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Abstract
In this paper, we combined the fractional Laplace transform and Homotopy perturbation method (LHPM) and applied it to

find an exact and approximation solution of different types of fractional beam equation. The fractional derivatives are considered
in sense of Caputo. It was found that this method obtained the rapid convergence of the series solution. Four examples are
illustrated to show the efficiency of this method.
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1. Introduction

It is well known the beam equation as follow

∂2

∂t2
u(x, t) +

∂4

∂x4u(x, t) = 0, (1.1)

is widely used on applied mathematics and engineering. There are various types of integral transform
method, that are used to solve (1.1). These include, the Laplace transform method [8], the Fourier trans-
form [4], the Sumudu transform [3], and the Mellin transform. Among all of the integral transform
methods, the Laplace transform method is the most popular. It has become a tradition that every new
integral transform links with the Laplace transform.

Fractional differential equations have been of great interest and attracted many researchers in recent
years. The exact solution for the majority of fractional differential cannot be found easily. The homotopy
perturbation method (HPM) proposed by HE [5–7], for solving differential equation and integral equa-
tion. In 2002, the Adomian decomposition method (ADM) was suggested to solve fractional differential
equation [2], but many researchers found it very difficulty to calculate the Adomian polynomials. In 2007,
Monami and Odibat [9–11] applied homotopy perturbation method (HPM) combined Laplace transform
to fractional differential equation and showed that the method is an alternative analytical method for frac-
tional differential equation. The advantage of this method is its capability for obtaining exact solutions
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for linear and nonlinear fractional partial differential equation. Furthermore, singe and Kumar [12], stud-
ied HPM and Laplace transform for solving fractional heat and wave-like equation. Xu and Cang [13],
solved the fractional heat like and Wave-like equation with variable coefficients using homotopy analysis
method.

The purpose of this work is studied the solution of a linear fractional beam equation as the following
form

Dαt u(x, t) +
∂4

∂x4u(x, t) = 0,

and a nonlinear fractional beam equation

Dαt u(x, t) +
∂4

∂x4u(x, t) + 2uux − u2
x = 0,

where 1 < α 6 2, 0 < x 6 a and t > 0. By homotopy perturbation method and Laplace transform of
fractional of derivatives in sense of Caputo, we obtain a very rapid convergence of the series solutions.
Four illustrative examples are given to demonstrate the efficiency of the method. Before going to that
point, the following definition and some important concepts are needed.

2. Preliminaries

In this section, we give some basic definition and proportion of fractional calculus which shall be used
in this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0, of a function f(t) =
Cµ,µ > −1 is defined as

Jαf(t) =
1
Γ(α)

∫t
0
(t− τ)α−1f(τ)dτ, J0f(t) = f(t).

For the Riemann-Liouville fractional integral we have:

Jαtγ =
Γ(γ+ 1)

Γ(γ+α+ 1)
tα+γ.

Definition 2.2. The fractional derivative of f(t) the Caputo is defined by

Dαtγ = Jn−αDnf(t) =
1
Γ(α)

∫t
0
(t− τ)α−1f(τ)dτ

for n− 1 < α 6 n,n ∈ N, x > 0.

Definition 2.3. The Laplace transform of a functional f(t), t > 0 is defined by

L[f(t)] = F(s) =

∫∞
0
e−stf(t)dt,

where f(t) is piece-wise continuous and of the exponential order (i.e., |e−atf(t)| < M) for some constants
a, M and complex parameter s.

Definition 2.4. The Laplace transform of the Caputo derivative is given by Caputo; see also Killbas et al.
in the form

L[Dαf(t)] = sαL[f(t)] −

n−1∑
r=0

sα−r−1f(r)(0+), (n− 1 < α 6 n).

Definition 2.5. The Mittag-Leffler is defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk+ 1)
, (α > 0, zεC), and Eα,β(z) =

∞∑
k=0

zk

Γ(αk+β)
, (α,β > 0, zεC).
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3. Homotopy perturbation method

Consider the following general nonlinear differential equation:

Lu+Nu = g(x, t), (3.1)

with initial conditions

u(x, 0) = k1 , ut(x, 0) = k1,

where u is a function of x and t and c1, c2 are constants or functions of x, and L and N are the linear and
nonlinear operators, respectively.

According to HPM, we construct a homotopy which satisfies the following relation

H(u,p) = (1 − p)
[
Lu− Lu0

]
+ p
[
Lu+Nu− g(x, t)

]
= 0, (3.2)

where p ∈ [0, 1] is an embedding parameter and u0 is an arbitrary initial approximation satisfied the given
initial conditions. When we put p = 0 and p = 1 in Eq. (3.2), we obtain

H(u, 0) = Lu− Lu0 = 0 and H(u, 1) = Lu+Nu− g(x, t) = 0.

