J. Nonlinear Sci. Appl., 14 (2021), 163-167

ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.isr-publications.com/jnsa

On some new scenario of Δ -spaces

Check for updates

Dowlath Fathema^a, Abdul Hamid Ganie^{b,*}

^aBasic Science Department, College of Science and Theoretical Studies- Abha-F, Saudi Electronic University, KSA. ^bBasic Science Department, College of Science and Theoretical Studies- Abha-M, Saudi Electronic University, KSA.

Abstract

The structure of the Cesàro spaces were investigated by various authors as cited in the text. The scenario of this manuscript is to bring out the spaces $\mathfrak{C}_1(\triangle_g^s)$ and $\mathfrak{C}_{\infty}[\triangle_g^s]$ of Cesàro type for $s \in \mathbb{N} = \{0, 1, 2, \ldots\}$. We will study some of their basic topological properties and obtain some inclusion relations concerning these spaces.

Keywords: Cesàro sequence space, difference operator, BK-space.

2020 MSC: 40A05, 46A45.

©2021 All rights reserved.

1. Introduction

By Λ we write the set of all real or complex sequences and by sequence space we mean a subspace of Λ . By **N**, we represent the set {0,1,2,...}; by **R** we mean $Q \cup Q^c$, where Q is set of rational numbers where as Q^c set of irrational numbers and **C** will represent the set of all complex numbers as can be seen in [7, 9]. We denote bounded sequences by l_{∞} ; convergent sequences by c and those sequences with limit as zero by \mathfrak{C}_0 as can be seen in [8, 10–13]. Also, let e = (1, 1, ...).

We call a space \mathcal{Y} to be FK space if it is a complete metric space with continuous coordinated $p_r : \mathcal{Y} \to \mathbb{C}$ where $p_r(u) = u_r$ for all $u \in \mathcal{Y}$ and $r \in \mathbb{N}$. A normed FK space is called a BK space as defined in [16, 23] and etc.

We call a space \mathcal{V} with a linear topology as a K-space provided each of the maps $p_j: \mathcal{V} \to \mathbb{C}$ given by $p_j(v) = v_j$ is continuous for each $j \in \mathbb{N}$. A K-space \mathcal{V} is said to be an FK-space provided it is complete linear metric space. An FK-space whose topology is normable is called a BK-space. We say that an FK-space \mathcal{V} has AK (or has the AK property), if e(k) = (1, 1, ...) is a Schauder bases for \mathcal{V} . Note that FK spaces play an important role in the theory of sequence spaces and matrix transformations the reason being that matrix maps between FK space are continuous.

The spaces $T(\triangle)$, where

$$\mathsf{T}(\triangle) = \{ \mathsf{v} = (\mathsf{v}_{\mathsf{i}}) \in \mathsf{\Lambda} : (\triangle \mathsf{v}_{\mathsf{i}}) \in \mathsf{T} \},\$$

were introduced by Kizmaz [15], where $T \in \{l_{\infty}, c, \mathfrak{C}_0\}$ and $\Delta \nu_i = \nu_i - \nu_{i-1}$.

*Corresponding author

doi: 10.22436/jnsa.014.03.05

Received: 2020-09-15 Revised: 2020-09-30 Accepted: 2020-10-22

Email addresses: d.fathima@seu.edu.sa (Dowlath Fathema), a.ganie@seu.edu.sa (Abdul Hamid Ganie)

Next the author in [23] had studied it and considered it as follows. Consider the integer $j \ge 0$, then

$$\Delta^{j}(\mathcal{H}) = \left\{ \nu = (\nu_{k}) : \left(\Delta^{j} \nu \right) \in \mathcal{H} \right\}, \text{ for } \mathcal{H} = l_{\infty}, c \text{ and } \mathfrak{C}_{0},$$

where $\Delta^{j}\nu_{i} = \Delta^{j-1}\nu_{i} - \Delta^{j-1}\nu_{i+1}$ for all $i \in \mathbf{N}$.

Also, in [24] the above space were generalized to the following spaces:

$$\Delta^{\mathrm{s}}_{\mathrm{g}}(\mathfrak{H}) = \left\{ \, \mathbf{v} = (\mathbf{v}_{\mathrm{j}}) \, \in \, \mathbf{\Lambda} \, : \, (riangle^{\mathrm{s}}_{\mathrm{g}} \mathbf{v}_{\mathrm{j}}) \in \mathcal{H}
ight\}$$
 ,

where

$$\Delta_g^s \nu_j = \Delta_g^{s-1} \nu_j - \Delta_g^{s-1} \nu_{j+1} = \sum_{\mu=0}^s (-1)^{\mu} \begin{pmatrix} m \\ \mu \end{pmatrix} g_{j+\mu} \nu_{j+\mu} \ \forall \ j \in \mathbb{N}.$$

The sequence spaces $\triangle_q^s(\mathcal{H})$ are Banach spaces normed by

$$\|\nu\|_{\Delta} = \sum_{\mathfrak{i}=1}^{s} |g_{\mathfrak{i}}\nu_{\mathfrak{i}}| + \|\Delta_{g}^{s}\nu\|_{\infty}$$

This space was further studied by many authors as can be seen in [5, 11] and many others.

