J. Nonlinear Sci. Appl., 14 (2021), 212-221

ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.isr-publications.com/jnsa

a-minimal prime ideals in almost distributive lattices

Ch. Santhi Sundar Raj^a, K. Ramanuja Rao^{b,*}, S. Nageswara Rao^a

^aDepartment of Engineering Mathematics, Andhra University, Visakhapatnam, 530003, India. ^bDeaprtment of Mathematics, Fiji National Uniersity, Lautoka, FIJI.

Abstract

The concept of a-minimal prime ideal of an ADL is introduced and its characterizations are established. The set of all a-minimal prime ideals of an ADL is topologized and resulting space is studied.

Keywords: ADL, minimal prime ideal, relative a-annihilator, a-minimal prime ideal, a-maximal filter, a-pseudo complementation, hull-kernel topology.

2020 MSC: 06D99.

©2021 All rights reserved.

1. Introduction

The notion of Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [7] as a common abstraction of several lattice theoretic and ring theoretic generalizations of a Boolean algebra. An ADL is an algebra $(A, \land, \lor, 0)$ of type (2, 2, 0) which satisfies all the axioms of a distributive lattice except possibly the commutativity of the operations \lor and \land . It is known that, in an ADL, the commutativity of \lor is equivalent to that of \land and also to the right distributivity of \lor over \land . The class of ADLs with pseudocomplementation was introduced in [8] and proved it is equationally definable. In [5], we introduced the notion of a-pseudo-complementation on an ADL A by fixing an arbitrary element a in A as the natural generalization of the notion of pseudo-complementation on an ADL. In [4], we introduced the concepts of a-dense element and a-maximal filter in an ADL A and studied these in connection with a-pseudocomplementation on A. Here, we introduced the concept of a-minimal prime ideal of an ADL A and characterized these in terms of a-maximal filter, relative a-annihilator, a-dense element, and a-pseudo complementation. Mainly, we considered the spaces $h_{\mathbb{P}}(a)$ and $\min h_{\mathbb{P}}(a)$ of prime ideals containing the element a in A and a-minimal prime ideals respectively, together with the hull-kernel topologies, and proved certain properties of these.

2. Preliminaries

In this section, we recall certain definitions, results and notations which will be needed later on are presented.

*Corresponding author

doi: 10.22436/jnsa.014.04.03

Received: 2020-11-14 Revised: 2020-11-28 Accepted: 2020-12-02

Email addresses: santhisundarraj@yahoo.com (Ch. Santhi Sundar Raj), ramanuja.kotti@fnu.ac.fj (K. Ramanuja Rao), bollasubrahmanyam@gamil.com (S. Nageswara Rao)

- (1) $x \land (y \lor z) = (x \land y) \lor (x \land z);$ (2) $(x \lor y) \land z = (x \land z) \lor (y \land z);$ (3) $(x \lor y) \land x = x;$ (4) $(x \lor y) \land y = y;$ (5) $x \lor (x \land y) = x;$
- (6) $0 \land x = 0.$

Example 2.2 ([7]). Let X be a non-empty set and $a_0 \in X$. For any $a, b \in X$, define,

$$a \wedge b = \begin{cases} b, & \text{if } a \neq a_0, \\ a_0, & \text{if } a = a_0, \end{cases}$$
 and $a \vee b = \begin{cases} a, & \text{if } a \neq a_0, \\ b, & \text{if } a = a_0. \end{cases}$

Then $(X, \land, \lor, \mathfrak{a}_0)$ is an ADL and this is called discrete ADL.

Definition 2.3 ([7]). Let A be an ADL. For any $x, y \in A$, define $x \leq y$ iff $x = x \land y$ or, equivalently $x \lor y = y$, then \leq is a partial ordering on A.