In HPM, the solution of Eq. (3.2) is expressed as

u(x, t) = u0(x, t) + pu1(x, t) + p2u2(x, t) + · · · .

Hence, the approximate solution of Eq. (3.1) can be expressed as a series of the powers of p, i.e.,

u(x, t) = lim
p→1

(
u0(x, t) + pu1(x, t) + p2u2(x, t) + · · ·

)
= u0(x, t) + u1(x, t) + u2(x, t) + · · · .

4. Laplace homotopy perturbation method (LHPM)

To illustrate the idea of this method, we consider a general fractional nonlinear non-homogeneous
partial differential equation with the initial conditions of the form:

Dαt u(x, t) + Ru(x, t) +Nu(x, t) = g(x, t), (4.1)
u(x, 0) = h(x),ut(x, 0) = f(x),

where Dαt u(x, t) is the Caputo fractional derivative of the function u(x, t),R is the linear differential
operator, N represents the general nonlinear differential operator and g(x, t) is the source term. Taking
the Laplace transform on both sides of (4.1), we get

L[Dαt u(x, t)] +L[Ru(x, t)] +L[Nu(x, t)] = L[g(x, t)].

Using the property of the Laplace transform, we have

L[u(x, t)] =
h(x)

s
+
f(x)

s2 +
1
sα

L[gu(x, t)] −
1
sα

L[Ru(x, t)] −
1
sα

L[Nu(x, t)]. (4.2)

Taking inverse Laplace inverse on both sides of (4.2), we obtain

u(x, t) = G(x, t) −L−1
[

1
sα

L[Ru(x, t) +Nu(x, t)]
]

, (4.3)
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where G(x, t) represents the term arising form source term and the prescribed initial condition. Now we
apply the HPM

u(x, t) =
∞∑
n=0

pnun(x, t) (4.4)

and the nonlinear term can be decomposed as

N(u) =

∞∑
n=0

pnHn(u) (4.5)

for some He’s polynomials Hn(u) are given by

Hn(u0,u1, . . . ,un) =
1
n!
dn

dpn

[
N

( ∞∑
i=0

piui(x, t)
)]
p=0

;n = 0, 1, 2, . . . .

The first few components He’s are given by

H0 = N(u0),
H1 = u1N

′(u0),

H2 = u2N
′(u0) +

1
2
u2

1N
′′(u0),

H3 = u3N
′(u0) + u1u2N

′′(u0) +
u3

1
3!
N(3)(u0),

...

Substituting (4.4) and (4.5) into (4.3), we get

∞∑
n=0

pnun(x, t) = G(x, t) − p
(
L−1

[
1
sα

L[R

∞∑
n=0

pnun(x, t) +N
∞∑
n=0

pnun(x, t)]
])

.

Comparing the coefficients of like powers of p, the following approximations are obtained.

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = −L−1
[

1
sα

L

[
Ru0(x, t) −H0(u)

]]
,

p2 : u2(x, t) = −L−1
[

1
sα

L

[
Ru1(x, t) −H1(u)

]]
,

p3 : u3(x, t) = −L−1
[

1
sα

L

[
Ru2(x, t) −H2(u)

]]
,

...

Proceeding in this same manner, the rest of the components un(x, t) can be completely obtained and the
series solution is thus entirely determined.

Finally, we approximate the analytical solution u(x, t) by truncated series

u(x, t) = lim
N→∞

N∑
n=0

un(x, t).

The above series solutions generally converge very rapidly. A classical approach of convergence of this
type of series is already presented by and Abbaoui and Cherruault [1].



W. Satsanit, J. Nonlinear Sci. Appl., 14 (2021), 139–147 143

5. Examples

In this section, we applied LHPM for solving fractional linear and nonlinear beam equation.

Example 5.1. Consider the following one-dimensional linear fractional beam equation

Dαt u+ uxxxx = 0, 0 6 x 6 1, 1 < α 6 2, t > 0, (5.1)

subject to the boundary condition

u(0, t) = 0,u(1, t) = sinh(1) sin t,

and the initial condition

u(x, 0) = 0, ,ut(x, 0) = sinhx.

Applying the Laplace transform an both sides of (5.1) subject to the initial condition, we obtain

L[u(x, t)] =
sinhx
s2 −

1
sα

L[uxxxx(x, t)]. (5.2)

Taking inverse of Laplace transform an both sides of (5.2), we obtain

u(x, t) = tsinhx−L−1
[

1
sα

L[uxxxx(x, t)]
]

.

Now, we are applied the homotopy perturbation method, we obtain

∞∑
n=0

pnun(x, t) = tsinhx− p
(
L−1

(
1
sα

L

∞∑
n=0

pn(un(x, t))xxxx

))
.

