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Abstract

It follows from [A. L. Dontchev, R. T. Rockafellar, Springer, New York, (2014), Theorem 5I.3] that the distance from a point
x to the set of fixed points of a set-valued contraction mapping Φ is bounded by a constant times the distance from x to Φ(x).
In this paper, we generalize both this result and Lim’s lemma for a larger class of set-valued mappings instead of the class of
set-valued contraction mappings. As consequence, we obtain some known fixed points theorems.
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1. Introduction and preliminaries

Let (X,d) be a metric space. We denote by C(X) the set of nonempty and closed subsets of X. The
extended1 Hausdorff distance between two elements A and B of C(X) is

h(A,B) = max {e(A,B), e(B,A)} ,

where e(A,B) = supa∈A d(x,B) is the excess from the set A to the set B. The pair (C(X),h) is an extended
metric space, see for instance [1].

Let Φ : X→ C(X) be a set-valued mapping.

(i) Φ is said to be Lipschitzian if there exists a nonnegative constant α such that

h(Φ(x),Φ(y)) 6 αd(x,y), ∀x,y ∈ X.

The constant α is called Lipschitz constant of Φ. If α < 1, Φ is said to be a set-valued contraction
mapping.
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(ii) Φ is said to be a set-valued Kannan mapping if there exists a constant β ∈ [0, 1/2) such that

h(Φ(x),Φ(y)) 6 β[d(x,Φ(x)) + d(y,Φ(y))], ∀x,y ∈ X.

(iii) Φ is said to be a set-valued Chatterjea mapping if there exists a constant γ ∈ [0, 1/2) such that

h(Φ(x),Φ(y)) 6 γ[d(x,Φ(y)) + d(y,Φ(x))] ∀x,y ∈ X.

(iv) Φ is said to be a set-valued Reich mapping if there exists two nonnegative constants α,β with α+ 2β <
1 such that

h(Φ(x),Φ(y)) 6 αd(x,y) +β[d(x,Φ(x)) + d(y,Φ(y))] ∀x,y ∈ X.

(v) Φ is said to be a set-valued Hardy-Rogers mapping if there exists three nonnegative constants α,β,γ
with α+ 2β+ 2γ < 1 such that

h(Φ(x),Φ(y)) 6 αd(x,y) +β[d(x,Φ(x)) + d(y,Φ(y))] + γ[d(x,Φ(y)) + d(y,Φ(x))] ∀x,y ∈ X.

It is easy to see that the set-valued contraction mappings and the set-valued Kannan mappings are set-
valued Reich mappings. It was shown by two examples in [6] that the set-valued contraction mappings
and the set-valued Kannan mappings are independent. An example in [9] shows that the set-valued
Reich mapping is a proper generalization of the set-velued contaction mappings and the set-valued Kan-
nan mappings. Observe also that Hardy-Rogers set-valued mapping cover both of Reich and Chatterjea
mappings set-valued.

A point x ∈ X is said to be a fixed point of a set-valued mapping Φ : X → C(X) if x ∈ Φ(x). The set
of fixed points of Φ will be denoted by Fix(Φ). It follows from [3, Theorem 5I.3] that the distance from a
point x to the set of fixed points of a set-valued contraction mapping Φ is bounded by a constant times
the distance from x to Φ(x). Precisely, we have the following result:

Theorem 1.1 ([3]). Let (X,d) be a complete metric space, and let Φ : X → C(X) be a set-valued contraction
mapping with Lipschitz constant α. Then, for every x ∈ X,

d(x, Fix(Φ)) 6
1

1 −α
d(x,Φ(x)).

Our first goal in this paper is to give a generalization of this theorem (Theorem 1.1) for set-valued
Hardy-Rogers mappings instead of set-valued contaction mappings.

As application, we provide a generalization of Lim’s lemma, see [7, Lemma 1], which says that the
extended Hausdorff distance between the sets of fixed points of two set valued contraction mappings is
bounded by a constant times the uniform extended Hausdorff distance between the mappings.

2. Main result and consequences

In this section, we present our main result, see Theorem 2.1 below, from which we will derive a list
of consequences, among them Theorem 1.1. The key idea of the proof of our main result is based on an
iteration procedure similar to that used in proving [4, Theorem 2.1].

Theorem 2.1. Let (X,d) be a complete metric space, and let Φ : X→ C(X) be a set-valued Hardy-Rogers mapping
with constants α,β and γ. Then, for every x ∈ X,

d(x, Fix(Φ)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
d(x,Φ(x)). (2.1)
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Proof. By assumption, we have α+ 2β+ 2γ < 1 and

h(Φ(x),Φ(y)) 6 αd(x,y) +β[d(x,Φ(x)) + d(y,Φ(y))] + γ[d(x,Φ(y)) + d(y,Φ(x))], (2.2)

for all x,y ∈ X.
Let x ∈ X and y ∈ Φ(x). If y = x, then x ∈ Φ(x), hence x ∈ Fix(Φ). Therefore the left side of (2.1) is 0

and the estimation (2.1) holds automatically.
Assume next that y 6= x. Consider a real α ′ > α such that α ′ + 2β+ 2γ < 1 and define

r :=
α ′ +β+ γ

1 − (β+ γ)
.