Proposition 2.4 ([7]). *Let* A *be an* ADL. *For any* $x, y, z \in A$ *, we have the following:*

- (1) $x \land y = x \Leftrightarrow x \lor y = y;$ (2) $x \land y = y \Leftrightarrow x \lor y = x;$ (3) $x \land y = y \land x$ whenever $x \leqslant y;$ (4) \land is associative in A; (5) $x \land y \land z = y \land x \land z;$ (6) $(x \lor y) \land z = (y \lor x) \land z;$ (7) $x \land y = 0 \Leftrightarrow y \land x = 0;$ (8) $x \lor (y \land z) = (x \lor y) \land (x \lor z);$ (9) $x \land (x \lor y) = x, (x \land y) \lor y = y$ and $x \lor (y \land x) = x;$ (10) $x \leqslant x \lor y$ and $x \land y \leqslant y;$ (11) $x \land x = x$ and $x \lor x = x;$ (12) 0 is the identity for the operation \lor (that is; $x \lor 0 = x = 0 \lor x);$ (13) 0 is the zero element for the operation \land (that is; $x \land 0 = 0$);
- (14) *if* $x \leq z$, $y \leq z$, then $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$.

An element m of an ADL A is called maximal, if m is a maximal element in the poset (A, \leq) . It is known that, m is maximal $\Leftrightarrow m \land x = x \Leftrightarrow m \lor x = m$ for all $x \in A$. In any discrete ADL, every non-zero element is maximal.

An ADL A is said to be associative ADL, if the operation \lor on A is associative. Throughout this paper A denotes an ADL with a maximal element in which \lor is associative; that is $(x \lor y) \lor z = x \lor (y \lor z)$ for all $x, y, z \in A$.

For any $x, y \in A$, with $x \leq y$, the set $[x, y] = \{z \in A : x \leq z \leq y\}$ is a bounded distributive lattice with respect to the operations induced by those on A. If in addition [x, y] is a Boolian algebra then A is called a relatively complemented ADL and, in this case, the operation \lor is associative. Every discrete ADL is relatively complemented.

A non-empty subset I of A is said to be an ideal (filter) of A, if $x \lor y \in I(x \land y \in I)$ and $x \land a \in I(a \lor x \in I)$ whenever $x, y \in I$ and $a \in A$. If I is an ideal (filter) of A and $x, y \in A$, then $x \land y \in I \Leftrightarrow y \land x \in I(x \lor y \in I \Leftrightarrow y \lor x \in I)$. For any $S \subseteq A$, the smallest ideal of A containing S is called the ideal generated by S in A and is denoted by (S]. If $S = \{x\}$, we simply write (x] for ({x}]. We have that for any $S \subseteq A$ and

 $x \in A$, $(S] = \{(\bigvee_{i=1}^{n} s_i) \land a : n \ge 0, s_i \in S \text{ and } a \in A\}$, and $(x] = \{x \land a : a \in A\}=\{y \in A : x \land y = y\}$, (x] is called the principal ideal generated by x. For any $x \in A$, $[x) = \{a \lor x : a \in A\}=\{y \in A : y \lor x = y\}$ is called the principal filter generated by x. For any $S \subseteq A$, the set $S^* = \{x \in A : x \land s = 0 \text{ for all } s \in S\}$ is always an ideal of A and is called an annihilator of S in A. Note that $S^* = \{S\}^*$. For any $x \in A$, we have $(x]^* = \{x\}^* = \{y \in A : x \land y = 0\}$. A proper ideal (filter) P of A is said to be prime if, for any $x, y \in A$, $x \land y \in P(x \lor y \in P)$ implies either $x \in P$ or $y \in P$. A prime ideal (filter) of an ADL is called a minimal prime ideal (filter) if there is no other prime ideal (filter) P of A such that $M \subset N$.

Proposition 2.5 ([7]). For any subset P of A, P is a prime filter of A iff A-P is a prime ideal of A.

Proposition 2.6 ([7]). *Let* A *be an* ADL, I *an ideal (filter) of* A *and* $x \in A$ -I. *Then there exists a prime ideal (filter)* P *of* A *such that* I \subseteq P *and* $x \notin$ P.

