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Abstract
This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (um)t =

uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a
semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we
establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size
goes to zero. Finally, we illustrate our analysis with some numerical experiments.
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1. Introduction

Consider the following nonlinear diffusion equation with neumann boundary conditions
(um)t = uxx, 0 < x < 1, t > 0,
ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0,
u(x, 0) = u0(x) > δ > 0, 0 6 x 6 1,

(1.1)

where m > 0, α < ∞ and u0 ∈ C2+ν([0, 1]) for some 0 < ν < 1, and verifies the compatibility conditions
u ′0(0) = 0 and u ′0(1) = uα0 (1). There are many evolution equations whose solutions develop singularity
in finite time, namely T . Close to this finite time T , solutions become unbounded at certain points of the
space. This phenomenon is called blow-up, and T is called the blow-up time. The set of points where
blow-up occurs is called the blow-up set. The blow-up phenomenon has been the focus of many authors
in recent years. Some were interested in the theoretical analysis [2, 5, 6, 10], and others in the numerical
one [1, 3, 4, 7, 8, 11]. Existence and uniqueness of regular solution, and the following results have been
proved by Filo in [6]:
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If 0 < m < α 6 1, the solution of (1.1) blows up in finite time T on the whole interval [0, 1], but if
0 < m < 1 < α, blow-up occurs only at the boundary x = 1. And if m > 1 with 2α > m+ 1, every solution
must blow up in a finite time. Furthermore, if α > m > 1, the solution of (1.1) blows up at x = 1. He also
established blow-up rate for some cases. Later, Dend and Xu [2] completed the blow-up rate results of
the solution of (1.1).

This paper deals with the numerical approximations of (1.1). Our goal is to prove the blow-up of the
numerical solution and the convergence of the numerical blow-up time without putting strong assumption
on initial data (we only use assumptions under which the solution of the continuous problem blows up).
Problem (1.1) can be rewritten in the following form

ut =
1
m
u1−muxx, (x, t) ∈ (0, 1)× (0, T),

ux(0, t) = 0, ux(1, t) = uα(1, t), t ∈ (0, T),
u(x, 0) = u0(x), x ∈ [0, 1],

(1.2)

The rest of the work is organized as follows. In the next section, we present a semidiscrete scheme of the
problem (1.1). In Section 3, we give some properties of this semidiscrete scheme. In Section 4, under some
conditions, we prove that the solution of the semidiscrete scheme of (1.1) blows up in finite time and that
the numerical blow-up time converges to the theoretical one when the mesh size goes to zero. Finally, in
the last section, we illustrate our analysis by giving some numerical results.

2. Semidiscrete problem

Let I be a positive integer and define the grid xi = ih, i = 0, . . . , I, where h =
1
I

is the mesh parameter.

We approximate the solution u of the problem (1.2) by the solution Uh(t) = (U0(t), . . . ,UI(t))T of the
following semidiscrete scheme

dUi(t)

dt
=

1
m
U1−m
i (t)δ2Ui(t), i = 0, . . . , I− 1, t ∈ (0, Th), (2.1)

dUI(t)

dt
=

1
m
U1−m
I (t)

(
δ2UI(t) +

2
h
UαI (t)

)
, t ∈ (0, Th), (2.2)

Ui(0) = ϕi > 0, i = 0, . . . , I, (2.3)

where for t ∈ (0, Th),

δ2Ui(t) =
Ui+1(t) − 2Ui(t) +UI−1(t)

h2 , i = 1, . . . , I− 1,

δ2U0(t) =
2U1(t) − 2U0(t)

h2 , δ2UI(t) =
2UI−1(t) − 2UI(t)

h2 ,

and [0, Th), the maximal time interval on which ‖Uh(t)‖∞ is finite, with ‖Uh(t)‖∞ = max06i6I |Ui(t)|.
When Th is finite, we say that the solution Uh(t) blows up in finite time and the time Th is called the
blow-up time of the solution Uh(t). Denote

δ2
∗Ui(t) =

δ
2Ui(t), if i = 0, . . . , I− 1,

δ2UI(t) +
2
h
UαI (t), if i = I.

3. Properties of the semidiscrete scheme

We give in this section some important results which will be used later.