By induction, we will construct a sequence (xn) of elements of X, with x0 = x, such that for all n ∈N

xn+1 ∈ Φ(xn) and d(xn, xn+1) 6 r
nd(x,y). (2.3)

By taking x1 = y we obtain (2.3) for n = 0.
Now, suppose that we have already found x0, x1, · · · , xm, satisfying (2.3) for n = 0, 1, · · · ,m− 1, for

some m ∈N∗.
By assumption of induction, xm ∈ Φ(xm−1). Then, using (2.2), we obtain

d(xm,Φ(xm)) 6 h(Φ(xm−1),Φ(xm))

6 αd(xm−1, xm) +β[d(xm−1,Φ(xm−1)) + d(xm,Φ(xm))]

+ γ[d(xm−1,Φ(xm)) + d(xm,Φ(xm−1))]

6 αd(xm−1, xm) +βd(xm−1, xm) +βd(xm,Φ(xm))

+ γd(xm−1, xm) + γd(xm,Φ(xm)).

Thus, by vertu of the assumption of induction,

d(xm,Φ(xm)) 6
α+β+ γ

1 − (β+ γ)
d(xm, xm−1) < r

md(x,y).

Hence, there exists xm+1 ∈ Φ(xm) such that

d(xm, xm+1) 6 r
md(x,y).

In this moment, we have completely finished the induction step, hence (2.3) holds for every n ∈N.
Let us now prove that (xn)n is a Cauchy sequence. Let (n,m) ∈N2 such that n < m. With the triangle

inequality and the use of (2.3), it follows that

d(xn, xm) 6
m−1∑
k=n

d(xk, xk+1) 6
m−1∑
k=n

rkd(x,y) 6
rn

1 − r
d(x,y). (2.4)

Since r ∈ [0, 1) the right hand of (2.4) converges to 0 when n goes to ∞. This proves that (xn)n is a
Cauchy sequence of elements of X. By completeness of X we deduce that the sequence (xn) converges to
some x̄ ∈ X.

On the other hand, we have

d(x̄,Φ(x̄)) 6 d(x̄, xn+1) + d(xn+1,Φ(x̄))

6 d(x̄, xn+1) + h(Φ(xn),Φ(x̄))

6 d(x̄, xn+1) +αd(xn, x̄) +β[d(xn,Φ(xn)) + d(x̄,Φ(x̄))]

+ γ[d(xn,Φ(x̄)) + d(x̄,Φ(xn))]
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6 d(x̄, xn+1) +αd(xn, x̄) +β[d(xn, xn+1) + d(x̄,Φ(x̄))]

+ γ[d(xn, x̄) + d(x̄,Φ(x̄)) + d(x̄, xn+1)].

Passing to the limit in this latter when n goes to +∞, we get

d(x̄,Φ(x̄)) 6 (β+ γ)d(x̄,Φ(x̄)).

Since β+ γ < 1, it follows that d(x̄,Φ(x̄)) = 0. Therefore, x̄ ∈ Fix(Φ) because Φ(x̄) is closed. By taking
n = 0 and letting m goes to ∞ in (2.4), we obtain

d(x, Fix(Φ)) 6 d(x, x̄) 6
1

1 − r
d(x,y) =

1 − (β+ γ)

1 − (α ′ + 2β+ 2γ)
d(x,y).

Also, by letting α ′ goes to α in this latter, we get

d(x, Fix(Φ)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
d(x,y).

By taking the infimum over y ∈ Φ(x), we conclude the required estimation

d(x, Fix(Φ)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
d(x,Φ(x)).

As a first consequence of our main result (taking β = γ = 0) we obtain Theorem 1.1. A second
consequence is [4, Theorem 2.1], its statement is given in the following corollary, which generalizes both
Nadler’s fixed point theorem [8, Theorem 5] and the fixed point theorem of Hardy and Rogers [5, Theorem
1].

Corollary 2.2. Let (X,d) be a complete metric space and let Φ : X→ C(X) be a set-valued Hardy-Rogers mapping
with constants α,β and γ. Then Φ has a fixed point.

In the following corollaries, we give some other consequences of our main result.

Corollary 2.3. Let (X,d) be a complete metric space, and let Φ : X→ C(X) be a set-valued mapping such that

h(Φ(x),Φ(y)) 6 a1d(x,y) + a2d(x,Φ(x)) + a3d(y,Φ(y)) + a4d(x,Φ(y)) + a5d(y,Φ(x)),

for all x,y ∈ X, where ai > 0 for each i ∈ {1, 2, · · · , 5} and
∑5
i=1 ai < 1. Then, for every x ∈ X,

d(x, Fix(Φ)) 6
2 −

∑5
i=2 ai

2 − 2
∑5
i=1 ai

d(x,Φ(x)).