Comparing the coefficients of like power of p, we have

p0 : u0(x, t) = t sinh x,

p1 : u1(x, t) = −L−1
[

1
sα

L{u0(x, t)}xxxx

]
= −L−1

[
1
sα

L{t sinh x}
]
= − sinh xL−1

[
1

sα+1

]
= − sinh x

tα+1

Γ(α+ 2)
,

p2 : u2(x, t) = −L−1
[

1
sα

L{u1(x, t)}xxxx

]
= sinh x

t2α+1

Γ(2α+ 2)
,

...

pn : un(x, t) = (−1)n sinh xL−1
[

1
sα

L{un−1(x, t)}xxxx

]
= (−1)

n

sinh x
tnα+1

Γ(nα+ 2)
,

...

Using the above iteration the solution of u(x, t) is given by

u(x, t) = lim
p→1

∞∑
n=0

pnun(x, t),

u(x, t) = sinh x
(
t−

tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− · · ·+ (−1)n

tnα+1

Γ(nα+ 2)
+ · · ·

)
= sinh xtEα,2(−t

α).
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If we put α = 2 in (5.1), the equation is reduced to one dimensional fractional beam equation as follows:

∂2u

∂t2
+
∂4u

∂x4 = 0, (5.3)

and the solution of (5.3) is given by
u(x, t) = sinh x sin t.

Example 5.2. Consider the following two dimensional fractional beam-like equation

Dαt u+
1
24

sin xuxxxx +
1

24
sinyuyyyy = 0, (5.4)

where 0 6 x,y 6 π
2 , 1 < α 6 2, t > 0 subject to the boundary condition

u(0,y, t) = siny sint, u(
π

2
,y, t) = cos t+ siny sin t, u(x, 0, t) = sin x cos t, u(x,

π

2
, t) = sin x cos t+ sin t,

and the initial condition

u(x,y, 0) = sin x, ut(x,y, 0) = siny.

In a similar method of Example 5.1, we obtain
∞∑
n=0

pnun(x,y, t) = sin x+ t siny− p

(
1

24
sin xL−1

[
1
sα

L

{ ∞∑
n=0

pn(un(x,y, t))xxxx

}])

− p

(
1

24
sinyL−1

[
1
sα

L

{ ∞∑
n=0

pn(un(x,y, t))yyyy

}])
.

Comparing the coefficients of the power p, we have

p0 : u0(x,y, t) = sin x+ t siny, (5.5)

p1 : u1(x,y, t) = L−1
(

1
sα

L ((u0)xxxx + (u0))yyyy)

)
= − sin x

tα

Γ(α+ 1)
− siny

tα+1

Γ(α+ 2)
, (5.6)

p2 : u2(x,y, t) = sin x
t2α

Γ(2α+ 1)
+ siny

t2α+1

Γ(2α+ 2)
, (5.7)

...

pn : un(x,y, t) = (−1)n sin x
tnα

Γ(nα+ 1)
+ (−1)n siny

tnα+1

Γ(nα+ 2)
, (5.8)

...

By (5.5)-(5.8), the solution of (5.4) is given by

u(x,y, t) = sin x
(

1 −
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
− · · ·− (−1)n

tnα

Γ(nα+ 1)
+ · · ·

)
+ siny

(
t−

tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− · · ·− (−1)n

tnα+1

Γ(nα+ 2)
+ · · ·

)
= sin xEα(−tα) + sinyEα,2(−t

α).

If we put α = 2 in (5.4), we obtain two dimensional fractional beam equation as follows:

∂2u

∂t2
+

1
24

sin x
∂4u

∂x4 +
1
24

siny
∂4u

∂y4 = 0, (5.9)

the solution of (5.9) is given by
u(x,y, t) = sin x cos t+ siny sin t.
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Example 5.3. Consider the following three dimensional in-homogeneous fractional beam-like equation

Dαt u+
1

360
(
x4uxxxx + y

4uyyyy + z
4uzzzz

)
= x6 + y6 + z6, (5.10)

where 0 6 x,y, z 6 1, 1 < α 6 2, t > 0, subject to the boundary condition

u(0,y, z, t) = (y6 + z6)(1 − cos t), u(1,y, z, t) = (1 + y6 + z6) + y6z6 sin t,

u(x, 0, z, t) = (x6 + z6)(1 − cos t), u(x, 1, z, t) = (1 + y6 + z6) + x6z6 sin t,

u(x,y, 0, t) = (x6 + y6)(1 − cos t)0, u(x,y, 1, t) = (1 + y6 + z6) + x6y6 sin t,

and the initial condition

u(x,y, z, 0) = 0, ut(x,y, z, 0) = x6y6z6.