A sequence space $\nu=(\nu_j)$ of complex numbers is said to be Cesàro summable of order 1 or $(\mathfrak{C},1)$ summable to $\eta\in\mathbb{C}$ if

$$\lim_{j} \tau_{j} = \eta, \text{ where } \tau_{j} = \frac{1}{j} \sum_{i=1}^{j} \nu_{i}.$$

By \mathfrak{C}_1 we shall denote the linear space of all $(\mathfrak{C}, 1)$ summable sequences of complex numbers over \mathfrak{C} , i.e.,

$$\mathfrak{C}_1 = \left\{ \nu = (\nu_k) : \left(\frac{1}{\mathfrak{i}} \sum_{j=1}^{\mathfrak{i}} \nu_j \right) \in \mathfrak{c} \right\}.$$

It is easy to see that \mathfrak{C}_1 is a BK space normed by

$$||\nu|| = \sum_i \left| \frac{1}{i} \sum_{j=1}^i \nu_j \right|.$$

It was further studied by several authors as can be found in [3, 5, 18]. In [17], the author has introduced the Cesàro sequence spaces X_p and X_∞ of non-absolute type and has shown that $\text{Ces}_p \subset X_p$ is strict for $1 \leq p \leq \infty$.

As in [23], we call a sequence space \mathfrak{V} to be

- (i) normal (or solid) if $v = (v_j) \in \mathfrak{V}$ whenever $|v_j| \leq |u_j|$, $j \geq 1$ for some $u = (u_j) \in \mathfrak{V}$;
- (ii) monotone if it contains the canonical preimages of all its step spaces;
- (iii) sequence algebra if $uv \in \mathfrak{V}$ whenever $u, v \in \mathfrak{V}$;
- (iv) convergence free when, if $v = (v_j) \in \mathfrak{V}$ whenever $u = (u_j) \in \mathfrak{V}$ and $v_j = 0$ whenever $u_j = 0$.

2. Main section

In this division of the paper, we define the space $\mathfrak{C}_1(\triangle_g^s)$ and $\mathfrak{C}_{\infty}[\triangle_g^s]$, where $g = (g_j)$ is a sequence such that $g_j \neq 0 \ \forall j \in \mathbf{N}$.

Following the authors cited in [1, 2, 6, 14, 19–22], we introduce the following spaces:

$$\mathfrak{C}_1\left(\bigtriangleup_g^s\right) = \left\{ \nu = (\nu_k) : \lim_i \frac{1}{i} \sum_{i=1}^n \left(\bigtriangleup_g^s \nu_k - \alpha\right) = 0 \right\},\,$$

where $\alpha \in \mathbb{R}$ and

$$\mathfrak{C}_{\infty}\left[\bigtriangleup_{\mathfrak{g}}^{s}\right] = \left\{ \nu = (\nu_{k}) : \sup_{\mathfrak{i}} \left(\frac{1}{\mathfrak{i}} \sum_{\mathfrak{i}=1}^{n} \bigtriangleup_{\mathfrak{g}}^{s} \nu_{k}\right) < \infty \right\}.$$

We now begin with the following theorem without proof.

Theorem 2.1. The spaces $\mathfrak{C}_1(\triangle_g^s)$ and $\mathfrak{C}_{\infty}[\triangle_g^s]$ are BK-spaces with the norm

$$\|\nu\|_{\Delta_{\infty}} = \sum_{j=1}^{s} |g_{j}\nu_{j}| + \sup_{r} \left(\frac{1}{r} \left|\sum_{i=1}^{r} \bigtriangleup_{g}^{s} \nu_{i}\right|\right).$$

Theorem 2.2.

(i) ℓ_∞ (△^{s-1}_g) ⊂ 𝔅_∞ [△^s_g] and is sharp.
(ii) c (△^s_g) ⊂ 𝔅₁ (△^s_g) and is sharp.