A. Ganon, M. M. Taha, N’. Koffi, A. K. Touré, J. Nonlinear Sci. Appl., 14 (2021), 80–88 82

Lemma 3.1. Let f ∈ C0(R, R), if Vh,Wh ∈ C1([0, T), RI+1) and ah ∈ C0([0, T), RI+1
+ ) are such that for

i = 0, . . . , I

dVi(t)

dt
− ai(t)δ

2Vi(t) − f(Vi(t)) <
dWi(t)

dt
− ai(t)δ

2Wi(t) − f(Wi(t)), t ∈ (0, T), (3.1)

Vi(0) < Wi(0), i = 0, . . . , I,

then we have Vi(t) < Wi(t), 0 6 i 6 I, t ∈ (0, T).

Proof. Let us define the vector Zh(t) =Wh(t) − Vh(t). Let t0 be the first t ∈ (0, T) such that Zi(t) > 0 for
t ∈ [0, t0), 0 6 i 6 I, but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I}. It is easy to see that

d

dt
Zi0(t0) = lim

k→0

Zi0(t0) −Zi0(t0 − k)

k
6 0, δ2Zi0(t0) > 0,

which implies that
d

dt
Zi0(t0) − ai0(t)δ

2Zi0(t0) + f(Wi0(t0)) − f(Vi0(t0)) 6 0,

but this inequality contradicts (3.1) and the proof is complete.

Lemma 3.2. Let Uh be a solution of (2.1)-(2.3), then

Ui(t) > 0, i = 0, . . . , I, t ∈ (0, Th).

Proof. The semidiscret scheme (2.1)-(2.3) can be rewritten as follows

d(Umi (t))

dt
= δ2Ui(t), i = 0, . . . , I− 1, t ∈ (0, Th), (3.2)

d(UmI (t))

dt
= δ2UI(t) +

2
h
UαI (t), t ∈ (0, Th), (3.3)

Ui(0) = ϕi > 0, i = 0, . . . , I. (3.4)

Let t0 be the first t ∈ (0, Th) such that Ui(t) > 0 for t ∈ [0, t0), 0 6 i 6 I, but Ui0(t0) = 0 for a certain
i0 ∈ {0, . . . , I}. One can easily check that

d(Umi0
(t0))

dt
= lim
ε→0

Umi0
(t0) −U

m
i0
(t0 − ε)

ε
6 0, δ2Ui0(t0) > 0,

which implies that

d(Umi0
(t0))

dt
− δ2Ui0(t0) < 0 if 0 6 i0 6 I− 1,

d(UmI (t0))

dt
− δ2UI(t0) −

2
h
UαI (t0) < 0 if i0 = I.

But these inequalities contradict (3.2)-(3.3) and we get the expected result.

Lemma 3.3. Let Uh be a solution of (2.1)-(2.3) and the initial condition at (2.3) verifies δ2
∗ϕi > 0, 0 6 i 6 I.

Then,
dUi(t)

dt
> 0 for 0 6 i 6 I, t ∈ [0, Th).

Proof. Take T0 < Th fixed. Let us define the vector Wh(t) such that Wi(t) =
d

dt
Ui(t) for 0 6 i 6 I, t ∈

[0, T0]. We have

dWi(t)

dt
=

1
m
U1−m
i (t)δ2Wi(t) +

1 −m

m
U−m
i (t)δ2Ui(t)Wi(t), 0 6 i 6 I− 1, (3.5)
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dWI(t)

dt
=

1
m
U1−m
I (t)δ2WI(t) +

(
1 −m

m
U−m
I (t)δ2UI(t) +

2(1 −m+α)

mh
Uα−mI (t)

)
WI(t). (3.6)

Let K be a positive constant satisfying

K > max
06i6I, 06t6T0

{∣∣∣∣1 −m

m
U−m
i (t)δ2Ui(t)

∣∣∣∣}
and

K > max
06t6T0

{∣∣∣∣1 −m

m
U−m
I (t)δ2UI(t)

∣∣∣∣+ 2|1 −m+α|

mh
Uα−mI (t)

}
.