In a similar way as above, we obtain

∞∑
n=0

pnun(x,y, z, t) =(x6 + y6 + z6)
tα

Γ(α+ 1)
+ (x6y6z6)t

− p

(
1

360
x4L−1

[
1
sα

L

{ ∞∑
n=0

pn(un(x,y, z, t))xxxx

}])

− p

(
1

360
y4L−1

[
1
sα

L

{ ∞∑
n=0

pn(un(x,y, z, t))yyyy

}])

− p

(
1

360
z4L−1

[
1
sα

L

{ ∞∑
n=0

pn(un(x,y, z, t))zzzz

}])
.

Comparing the coefficients of like power of p, we have

p0 : u0(x,y, z, t) = (x6 + y6 + z6)
tα

Γ(α+ 1)
+ (x6y6z6)t,

p1 : u1(x,y, z, t) = −(x6 + y6 + z6)
t2α

Γ(2α+ 1)
− (x6y6z6)

tα

Γ(α+ 1)
,

p2 : u2(x,y, z, t) = (x6 + y6 + z6)
t3α

Γ(3α+ 1)
+ (x6y6z6)

t2α

Γ(2α+ 1)
,

...

pn : un(x,y, z, t) = (−1)n(x6 + y6 + z6)
t(n+1)α

Γ((n+ 1)α+ 1)
+ (−1)n(x6y6z6)

tnα+1

Γ(nα+ 2)
,

...

Using the above iteration the solution of u(x,y, z, t) is given by

u(x,y, z, t) = lim
p→1

∞∑
n=0

pnun(x,y, z, t)

= (x6 + y6 + z6)

(
tα

Γ(α+ 1)
−

t2α

Γ(2α+ 1)
+ · · ·− t(n+1)α

Γ((n+ 1)α+ 1)
+ · · ·

)
+ x6y6z6

(
tα

Γ(α+ 1)
−

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
− · · ·− t(n+1)α

Γ((n+ 1)α+ 1)
+ · · ·

)
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= (x6 + y6 + z6)(Eα(t
α) − 1) + (x6y6z6)(Eα,2(−t

α)).

If we put α = 2 into (5.10), we obtain three dimensional in-homogeneous fractional beam-like equation as
follows

∂2u

∂t2
+

1
360

(x4∂
4u

∂x4 + y4∂
4u

∂y4 + z4∂
4u

∂z4 ) = x
6 + y6 + z6, (5.11)

and the solution of (5.11) is given by

u(x,y, z, t) = (x6 + y6 + z6)(1 − cos t) + (x6y6z6) sin t.

Example 5.4. Consider the following one dimensional fractional nonlinear beam equation

Dαt u+ uxxxx + 2uux − u2
x = 0, (5.12)

where 0 6 x 6 π
2 , 1 < α 6 2, t > 0, subject the boundary condition

u(0, t) = 0, u(
π

2
, t) = cos t,

and the initial condition
u(x, 0) = sin x, ut(x, 0) = 0.

In a similar way as above, we obtain

∞∑
n=0

pnun(x, t) = sin x− p

(
L−1

[
1
sα

L

( ∞∑
n=0

pn(un(x, t)xxxx + 2
∞∑
n=0

pnHn(u) −

∞∑
n=0

pnu2
nx

)])
.

Comparing the coefficients of like power p, we have

p0 : u0(x, t) = sin x,

p1 : u1(x, t) = −L−1

[
1
sα

L

(
(u0)xxxx + 2H0(u) − u

2
0x

)]

= −L−1

[
1
sα

L

(
sin x+ 2u0u0x − u

2
0x

)]

= −L−1
[

1
sα

L(sin x+ 2 sin x cos x− 2 sin x cos x)
]

= − sin x
tα

Γ(α+ 1)
,

p2 : u2(x, t) = −L−1

[
1
sα

L

(
(u1)xxxx + 2H1(u) − u

2
1x

)]

= −L−1

[
1
sα

L

(
sin x+ 2(u1u0x + u0u1x) − u

2
1x

)]

= sin x
t2α

Γ(2α+ 1)
,

...

pn : un(x, t) = sin x
tnα

Γ(nα+ 1)
,

...
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Using the above iteration the solution u(x, t) is given by

u(x, t) = lim
p→1

∞∑
n=0

pnun(x, t) = sin x

(
1 −

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
− · · ·+ tnα

Γ(nα+ 1)
+ · · ·

)
= sin xEα(−tα).

If we put α = 2 into (5.12), we obtain nonlinear fractional beam equation as follows:

utt + uxxxx + 2uux − u2
x = 0 (5.13)

and the solution of (5.13) is given by
u(x, t) = sin x cos t.

6. Conclusion

In this paper, the LHPM has been successfully applied to find the solution of the fractional linear
and nonlinear beam equation with initial conditions. This method is reliable and easy to use. The result
shows the LHPM is powerful and efficient technique to find exact and approximate solution for linear
and nonlinear partial differential equation.
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