Proof. We only prove part (i) and part (ii) will follow on similar lines. Let $x \in \ell_{\infty}(\triangle_{g}^{m-1})$, therefore we can find a constant β with $|\triangle_{g}^{s-1}\nu_{j}| \leq \beta$ for all $j \in \mathbb{N}$. But, we can write

$$\begin{split} \frac{1}{r} \left| \sum_{i=1}^{r} \bigtriangleup_{g}^{s} \nu_{i} \right| &= \frac{1}{r} \left| \bigtriangleup_{g}^{s} \nu_{1} + \bigtriangleup_{g}^{s} \nu_{2} + \dots + \bigtriangleup_{g}^{s} \nu_{r} \right| \\ &= \frac{1}{r} \left| \left(\bigtriangleup_{g}^{m-1} \nu_{1} - \bigtriangleup_{g}^{m-1} \nu_{2} \right) + \left(\bigtriangleup_{g}^{m-1} \nu_{2} - \bigtriangleup_{g}^{m-1} \nu_{3} \right) + \dots + \left(\bigtriangleup_{g}^{m-1} \nu_{r} - \bigtriangleup_{g}^{m-1} \nu_{r+1} \right) \\ &= \frac{1}{r} \left| \bigtriangleup_{g}^{s-1} \nu_{1} - \bigtriangleup_{g}^{s-1} \nu_{r+1} \right| \leqslant \frac{1}{r} \left| \bigtriangleup_{g}^{s-1} \nu_{1} \right| + \left| \bigtriangleup_{g}^{s-1} \nu_{r+1} \right| \leqslant \frac{2\beta}{r} \to 0 \quad (r \to \infty). \end{split}$$

Hence, $v \in \mathfrak{C}_1(\triangle_g^s)$. To prove inclusion is sharp, choose g = e, then it is clear that $(t^s) \in \mathfrak{C}_1(\triangle_g^s)$ but $(t^s) \notin \ell_{\infty}(\triangle_g^{s-1})$. For if $v_t = t^s$, then clearly $\triangle_g^{s-1}v_t = (-1)^s s!$, but $\triangle_g^s v_t = (-1)^{s+1} s! (t + \frac{s-1}{2}), \forall t \in \mathbb{N}$.

We have following corollaries.

Corollary 2.3. $\mathfrak{C}_1(\triangle_q^s)$ *is a closed subspace of* $\mathfrak{C}_{\infty}(\triangle_q^s)$.

Corollary 2.4. $\mathfrak{C}_1(\triangle^{\mathfrak{s}}_{\mathfrak{q}})$ *is a nowhere dense subset of* $\mathfrak{C}_{\infty}(\triangle^{\mathfrak{s}}_{\mathfrak{q}})$ *.*

Corollary 2.5. $\mathfrak{C}_{\infty}(\triangle_g^s)$ is not separable, in general and has no Schauder basis.

Proof. Hint: We know that if a normed space has a Schauder basis, then it is separable.

Corollary 2.6. $\mathfrak{C}_1(\triangle_{\mathfrak{a}}^{\mathfrak{s}})$ *is not normal (solid) and hence neither perfect nor convergence free.*

Proof. To prove this result, we let g = e, s = 1 and define $v = (v_j) = (j-1)$ and $u = (u_j) = ((-1)^j(j-1))$, it is then trivial that

$$\mathbf{v}\in\mathfrak{C}_{1}\left(riangle_{g}^{\mathrm{s}}
ight)$$
 but $\mathbf{u
otin }\mathfrak{C}_{1}\left(riangle_{g}^{\mathrm{s}}
ight)$,

although $|u_j| \leq |v_j|$, $j \geq 1$. Consequently, $\mathfrak{C}_1(\triangle_q^s)$ is not normal.

Since $\mathfrak{C}_1(\Delta_g^s)$ is not normal, hence we conclude that it is neither perfect nor convergence free because every perfect space and also every convergence free space should be normal [4].

Corollary 2.7. $\mathfrak{C}_1(\triangle_q^s)$ *is neither monotone nor a sequence algebra.*

Proof. To prove this result, we let g = e, s = 1 and define $v = (v_j) = (j) \in \mathfrak{C}_1(\Delta_q^s)$ and define $u = (u_j)$ by

$$u(j) = \begin{cases} v_j, & \text{for } j \text{ being even,} \\ 0, & \text{for } j \text{ is odd,} \end{cases}$$

that is, u = (0, 2, 0, 4, ...). Then, $(\triangle_g^s u_j) = (-2, 2, -4, 4, -6, 6, ...)$ and thus $(\triangle_g^s u_j) \notin \mathfrak{C}_1$ this means that $(u_j) \notin \mathfrak{C}_1 (\triangle_g^s)$ and $\mathfrak{C}_1 (\triangle_g^s)$ is not monotone.

Now in order to prove it is not sequence algebra, we choose g = e, s = 1, v = u = (j) and it is observed that $u, v \in \mathfrak{C}_1(\triangle_g^s)$ but $uv \in (j^2) \notin \mathfrak{C}_1(\triangle_g^s)$.