Consider the vector Zh(t) = Wh(t)e
−Kt. It is clear that Zh(0) > 0 since Wh(0) > 0. Let t0 be the first

t ∈ (0, T0] such that Zi(t) > 0 for t ∈ [0, t0), but Zi0(t0) < 0 for a certain i0 ∈ {0, . . . , I}. Without lost of
generality, we may suppose that i0 is the smallest integer which satisfies the above inequality. Then we
have

d

dt
Zi0(t0) = lim

k→0

Zi0(t0) −Zi0(t0 − k)

k
6 0, (3.7)

δ2Zi0(t0) > 0. (3.8)

From relations (3.5)-(3.6) and (3.8), we can easily show that

dZi0(t0)

dt
>

(
1 −m

m
U−m
i0

(t0)δ
2Ui0(t0) −K

)
Zi0(t0) > 0 if 0 6 i0 6 I− 1,

d

dt
Zi0(t) >

(
1 −m

m
U−m
I (t0)δ

2UI(t0) +
2(1 −m+α)

mh
Uα−mI (t0) −K

)
ZI(t0) > 0 if i0 = I,

which is a contradiction with (3.7) and the lemma is completely proved.

Lemma 3.4. Let Uh be a solution of (2.1)-(2.3) and the initial condition at (2.3) verifies δ2
∗ϕh > 0 and

ϕi < ϕi+1, 0 6 i 6 I− 1. Then, Ui(t) < Ui+1(t), 0 6 i 6 I− 1, t ∈ [0, Th).

Proof. We set Zi(t) = Ui(t)−Ui+1(t), 0 6 i 6 I− 1, t ∈ (0, Th). Let t0 be the first t > 0 such that Zi(t) < 0
for t ∈ (0, t0), but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I− 1}. Without lost of generality, we may suppose
that i0 is the smallest integer which satisfies the above inequality. We have

dZi0(t0)

dt
= lim
ε→0

Zi0(t0) −Zi0(t0 − ε)

ε
> 0, δ2Zi0(t0) < 0. (3.9)

By a simple computation, we obtain

dZi0(t0)

dt
=

1
m
U1−m
i0+1 (t0)δ

2Zi0(t0) +
1
m

(
U1−m
i0

(t0) −U
1−m
i0+1 (t0)

)
δ2Ui0(t0) if 0 6 i0 6 I− 2,

=
1
m
U1−m
i0+1 (t0)δ

2Zi0(t0) < 0,

dZI−1(t0)

dt
=

1
m
U1−m
I (t0)δ

2ZI−1(t0) +
1
m

(
U1−m
I−1 (t0) −U

1−m
I (t0)

)
δ2UI−1(t0)

−
2
mh

U1−m+α
I (t0) if i0 = I− 1,

=
1
m
U1−m
I (t0)δ

2ZI−1(t0) −
2
mh

U1−m+α
I (t0) < 0,

which contradict the relation (3.9) and the proof is complete.

Theorem 3.5. Assume that the problem (1.1) has a solution u ∈ C4,1([0, 1]× [0, Td]) and the initial condition at
(2.3) verifies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0, (3.10)

where uh(t) =
(
u(x0, t), . . . ,u(xI, t)

)T . Then, for h small enough, the semidiscrete problem (2.1)-(2.3) has a
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unique solution Uh ∈ C1([0, Td], RI+1) such that

max
06t6Td

‖Uh(t) − uh(t)‖∞ = O
(
‖ϕh − uh(0)‖∞ + h2) as h→ 0.

Proof. Let α > 0 be such that
‖u(·, t)‖∞ 6 α for t ∈ [0, Td]. (3.11)

Then the problem (2.1)-(2.3) has for each h, a unique solution Uh ∈ C1([0, Th), RI+1). Let t(h) 6
min{Td, Th} be the greatest value of t > 0 such that

‖Uh(t) − uh(t)‖∞ < 1. (3.12)

The relation (3.10) implies t(h) > 0 for h small enough. Using the triangle inequality, we obtain

‖Uh(t)‖∞ 6 ‖u(·, t)‖∞ + ‖Uh(t) − uh(t)‖∞ for t ∈ (0, t(h)),

which implies that
‖Uh(t)‖∞ < 1 +α for t ∈ (0, t(h)). (3.13)

Let eh(t) = Uh(t) − uh(t) be the discretization error. Using the Taylor’s expansion, we have
for t ∈ (0, t(h)),

dei(t)

dt
−

1
m
U1−m
i (t)δ2ei(t) =

1 −m

m
ξ−mi (t)δ2u(xi, t)ei(t) +O(h2), 0 6 i 6 I− 1,

deI(t)

dt
−

1
m
U1−m
I (t)δ2eI(t) =

(
1 −m

m
ξ−mI (t)δ2u(xI, t) +

2(1 −m+α)

mh
θ−m+α
I (t)