Proposition 2.7 ([7]). Every prime ideal (filter) of A contains a minimal prime ideal (filter).

Proposition 2.8 ([7]). Every maximal ideal (filter) is prime ideal (filter).

Proposition 2.9 ([7]). An ideal P of A is a minimal prime ideal iff A-P is a maximal filter, and a filter Q of A is a minimal prime filter iff A-Q is a maximal ideal.

Definition 2.10 ([7]). An equivalence relation θ on an ADL $A = (A, \land, \lor, 0)$ is said to be a congruence if θ is compatible with \land and \lor on A; that is, for any $a, b, c, d \in A$, (a, b) and $(c, d) \in \theta \Rightarrow (a \land c, b \land d) \in \theta$ and $(a \lor c, b \lor d) \in \theta$. If θ is a congruence on A, then the set $x/\theta = \{y \in A : (x, y) \in \theta\}$ is called the congruence class of x in A corresponding to θ .

Proposition 2.11 ([7]). *For any* $a \in A$, $\theta_a = \{(x, y) \in A \times A : a \lor x = a \lor y\}$ *is a congruence relation on* A.

Proposition 2.12 ([7]). For any ideal I of A, the relation $\theta_I = \{(x, y) \in A \times A : a \lor x = a \lor y \text{ for some } a \in I\}$ is a congruence on A and is the smallest congruence on A containing $I \times I$. Moreover, for any $a \in A$, $\theta_{(a]} = \theta_a$. Also, $0/\theta_I = I$ and this is the only congruence class of θ_I which is an ideal of A. This congruence is called ideal congruence.

Definition 2.13 ([8]). A unary operation * on A is called a pseudo complementation on A if, for any $x, y \in A$,

- (1) $x \wedge y = 0 \Rightarrow x^* \wedge y = y;$
- (2) $x \wedge x^* = 0;$
- (3) $(x \lor y)^* = x^* \land y^*$.

Definition 2.14 ([6]). For any elements x and a in A, the relative a-annihilator of x is defined by $\langle x, a \rangle = \{y \in A : x \land y \in (a]\}$. Note that $\langle x, a \rangle$ is an ideal of A.

Definition 2.15 ([5]). Let a be an arbitrary fixed element in A. Then a unary operation $x \mapsto x * a$ on A is called an a-pseudo-complementation on A, if for any $x, y \in A$;

(1) $\langle \mathbf{x}, \mathbf{a} \rangle = (\mathbf{x} * \mathbf{a}];$ (2) $(\mathbf{x} \lor \mathbf{y}) * \mathbf{a} = (\mathbf{x} * \mathbf{a}) \land (\mathbf{y} * \mathbf{a}).$

Definition 2.16 ([4]). Let a be a fixed arbitrary element in A. Then an element $x \in A$ is said to be a-dense, if $\langle x, a \rangle \subseteq (a]$ (and hence $\langle x, a \rangle = (a]$). D_a denotes the set of all a-dense elements in A.

Definition 2.17 ([4]). Let a be an arbitrary fixed element in A. Then a filter F of A is said to be a-maximal, if F is maximal with respect to the property of not containing a.

Proposition 2.18 ([4]). For any filter F of A and $a \in A-F$, there exists a-maximal filter containing F.

Proposition 2.19 ([4]). A filter F of A is a-maximal filter iff $a \notin F$ and for every $x \notin F$, $\langle x, a \rangle \cap F \neq \phi$.

Proposition 2.20 ([4]). *Every* α *-maximal filter of* A *is a prime filter.*

Proposition 2.21 ([4]). *The following are equivalent:*

```
(1) x \in D_{\mathfrak{a}};
```

(2) $x * a \sim a$;

```
(3) (x * a) * a = a * a.
```

Proposition 2.22 ([4]). *For every* $x \in A$, $x \vee (x * a) \in D_a$.