Theorem 2.8. The space $\mathfrak{C}_1(\triangle_{\mathfrak{a}}^{\mathfrak{s}})$ does not attain AK property.

Proof. For the sequence $\nu = (\nu_j) = (t^s) = (1^s, 2^s, \ldots) \in \mathfrak{C}_1(\triangle_g^s)$ with g = e, consider its jth section as $\nu^{[j]} = (1^s, 2^s, \ldots, j^s, 0, 0, \ldots)$. Then it is clear that

$$\|\nu - \nu^{j}\|_{\Delta_{\infty}} = \|\left(0, 0 \dots, j^{s+1}, j^{s+2}, \dots\right)\|_{\Delta_{\infty}} = \frac{1}{j} \left[(-1)^{s+1} s! \left((j+1) + \frac{s-1}{2} \right) \right] \nrightarrow 0 \text{ as } j \to \infty.$$

Acknowledgement

The authors are pleased to the reviewers for their meticulous reading and suggestions which improved the presentation of the paper.

References

- [1] M. Başarir, Paranormed Cesàro difference sequence space and related matrix transformation, Turk. J. Math., 15 (1991), 14–19. 2
- [2] Ç. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292 (2004), 423–432. 2
- [3] V. K. Bhardwaj, S. P. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence space of second order, J. Math. Anal., 5 (2014), 1–11. 1
- [4] R. G. Cooke, Infinite matrices and sequence spaces, Macmillan & Co., London, (1950). 2
- [5] M. Et, On some generalised Cesàro difference sequence spaces, Istanb. Univ. Sci. Fac. J. Math. Phys. Astronom., 55 (1997), 221–229. 1
- [6] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro type summability spaces, Proc. London Math. Soc., 37 (1978), 508–520. 2
- [7] A. H. Ganie, M. Ahmad, N. A. Sheikh, T. Jalal, New type of Riesz sequence space of non-absolute type, J. Appl. Computat. Math., 5 (2016), 1–4. 1
- [8] A. H. Ganie, A. Aldawoud, Certain sequence spaces using Delta-operator, Adv. Stud. Contemp. Math., 30 (2020), 17–27. 1
- [9] A. H. Ganie, S. A. Lone, A. Akhter, Generalised difference sequence space of non- absolute type, EKSAKTA, 1 (2020), 147–153. 1
- [10] A. H. Ganie, N. A. Sheikh, On some new sequence space of non-absolute type and matrix transformations, J. Egyptian Math. Soc., 21 (2013), 108–114. 1
- [11] A. H. Ganie, N. A. Sheikh, Generalized difference sequence spaces of Fuzzy numbers, New York J. Math., 19 (2013), 431–438. 1
- [12] A. H. Ganie, N. A. Sheikh, Infinite matrices and almost convergence, Filomat, 29 (2015), 1183–1188.
- [13] A. H. Ganie, S. A. Gupkari, A. Akhter, Invariant means of sequences with statistical behaviour, Int. J. Cre. Res. Thoug., 8 (2020), 2702–2705. 1
- [14] A. A. Jagers, A note on Cesàro sequence spaces, Nieuw Arch. Wisk., 22 (1974), 113–124. 2
- [15] H. Kizmaz, On certain sequences, Canad. Math. Bull., 24 (1981), 169–176. 1
- [16] M. Mursaleen, A. H. Ganie, N. A. Sheikh, New type of generalized difference sequence space of non-absolute type and some matrix transformations, Filomat, 28 (2014), 1381–1392. 1
- [17] P.-N. Ng, P.-Y. Lee, Cesàro sequences spaces of non-absolute type, Comment Math. Prace Math., 20 (1978), 429–433. 1
- [18] C. Orhan, Cesàro difference sequence spaces related matrix transformations, Comm. Fac. Sci. Univ. Ankara Sér. A₁ Math., 32 (1983) 55–63. 1

- [19] N. A. Sheikh, A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedagog. Nyházi., 28 (2012), 47–58. 2
- [20] N. A. Sheikh, A. H. Ganie, A new type of sequence space of non-absolute type and matrix transformation, WSEAS Trans. J. Math., **12** (2013), 852–859.
- [21] N. A. Sheikh, T. Jalal, A. H. Ganie, *New type of sequence spaces of non-absolute type and some matrix transformations,* Acta Math. Acad. Paedagog. Nyházi., **29** (2013), 51–66.
- [22] J.-S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math., 1 (1970), 19–25. 2
- [23] B. C. Tripathy, A. Esi, A new type of difference sequence spaces, Int. J. Sci. Technol., 1 (2006), 11–14. 1
- [24] B. C. Tripathy, A. Esi, B. K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math., 31 (2005), 333–340. 1