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Abstract

The aim of this work is to develop the new techniques of sequences by employing the gamma function by introducing the
space rq(4pg, κ) of non-integral order. The completeness property concerning to this non-integral order space will be developed.
Many interesting properties will be illustrated.
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1. Introduction

It is well known fact that gamma functions plays an explicit series and integral functional representa-
tions, and thus provide basic building for developing the useful products and transformation formulae.
Moreover, many applied problems often need solutions of a function in terms of parameters, rather than
merely in terms of a variable, and such a solution is often given by the parametric character of the Gamma
function. As a consequence, this function can be operated to establish the physical problems in many areas
of science, engineering and technology. Its origin is almost as often as the well-known factorial symbol n!
and were given by famous mathematician L. Euler (1729) as a natural extension of the factorial operation
n! from natural numbers n to real and even complex values of this argument [8].

Sequence space is referred to be a function space with entries as functions from positive numbers N

to the field R of real numbers or C the complex numbers. The set of every sequences (real or complex)
will be abbreviated by Ω. The bounded sequences, convergent sequences and null sequences will be
abbreviated by `∞, c and c0 respectively.

For an infinite matrix C = (ci,j) and ν = (νk) ∈ Ω, the C-transform of ν is Cν = {(Cν)i} provided it
exists ∀ i ∈N, where (Cν)i =

∑∞
j=0 ci,jνj.

For an infinite matrix C = (cij), the set GC, where

GC = {u = (ui) ∈ Ω : Cu ∈ G}, (1.1)
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is said to be as the matrix domain of C in G as can be found in [13, 15]. Also the set of all such maps will
be symbolized by (G,L) with G ⊆ LC as can be seen in [11, 16, 18, 21] and many others.

In [20], the author has introduced the following spaces V(4) viz.,

V(4) = {ρ = (ρj) ∈ Ω : (4ρj) ∈ V},

where V ∈ {`∞, c, c0} and ∆ρj = ρj − ρj+1, ∀ j ∈ N. Also naught will be taken for a term with negative
subscript. It has been further modified and generalized by authors as can be seen in [3, 5, 7, 10, 12, 17, 34]
and many others.

The space bvp in [4] has been defined as follows

bvp =

{
ρ = (ρk) ∈ Ω :

∑
k

|ρk − ρk−1|
p <∞} ,

where 1 6 p <∞. As in (1.1), the space bvp can be written as

bvp = (`p)4, 1 6 p <∞,

where, 4 denotes the matrix 4 = (4nk) defined as

4nk =

{
(−1)n−k, if n− 1 6 k 6 n,
0, if k < n− 1 or k > n.

As in [5], the authors have generalized spaces given in [20] and have given the following

4l(V) = {ρ = (ρj) ∈ Ω : (4lρj) ∈ V},

where l is non-negative integer and 4lρj = 4l−1ρj −4lρl+1, so that

4lρz =
l∑
t=0

(−1)t
(
l

t

)
ρz+t.

These are Banach spaces with the following norm

‖ρ‖ =
l∑
t=0

|ρt|+ ‖4lρ‖∞.

Choose the sequence of positive numbers as (qk) and for j∈ N set An =
n∑
j=0
qj. So the matrix Rq = (rij)

as defined in [25] is defined as follows

rij =

{ qj
Ai

, if 0 6 j 6 i,
0, if j > i .

This as in [29], we have following space

Rq(4pg) =

ρ = (ρj) ∈ Ω :
∑
j

∣∣∣∣∣ 1
Aj

j∑
m=0

gjqm∆ρm

∣∣∣∣∣
pj
 .

Choose the sequence of positive numbers as (qk) and for j∈ N set An =
n∑
j=0
qj. So the matrix Rq = (rij)
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as defined in [25] is defined as follows

rij =

{ qj
Ai

, if 0 6 j 6 i,
0, if j > i .

For a positive proper fraction τ, the author in [3] has defined a new pattern of this kind as follows

∆τρr =

∞∑
r=0

(−1)r
Γ(τ+ 1)

r!Γ(τ− r+ 1)
ρi+r,

for i ∈N, where the function Γ(τ) (or the Euler gamma function) of a real number τwith τ /∈ {0,−1,−2, · · · }
has be represented as follows:

Γ(τ) =

∫∞
0
e−ttτ−1 dt.

It is important to note that

(i) Γ(τ+ 1) = τ!, for τ ∈N;

(ii) Γ(τ+ 1) = τΓ(τ), for τ ∈ R \ {0,−1,−2, . . .}.

