptation rates (1) 0.0500 0.0220
υ υ̂ instructor’s adaptation rates (2) 1.3000 0.9559
κ κ̂ instructor’s forgetting coefficients 2.5000 0.7353
σ σ̂ instructor’s inhibitory effects 5.9800 0.2941
x∗ x̂∗ learner’s Piagetian equilibrium points(1) 1.5320 1.0053
y∗ ŷ∗ learner’s Piagetian equilibrium points(2) 2.5884 1.0000
z∗ ẑ∗ instructor’s Piagetian equilibrium points 0.1575 0.0011

Figure 4: local asymptotic stable cognitive trajectories of learners (L1,L2)-instructor (T1) interactions.

Figure 5 shows the cognitive trajectories of the second cognitive loop (**) in Table 1 preserving stability
pattern over time in the neighborhood of Piagetian equilibrium point; (1.0019, 1.0036, 0.087) with cognitive
interaction matrix defined as follows−1.0053142 0.005334396607 5.049645135

9.3660e− 6 −2.205980241 0.0925162324
2.3341e− 5 0.001011435484 −0.02221846803

 .

Then, its characteristic polynomial

λ3 + 3.233512949λ2 + 2.2884192λ+ 0.04891986679
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has negative spectra (−0.02205573817,−1.0054341,−2.20602311) which guarantees local stability and dis-
sipativity of the cognitive model.

Figure 5: local asymptotic stable cognitive trajectories of learners (L1,L2)-instructor (T1) interactions.

Figure 6: synchronized and global asymptotic stable patterns of learners (L1,L2) and instructor (T1) cognitive interactions.

Figure 6 depicts synchronization dynamics of the two (2) cognitive loops. In one hand, proposition
4.1 is satisfied, because the cognitive interaction matrix (5.1) is Hurwitzian with a feedback gain matrix B
defined as follows

B =

1 0 0
0 2.2059 0
0 0 −0.7353


with synchronized cognitive interaction matrix C defined as

C =

−2.4725 0.0289 0.7056
0.0489 −5.5592 4.3584
0.0078 0.2047 −1.6768

 .

On the other hand, the synchronized dynamics of the cognitive model is globally stable as shown in
Figure 6 with Lyapunov matrix P defined as

P =

 0.2024 2.347e− 3 0.0387
2.347e− 3 0.0925 0.0702

0.0387 0.07017 0.4969


satisfying the statement of proposition (4.3) for any identity 3× 3 matrix Q.
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6. Conclusion

This study provides qualitative behaviors of cognitive processes using the approach of complex non-
linear dynamical system. The notion of Piagetian equilibrium which is analogous to equilibrium of a
nonlinear dynamical system, guarantees the existence of fixed point/attractors of the cognitive model.
The model is dissipitive, locally stabilized in the neighborhood of Piagetian equilibrium. Its exhibits
global synchronization dynamics for different cognitive topologies. The dynamics of the cognitive model
were characterized as cognitive trajectories visible via simulations of the cognitive state variables with
estimated control parameters. In applications to educational science, a stable cognitive pattern ensures
effective and efficient cognitive performance and robustness in decision making. Synchronization dynam-
ics of the model explains rationality of cognitive convergence in problem solution during collaborative
learning.
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