Corollary 2.4. Let (X,d) be a complete metric space, and let Φ : X→ C(X) be a set-valued Kannan mapping with
constant β. Then, for every x ∈ X,

d(x, Fix(Φ)) 6
1 −β

1 − 2β
d(x,Φ(x)).

Kannan’s fixed point theorem [6] is straight from this corollary.

Corollary 2.5. Let (X,d) be a complete metric space, and let Φ : X → C(X) be a set-valued Chatterjea mapping
with constant γ. Then, for every x ∈ X,

d(x, Fix(Φ)) 6
1 − γ

1 − 2γ
d(x,Φ(x)).

Chatterjea’s fixed point theorem [2] can be directly derived from this corollary.

Corollary 2.6. Let (X,d) be a complete metric space, and let Φ : X → C(X) be a set-valued Reich mapping with
constants α and β. Then, for every x ∈ X,

d(x, Fix(Φ)) 6
1 −β

1 − (α+ 2β)
d(x,Φ(x)).

Riech’s fixed point theorem [9] easily follows from this corollary.
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3. A generalization of Lim’s lemma

In 1985, Lim proved the following theorem called in modern literature Lim’s lemma.

Theorem 3.1 ([7, Lemma 1]). Let (X,d) be a complete metric space, and let T1 and T2 be two set-valued contraction
mappings from X into C(X) with the same Lipschitz constant α. Then

h(Fix(T1), Fix(T2)) 6
1

1 −α
sup
x∈X

h(T1(x), T2(x)).

A variant of this result has been recently appeared in [3] as follows.

Theorem 3.2 ([3, Theorem 5I.4]). Let (X,d) be a complete metric space and let T1 and T2 be two set-valued
contraction mappings from X into C(X) with the same Lipschitz constant α. Then

e(Fix(T1), Fix(T2)) 6
1

1 −α
sup
x∈X

e(T1(x), T2(x)).

In the following theorem we extend this result (Theorem 3.2) for set-valued Hardy-Rogers mappings
instead of set-valued contaction mappings.

Theorem 3.3. Let (X,d) be a complete metric space, and let T1 and T2 be two set-valued Hardy-Rogers mappings
from X into C(X) with the same constants α,β and γ. Then

e(Fix(T1), Fix(T2)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
sup
x∈X

e(T1(x), T2(x)).

Proof. By assumption T2 : X → C(X) is a set-valued Hardy-Rogers mapping with constants α,β and γ.
Then, applying Theorem 2.1 whith Φ = T2, we have for any x ∈ X

d(x, Fix(T2)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
d(x, T2(x)). (3.1)

Passing to the supremum in (3.1) with respect to x ∈ Fix(T1) we have

e(Fix(T1), Fix(T2)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
sup

x∈Fix(T1)

d(x, T2(x))

6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
sup

x∈Fix(T1)

e(T1(x), T2(x))

6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
sup
x∈X

e(T1(x), T2(x)).

As a corollary of Theorem 3.3, we obtain the following generalization of Lim’s lemma (Theorem 3.1).

Corollary 3.4. Let (X,d) be a complete metric space, and let T1 and T2 be two set-valued Hardy-Rogers mappings
from X into C(X) with the same constants α,β and γ. Then

h(Fix(T1), Fix(T2)) 6
1 − (β+ γ)

1 − (α+ 2β+ 2γ)
sup
x∈X

h(T1(x), T2(x)).

We deduce immediately from Corollary 3.4 the following result, which can be regarded as an extension
of [3, Corollary 5I.6].

Corollary 3.5. Let (X,d) be a complete metric space, and let (Y, δ) be a metric space. Consider a mapping M :
Y ×X→ C(X) having the following properties:
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(i) M(y, ·) is a set-valued Hardy-Rogers mapping with α,β and γ uniformly in y ∈ Y;

(ii) M(·, x) is Lipschitzian with a constant λ uniformly in x ∈ X.

Then, the mapping y 7→ Fix(M(y, ·)) is Lipschitzian with constant λ 1−(β+γ)
1−(α+2β+2γ) .

Next, we give in the following corollaries some particular cases of Theorem 3.3.

Corollary 3.6. Let (X,d) be a complete metric space, and T1 and T2 be two set-valued Kannan mappings from X

into C(X) with the same constant β. Then

e(Fix(T1), Fix(T2)) 6
1 −β

1 − 2β
sup
x∈X

e(T1(x), T2(x)).

Corollary 3.7. Let (X,d) be a complete metric space, and let T1 and T2 be two set-valued Chatterjea mappings from
X into C(X) with the same constant γ. Then

e(Fix(T1), Fix(T2)) 6
1 − γ

1 − 2γ
sup
x∈X

e(T1(x), T2(x)).

Corollary 3.8. Let (X,d) be a complete metric space, and let T1 and T2 be two set-valued Reich mappings from X

into C(X) with the same constants α and β. Then

e(Fix(T1), Fix(T2)) 6
1 −β

1 − (α+ 2β)
sup
x∈X

e(T1(x), T2(x)).
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