)
eI(t) +O(h

2),

where ξi(t) is an intermediate value between Ui(t) and u(xi, t) for i ∈ {0, . . . , I} and θI(t) the one between
UI(t) and u(xI, t). Using (3.11) and (3.13), there exist Q and K positive constants such that

dei(t)

dt
−

1
m
U1−m
i (t)δ2ei(t) 6 Q|ei(t)|+Kh

2, 0 6 i 6 I− 1,

deI(t)

dt
−

1
m
U1−m
I (t)δ2eI(t) 6

Q

h
|ei(t)|+Kh

2.

Now, we consider the function

Z(x, t) =
(
‖ϕh − uh(0)‖∞ +Mh2)e(L+1)t+Cx2

,

where M, L, C are non-negative constants. We denote by Z(xi, t) the discretisation in space of Z(x, t).
For suitable non-negative constants M, L, C, we obtain for t ∈ (0, t(h)),

dZ(xi, t)
dt

−
1
m
U1−m
i (t)δ2Z(xi, t) > Q|Z(xi, t)|+Kh2, 0 6 i 6 I− 1,

dZ(xI, t)
dt

−
1
m
U1−m
I (t)δ2Z(xI, t) >

Q

h
|Z(xI, t)|+Kh2,

Z(xi, 0) > |ei(0)|.

From Lemma 3.1, we obtain

ei(t) < Z(xi, t), 0 6 i 6 I, t ∈ (0, t(h)).

By the same argument, we also prove that

−ei(t) < Z(xi, t), 0 6 i 6 I, t ∈ (0, t(h)).
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We deduce that

‖Uh(t) − uh(t)‖∞ 6
(
‖Uh(0) − uh(0)‖∞ +Mh2)e(L+1)t+C, t ∈ (0, t(h)). (3.14)

To complete the proof of this theorem, we have to show that, for h sufficiently small, t(h) = Td. But if it
is not true, for some h, as small as we like, t(h) < Td and, by (3.12) and (3.14), we obtain

1 = ‖Uh(t(h)) − uh(t(h))‖∞ 6
(
‖Uh(0) − uh(0)‖∞ +Mh2

)
e(L+1)Td+C.

Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we deduce
that 1 6 0, which is impossible.

4. Numerical blow-up

In this section, we prove that the solution Uh of the semidiscrete problem (2.1)-(2.3) blows up in finite
time and its semidiscrete blow-up time converges to the real one when the mesh size goes to zero.

Theorem 4.1. Let 0 < m < α 6 1 or 0 < m < 1 < α or 1 < m < α. Assume that the problem (1.1) has
a solution u which blows up in finite time T such that u ∈ C4,1([0, 1]× [0, T)) and the initial condition at (2.3)
verifies ‖ϕh − uh(0)‖∞ = o(1) as h → 0. Then the unique solution Uh of (2.1)-(2.3) blows up in finite time Th
for sufficiently small h, and we have the following relation:

lim
h→0

Th = T .

Proof. To prove this theorem, we will use Theorem 1.4 given by Ushijima in [12]. We only have to check
three conditions: conditions A0, A1”’, and A2’ (see [12]).

Step 1 (Condition A0): The solution u of (1.1) blows up in finite time T (see [6]).

Step 2 (Condition A1”’): Let us define functional J as follows :

J[u](t) =

∫ 1

0
um(x, t)dx, t ∈ [0, T).

We have

dJ(t)

dt
=

∫ 1

0
(um)t(x, t)dx =

∫ 1

0
uxx(x, t)dx = uα(1, t) >

∫ 1

0
uα(x, t)dx,>

(∫ 1

0
um(x, t)dx

) α
m

. (4.1)

We obtain the last inequality by using Jensen’s inequality. Thus, we reach dJ(t)
dt > (J)α/m.

Define H(t) =
1
2
uα(1, t), t ∈ [0, T). From (4.1), we get

d

dt
J(t) > H(t), t ∈ [0, T) and lim

t→T
H(t) = ∞

since x = 1 is always a blow-up point.
Now, for t ∈ [0, Th) we denote by

Jh(t) = h

I∑
i=0

Umi (t) and Hh(t) =
1
2
UαI (t),

the numerical approximations of J and H, respectively. By a simple computation, we obtain for t ∈ [0, Th),

dJh(t)

dt
> Hh(t) and

dHh(t)

dt
=
α

2
Uα−1
I (t)

dUI(t)

dt
> 0.