3. α-minimal prime ideals

Definition 3.1. Let A be an ADL and $a \in A$. Then a prime ideal P of A containing a is called a-minimal prime ideal if there is no prime ideal of A containing a and properly contained in P.

The aim of this article is to study some characterizations and properties of a-minimal prime ideals. First we have the following as an application of Zorn's lemma which allow us to denote the existence of a-minimal prime ideals.

Theorem 3.2. Let Q be a prime ideal of A containing an element a in A. Then there exists an a-minimal prime ideal M of A such that $M \subseteq Q$.

Corollary 3.3. For $a \in A$, the intersection of all a-minimal prime ideals of A is (a].

Proposition 2.6 and Theorem 3.2 yield the following theorem.

Theorem 3.4. For any x and $a \in A$, $\langle x, a \rangle = \bigcap \{M : M \text{ is a-minimal prime ideal and } x \notin M \}$.

Theorem 3.5. Following statements are equivalent for any prime ideal P of A containing an element a in A.

(1) P is a-minimal prime ideal;

(2) A-P is a-maximal filter;

(3) $\langle x, a \rangle \not\subseteq P$, for each $x \in P$.

Proof.

(1)⇒(2) Suppose P is a-minimal prime ideal. Then, clearly A-P is a filter of A and a \notin A-P. Let F be a filter of A such that A-P ⊆ F and a \notin F. Then, by Proposition 2.6, there exists a prime filter Q of A such that F ⊆ Q and a \notin Q. By Proposition 2.5, A-Q is a prime ideal of A and a ∈ A-Q. Since A-P ⊆ F ⊆ Q, we get A-Q ⊆ P. Since P is a-minimal prime ideal, we get A-Q = P and hence A-P = Q. This implies that A-P = F. Thus A-P is a-maximal filter.

(2) \Rightarrow (3) Let $x \in P$. Then $x \notin A$ -P. By (2) and Proposition 2.19, $\langle x, a \rangle \cap (A$ -P) $\neq \phi$ which implies that $\langle x, a \rangle \nsubseteq P$.

(3) \Rightarrow (1) Let Q be a prime ideal of A such that $a \in Q \subseteq P$. Now,

 $\begin{array}{l} x \in \mathsf{P} \Rightarrow \langle x, \mathfrak{a} \rangle \nsubseteq \mathsf{P} \quad (by \ (3)) \\ \Rightarrow \ \text{there exists } \mathsf{y} \in \mathsf{A} \ \text{such that } x \land \mathsf{y} \in (\mathfrak{a}] \ \text{and } \mathsf{y} \notin \mathsf{P} \\ \Rightarrow \mathsf{y} \notin \mathsf{Q} \ \text{and } x \land \mathsf{y} \in \mathsf{Q} \quad (\text{since } \mathfrak{a} \in \mathsf{Q} \Leftrightarrow (\mathfrak{a}] \subseteq \mathsf{Q}) \\ \Rightarrow x \in \mathsf{Q} \quad (\text{since } \mathsf{Q} \ \text{is prime}). \end{array}$

Therefore $P \subseteq Q$ and hence Q = P. Thus P is a-minimal prime ideal.

Another characterization of a-minimal prime ideals in connection with a-pseudo complementations is given below.

Proof. For any $x \in A$, we have that $x * a \in P \Leftrightarrow \langle x, a \rangle \subseteq P$. Now, the theorem follows from Theorem 3.5.

Definition 3.7. Let P be a prime ideal of A and $a \in P$. Define, $a(P) = \{y \in A : y \land x \in (a] \text{ for some } x \in A-P\}.$

Some basic properties of a(P) are stated below.

Lemma 3.8. For any prime ideal P of A and $a, b \in A$, we have the following.

(1) $a(P) = \bigcup_{x \in A-P} \langle x, a \rangle$. (2) a(P) is an ideal of A and $a \in a(P) \subseteq P$. (3) $a \wedge b(P) = b \wedge a(P) = a(P) \cap b(P)$. (4) $a \vee b(P) = b \vee a(P)$ and $a(P) \vee b(P) \subseteq a \vee b(P)$. (5) $a \leq b \Rightarrow a(P) \subseteq b(P)$. (6) $a \sim b \Rightarrow a(P) = b(P)$. (7) a is maximal iff a(P) = A.