Some definitions of non-integral derivatives have been generalized by using techniques of new differ-
ence sequence spaces of non-integral order as can be seen in [3, 19] etc. To establish a new space with
the help of matrix methods were studied by several authors as can be found in [1, 11–17], [23–31, 33]
and many more. Following the references cited, the scenario here is to put forward and synthesis the
spaces Rq(4pg, κ) of order κ (non-integral) for which ∆(κ)

g -transform is in space `(p), where g = (gi) is a
sequence with gi 6= 0, ∀i ∈ N.

2. The space Rq(4p
g,κ)

In this section, we introduce the space Rq(4pg, κ) of non-integral order κ and discuss some of its basic
properties.

A linear topological space K is said to be paranormed space over R if for a function G : K→ R which is
subadditive satisfies G(θ) = 0, G(−ρ) = G(ρ) and continuity of scalar multiplication holds, which means
for |an − a| → 0 and G(ρn − ρ) → 0 imply K(anρn − aρ) → 0, ∀ a ′s ∈ R and ρ ′s ∈ K with zero vector as
θ and is in space K. From here on words, (pk) will represent a bounded sequence of strictly positive real
numbers with sup

k

pk = H and M = max {1,H}. Then, as in [22, 32], we write

`(p) = {ρ = (ρk) :
∑
k

|ρk|
pk <∞}.

Under the following paranorm, this space is complete

S(ρ) =

[∑
k

|ρk|
pk

] 1
M

.

Throughout the text, we employ the fact that p−1
i + {p

′
i}
−1 = 1 only if 1 < infpi6 H <∞.

Following the authors as cited in the references [2, 5, 6, 9, 29], the space Rq(4pg, κ) is defined as the
set of those sequences whose Rq(∆κg) transform is in the space `(p), this shows that

Rq(4pg, κ) =
{
ρ = (ρj) ∈ Ω : Rqg(∆

κ)ρ ∈ `(p)
}

,

where, 0 < pk 6 H <∞.
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Using (1.1), the space Rq(4pg, κ) can be redefined as

Rq(4pg, κ) = {`(p)}Rq(∆κg).

We define the sequence σ = (σk) as the Rq(∆κg)-transform of a sequence ρ = (ρn) with n ∈ N, via,

σn =

n−1∑
k=0

[
n∑
i=k

(−1)i−k
Γ(τ+ 1)

(i− k)!Γ(τ− i+ k+ 1)
gkqi
An

]
ρk +

gkqn

An
ρn. (2.1)

Definition 2.1. For the space Rq(∆κg) we have

(
Rq(∆κg)

)−1
nk

=


(−1)n−k

k+1∑
j=k

Γ(−τ+1)
(n−j)!Γ(−τ−n+j+1)

Ak
gkqj

, if 0 6 k < n,

An
gkqn

, if k = n,
0, if k > n,

which is known as the inverse of Rq(∆κg).

Definition 2.2. By choosing different values of κ and g, we have following deductions:

(i) For κ = 0, this space is reduced to Rt(g,p) introduced and studied in [29].

(ii) For κ = 1, this space is reduced to Rt(∆,g,p) introduced and studied in [24].

(iii) For κ = 0 and g = 1, this space is reduced to Rt(p) introduced and studied in [1].

Theorem 2.3. For 0 < pk 6 H < ∞, the space Rq(4pg, κ) is a complete linear metric space paranormed by H4
given by

H4(ρ) =

[∑
m

∣∣∣[Rq(∆κg)ρ]m∣∣∣pm
] 1

M

.

Proof. To prove Rq(4pg, κ) is linear with respect to the coordinate wise addition and scalar multiplication,
we first let τ, ρ ∈ Rq(4pg, κ) and have

H4(ρ+ τ) =

[∑
m

∣∣∣∣m−1∑
j=0

[ m∑
i=j

(−1)i−j
Γ(τ+ 1)

(i− j)!Γ(τ− i+ j+ 1)
gmqi
Am

]
(ρj + τj)

+
gmqm

Am
(ρm + ζm)

∣∣∣∣pm] 1
M

6

∑
m

∣∣∣∣∣∣
m−1∑
j=0

 m∑
i=j

(−1)i−j
Γ(τ+ 1)

(i− j)!Γ(τ− i+ j+ 1)
gmqi
Am

 ρj + gmqm
Am

ρm

∣∣∣∣∣∣
pm

1
M

+

∑
m

∣∣∣∣∣∣
m−1∑
j=0

 m∑
i=j

(−1)i−j
Γ(τ+ 1)

(i− j)!Γ(τ− i+ j+ 1)
gmqi
Am

 ζj + gmqm
Am

ζm

∣∣∣∣∣∣
pm

1
M

,

(2.2)

and for any β ∈ R (see, [22])
|β|pm 6 max(1, |β|M). (2.3)
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It is clear that, H4(θ)=0 and H4(ρ) = H4(−ρ), for all ρ ∈ Rq(4pg, κ). Again the inequality (2.2) and (2.3),
yield the subadditivity of H4 and

H4(βρ) 6 max(1, |β|)H4(ρ).