A straightforward calculation yields the following inequality
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dJh(t)

dt
>
(
Jh
)α/m.

Putting G(s) = (s)α/m, it is clear that
dJh(t)

dt
> G(Jh),

and there exists s0 > 0 such that {
G(s) > 0, for s > s0,∫∞
s0

ds
G(s) <∞, since α

m > 1.

Condition (A”’) of theorem 1.4 in [12] is satisfied.

Step 3 (Condition A2’): Using Theorem 3.5, we show that for any ε > 0,

lim
h→0

sup
t∈[0,T−ε]

|J[u](t) − Jh[Uh](t)| = 0 and lim
h→0

sup
t∈[0,T−ε]

|H(t) −Hh(t)| = 0.

Finally, conditions A0, A1”’, and A2’ are satisfied. According to Theorem 1.4 of [12], we obtain the
desired results.

5. Numerical experiments

In this section, we estimate the numerical blow-up time of (2.1)-(2.3) by using the algorithm proposed
by Hirota and Ozawa [9]. Let {νj} be a geometric sequence. The main idea of this algorithm is to trans-
form the semidiscrete scheme (2.1)-(2.3) into a tractable form by the arc length transformation technique.
For each value νj, this tractable form is integrated by an ODE solver (here we use DOP54) from 0 to
νj in order to generate a linearly convergent sequence to the blow-up time. The sequence is then accel-
erated by the Aitken ∆2 method. In DOP54, there are three tolerances parameters, AbsTol, RelTol and
InitialStep. The parameters AbsTol and RelTol specify the tolerances of the absolute and relative errors,
respectively, and InitialStep is used to choose the manner in which the errors are controlled. We set
AbsTol = RelTol = 1.d–15, InitialStep = 0, we refer the readers to [7–9] for more details. The sequence {νj}

is as follows: νj = 210 · 2j (j = 0, . . . , 12) and the initial data

ϕi = 0.5 ∗ (i ∗ h)2 + 0.5, 0 6 i 6 I.

In the rows of the Tables 1-3, Th is the approximate blow-up time corresponding to meshes of I, n is
the numbers of iterations and the order s of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Others illustrations are given by some plots in the Figures 1-3.

Table 1: For m = 0.5, α = 0.9.
I Th n s

16 1.116774883 63522 –
32 1.116616203 120086 –
64 1.116576512 233503 2.00
128 1.116566594 535576 2.00
256 1.116564124 1851197 2.00
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Table 2: For m = 0.5, α = 2.
I Th n s

16 0.143979587 5441 –
32 0.142837935 9658 –
64 0.142521477 17854 1.85
128 0.142436825 33966 1.90
256 0.142414680 66908 1.94
512 0.142408969 153443 1.96
1024 0.142407511 486550 1.97

Table 3: For m = 1.1, α = 2.
I Th n s

16 0.367306599 5577 –
32 0.360220365 9375 –
64 0.357936256 16800 1.63
128 0.357227601 31424 1.69
256 0.357013541 61244 1.73
512 0.356950138 140209 1.76
1024 0.356931638 455441 1.78

Figure 1: Evolution of the numerical solution for I = 64, m = 0.5, α = 0.9 (case where 0 < m < α 6 1).

Figure 2: Evolution of the numerical solution for I = 64, m =
0.5, α = 2 (case where 0 < m < 1 < α).

Figure 3: Evolution of the numerical solution for I = 64, m =
1.1, α = 2 (case where 1 < m < α).

Remark 5.1. We observe from tables above that the growth of α accelerates the blow-up while the growth
of m delays it. We also have the convergence of the numerical blow-up time to the continuous one, since
the rate of convergence is near 2, which is just the accuracy of the difference approximation in space.

Remark 5.2. Figures 1, 2, and 3 show that the numerical solution blows up in finite time on the whole
space if 0 < m < α 6 1 and, on the boundary x = 1 if 0 < m < 1 < α or 1 < m < α. Which is in line with
the theoretically established result (see [6]).



A. Ganon, M. M. Taha, N’. Koffi, A. K. Touré, J. Nonlinear Sci. Appl., 14 (2021), 80–88 88

References
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