Theorem 3.9. Let P be a prime ideal of A and $a \in P$. Then P is a-minimal prime ideal iff a(P) = P.

Proof. Suppose P is a-minimal prime ideal and $x \in P$. Then $\langle x, a \rangle \nsubseteq P$ and hence there exists $y \notin P$ such that $x \land y \in (a]$; that is $x \in a(P)$. Therefore $P \subseteq a(P)$. By Lemma 3.8 (2), $a(P) \subseteq P$. Hence a(P) = P.

Conversely, suppose that a(P) = P. Let $x \in P$. Then $x \in a(P)$ and hence $x \land y \in (a]$ for some $y \notin P$. This implies $y \in \langle x, a \rangle$ and $y \notin P$. Hence $\langle x, a \rangle \notin P$. Thus, by Theorem 3.5, P is a-minimal prime ideal. \Box

Theorem 3.10. Let $x \mapsto x * a$ be an a-pseudo complementation on A and $a \in M \subset A$. Then the following statements are equivalent:

(1) A-M is a-maximal filter;

(2) A-M is a prime filter and $x \lor (x * a) \in A$ -M for each $x \in A$;

- (3) M is a-minimal prime ideal;
- (4) M is a prime ideal, and $x \in M \Rightarrow (x * a) * a \in M$;
- (5) M is a prime ideal and $M \cap D_{\alpha} = \phi$.

Proof.

(1) \Rightarrow (2) Assume (1). Then A-M is a prime filter of A (by Proposition 2.20). To prove the second part : if $x \notin A$ -M, then $\langle x, a \rangle \cap (A$ -M) $\neq \phi$ (by (1)). Choose $y \in \langle x, a \rangle \cap (A$ -M). Then $y \in \langle x, a \rangle = (x * a]$ so that $(x * a) \land y = y \in A$ -M and so $x * a \in A$ -M. Therefore $x \lor (x * a) \in A$ -M.

(2) \Rightarrow (3) Suppose the condition (2) is satisfied. Then M is a prime ideal. Let P be a prime ideal of A such that $a \in P \subset M$. Then select $x \in M$ such that $x \notin P$. Now $x \land (x * a) \in (a] \subseteq P$. Since P is prime and $x \notin P$, we get $x * a \in P$. So that $x \lor (x * a) \in M$; a contradiction to our supposition. Thus M is a-minimal prime ideal of A.

(3) \Rightarrow (4) Assume(3). Then M is a prime ideal. If $x \in M$, then $x * a \notin M$ (by Theorem 3.6). Now $(x * a) \land ((x * a) * a) \in (a] \subseteq M$. Since M is prime, we get $(x * a) * a \in M$.

(4) \Rightarrow (5) Assume the condition (4). If $M \cap D_a \neq \phi$ and choose $x \in M \cap D_a$, then $(x * a) * a \in M$ (by (4)), and (x * a) * a = a * a (by Proposition 2.21). Hence (x * a) * a is maximal since a * a is maximal. So that $a * a \in M$ and hence M=A; a contradiction. Thus $M \cap D_a = \phi$.

(5) \Rightarrow (1) Assume (5). Then A-M is a prime filter and a \notin A-M. To prove A-M is a-maximal filter: let $x \notin$ A-M. Then $x \lor (x * a)$ is a-dense element in A (by Proposition 2.22); that is, $x \lor (x * a) \in D_a$ and hence $x \lor (x * a) \in A$ -M. As A-M is prime filter and $x \notin A$ -M, we get $x * a \in A$ -M. Therefore, $x * a \in \langle x, a \rangle \cap (A$ -M) so that $\langle x, a \rangle \cap (A$ -M) $\neq \phi$. By Proposition 2.19, A-M is a-maximal filter.