Let {ρn} be any sequence of points of the space Rq(4pg, κ) such that H4(ρn − ρ) → 0 and (βn) is a
sequence of scalars such that βn → β. Then, since the inequality,

H4(ρn) 6 H4(ρ) + H4(ρn − ρ),

holds by subadditivity of H4 ,{H4(ρn)} is bounded and we thus have

H4(βnρ
n −βρ) =

[∑
m

∣∣∣∣m−1∑
j=0

[ m∑
i=j

(−1)i−j
Γ(τ+ 1)

(i− j)!Γ(τ− i+ j+ 1)
gmqi
Am

]

× (βnρ
n
j −βρj) +

gmqm

Am
(βnρ

n
j −βρj)

∣∣∣∣pm] 1
M

6 |βn −β|
1
M H4(ρn) + |β|

1
M H4(ρn − ρ),

and approaches to zero as n → ∞. This shows that the continuity of scalar multiplication. Hence, H4 is
paranorm on the space Rq(4pg, κ).

We now show the completeness property of Rq(4pg, κ). For that, let {ρj} be any Cauchy sequence in
Rq(4pg, κ), where ρi = {ρi0, ρi1, · · · }. Then, for a given ε > 0. we can find a positive integer n0(ε) such that

H4(ρi − ρj) < ε, (2.4)

for all i, j > n0(ε). Using definition of H4 and for each fixed m ∈ N, we have

∣∣∣(Rq(∆κg)ρi)m −
(
Rq(∆κg)ρ

j
)
m

∣∣∣ 6 [∑
m

∣∣∣(Rq(∆κg)ρi)m −
(
Rq(∆κg)ρ

j
)
m

∣∣∣pm] 1
M

< ε,

for i, j > n0(ε). This shows that {(Rq(∆κg)ρ
0)k, (Rq(∆κg)ρ1)k, · · · } is a Cauchy sequence of real numbers

for every fixed m ∈ N. Since R is complete and hence converges, say, (Rq(∆κg)ρ
i)m → (Rq(∆κg)ρ)m

for i → ∞. Utilizing these infinitely many limits (Rq(∆κg)ρ)0, (Rq(∆κg)ρ)1, · · · , we consider the sequence
{(Rq(∆κg)ρ)0, (Rq(∆κg)ρ)1, . . . }. Now for each m ∈ N and i, j > n0(ε), we see from (2.4) that

r∑
k=0

∣∣(Rq(∆κg)ρi)m − (Rq(∆κg)ρ
j)m

∣∣pm 6 H4(ρi − ρj)M < εM. (2.5)

Take any i, j > n0(ε), letting first j→∞ in (2.5) and then r→∞, we obtain

H4(ρi − ρ) 6 ε.

Finally, taking ε = 1 in (2.5) and letting i > n0(1) we have by Minkowski’s inequality for each r ∈N that[
r∑
k=0

∣∣(Rq(∆κg)ρ)m∣∣pm
] 1

M

6 H4(υi − υ) + H4(υi) 6 1 +H4(υi),

which shows that υ ∈ Rq(4pg, κ). Since H4(ρ− ρi) 6 ε, for all i > n0(ε), it follows that ρi → ρ as i→∞,
hence we have shown that Rq(4pg, κ) is complete.
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Remark 2.4. It is easy to see that the property of absoluteness is not satisfied for Rq(4pg, κ), this implies
that H4(ρ) 6= H4(|ρ|) for atleast one sequence in the given space and thus Rq(4pg, κ) is a sequence space
with non-absolute nature.

We will now study for computing the linear isomorphism property of Rq(4pg, κ).

Theorem 2.5. For 0 < pk 6 H <∞, the introduced space is linearly isomorphic to space `(p).

Proof. In order to establish the result, we should determine the presence of a linear bijection to the spaces
Rq(4pg, κ) and `(p). Employing (2.1), consider the mapping G : Rq(4pg, κ) → `(p) given by ρ → σ = Gρ.
Its linearity is trivial and ρ = θ for Gρ = θ and consequently the injective property of G follows.

For σ = (σm) ∈ `(p) and k ∈N, choose sequence v = (ρm) given by

ρk =

k−1∑
j=0

j+1∑
i=j

(−1)k−j
Γ(−τ+ 1)

(k− i)!Γ(−τ− k+ i+ 1)
Aj
gjqi

σj

+
Ak
gjqk

σk.

So that

H4(ρ) =

∑
k

∣∣∣∣∣∣
k−1∑
j=0

 k∑
i=j

(−1)i−j
Γ(τ+ 1)

(i− j)!Γ(τ− i+ j+ 1)
gkqi
Ak

 ρj + gkqk
Ak

ρk

∣∣∣∣∣∣
pk


1
M

=

[∑
k

∣∣δkjσk∣∣pk
] 1
M

=

[∑
k

|σk|
pk

] 1
M

= S(σ) <∞,

where, Kronecker delta δkj is given by

δkj =

{
1, if k = j,
0, if k 6= j.

Hence, it follows that ρ ∈ Rq(4pg, κ), which implies that G is surjective and hence preserves the property
of paranorm. Thus, it follows that Rq(4pg, κ) and `(p) are linearly isomorphic.

3. The Schauder basis of the given space

This section deals with the calculation of Schauder basis of the given space.

Definition 3.1. Let X be a Banach space. A sequence (wn) ⊂ X is a Schauder basis if for every v ∈ X

there exists a unique convergent series of the form v =
∞∑
j=0
ajwj, where (aj) is a sequence of scalars and

is known as expansion of v.

Theorem 3.2. Consider the sequence ϑ(r)(q) = {ϑ
(r)
n (q)} of objects of space Rq(4pg, κ) for all fixed r ∈ N given

by

ϑ
(r)
n (q) =


j+1∑
i=j

(−1)r−j Γ(−τ+1)
(r−i)!Γ(−τ−r+i+1)

Aj
grqi

, if 0 6 r < n,

An
grqn

, if r = n,
0, if r > n.

Then, the basis for Rq(4pg, κ) is {ϑ(r)(q)} and any ρ ∈ Rq(4pg, κ) can be expressed in one and only one way as

ρ =
∑
r

Λr(q)ϑ
(r)(q), (3.1)

where, Λr(q) =
(
Rq(∆κg)ρ

)
r
, for all r ∈ N and 0 < pr 6 H <∞.
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Proof. Trivially, we have ϑ(m)(q) ⊂ Rq(4pg, κ), it is due to the fact that

Rq(∆κg)ϑ
(m)(q) = e(m) ∈ `(p), for m ∈ N, (3.2)

and 0 < pm 6 H < ∞, where e(m) is that sequence having non-zero entry as unity in mth place with
m ∈ N.

We now suppose that ρ ∈ Rq(4pg, κ) and write

ρ[l] =

l∑
r=0

Λr(q)ϑ
(r)(q), (3.3)

for all non-negative integer l. Then, clearly by using Rq(∆κg) to (3.3) with (3.2), we see that

Rq(∆κg)ρ
[l] =

l∑
r=0

Λr(q)R
q(∆κg)ϑ

(r)(q) =

l∑
r=0

(
Rq(∆κg)

)
r
e(r),

and (
Rq(∆κg)

(
ρ− ρ[l]

))
i
=

{
0, if 0 6 i 6 l,(
Rq(∆κg)ρ

)
i

, if i > l,

with i, l ∈ N. Since ε > 0, there exists an integer l0 in such a way that( ∞∑
i=l

|
(
Rq(∆κg)ρ

)
i
|pr

) 1
M

<
ε

2
,

for all l > l0. Hence,

H4

(
ρ− ρ[l]

)
=

( ∞∑
i=l

∣∣∣(Rq(∆κg)ρ)i∣∣∣pr
) 1

M

6

 ∞∑
i=l0

∣∣∣(Rq(∆κg)ρ)i∣∣∣pr
 1

M

<
ε

2
< ε,

for every l > l0, employing there by ρ ∈ Rq(4pg, κ) is represented as (3.1).
We now need to prove this representation to be unique for ρ ∈ Rq(4pg, κ) given by (3.1). On contrary,

assume that we can find another form of the type ρ =
∑
r
(q)br(q). Since the mapping G : Rq(4pg, κ)→ `(p)

employed is continuous, thus for m ∈ N, we see(
Rq(∆κg)ρ

)
m

=
∑
r

Jr(q)
(
Rq(∆κg)ϑ

r(q)
)
m

=
∑
r

Jr(q)e
(r)
m = Jm(q).

This is contradiction to the fact that
(
Rq(∆κg)ρ

)
m

= Λm(q), ∀m ∈ N. Consequently, the representation
which is set by (3.1) is unique.
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