4. Hull space

Let H be a non-empty set of prime ideals of A. For any $S \subseteq A$, let $H(S) = \{P \in H : S \notin P\}$. Then it can be easily proved that the class $\{H(S) : S \subseteq A\}$ is a topology on H. This topology is called the hull-kernel topology. For any $S \subseteq A$, we have $H(S) = \bigcup_{s \in S} H(s)$, where $H(s) = H(\{s\})$ and hence the class $\{H(s) : s \in A\}$ is a base for the hull-kernel topology on H. The closed set H-H(S) is called the hull of S in H and is denoted by $h_H(S)$. Note that $h_H(S) = \{P \in H : S \subseteq P\}$. Also, for any $U \subseteq H$, the kernel of U is defined by $k(U) = \bigcap \{P \in H : P \in U\}$. The hull of any $S \subseteq A$ is closed in H, and for any $U \subseteq H$ the kernel k(U)of U is an ideal of A. The name hull-kernel topology is justified by the reason being that for any $U \subseteq H$, $\overline{U} = h_H(k(U))$, where \overline{U} is the closure of U with respect to the hull-kernel topology on H. It can be easily seen that, if $S \subseteq A$ and I = (S], then H(S) = H(I) and hence every open set in H is of the form H(I) for some ideal I of A and every closed set in H is of the form $h_H(I)$ for some ideal I of A.

Let \mathbb{P} denote the set of all prime ideals of A. Then the set \mathbb{P} together with the hull-kernel topology is called the prime spectrum of A and it is denoted by Spec(A). Let \mathbb{P}_m denote the set of all minimal prime ideals of A. This set together with the subspace topology relative to the hull-kernel topology on Spec(A) is called the minimal prime ideal space of A and is denoted by min Spec(A). Throughout this paper whenever we talk about the topology on \mathbb{P} or any $H \subseteq \mathbb{P}$ we mean the hull-kernel topology. For an arbitrary fixed element $a \in A$, we define $h_{\mathbb{P}}(a) = \{P \in \mathbb{P} : a \in P\}$. Note that $h_{\mathbb{P}}(a)$ is the hull of $\{a\}$ in Spec(A). In this section we study some basic properties of the set $h_{\mathbb{P}}(a)$. The following is a straight forward verification.

Lemma 4.1. Let $H = h_{\mathbb{P}}(\mathfrak{a})$. Then the following hold for any x, y in A.

- (1) $H(x) = H(a \lor x) = H(x \lor a).$
- (2) $H(x) \cap H(y) = H(x \wedge y) = H(y \wedge x)$.
- (3) $H(x) \cup H(y) = H(x \lor y) = H(y \lor x)$.
- (4) $(x] \subseteq (y] \Rightarrow H(x) \subseteq H(y).$
- (5) $H(x) \subseteq H(y) \Leftrightarrow (a \lor x] \subseteq (a \lor y].$
- (6) $H(x) = H(y) \Leftrightarrow (a \lor x] = (a \lor y].$
- (7) $H(x) = \phi \Leftrightarrow x \in (a] \Leftrightarrow a \land x = x.$

(8)
$$H(a) = \phi = H(0)$$
.

- (9) $H(x) = H \Leftrightarrow a \lor x \text{ is maximal.}$
- (10) $H(x) \subseteq H(y) \Rightarrow (x] \subseteq (y]$ whenever $a \in (y]$.

(11)
$$H(x) = H(y) \Leftrightarrow x \sim y$$
 whenever $a \in (x] \cap (y]$.

Theorem 4.2. Let $H = h_{\mathbb{P}}(\mathfrak{a})$ and $Y \subseteq H$. Then Y is compact open iff Y=H(x) for some $x \in A$.

Proof. Suppose that Y=H(x) for some $x \in A$. Then, Y is open. Let $\{H(s) : s \in S\}$ be a basic open cover of Y, where $S \subseteq A$. Then,

$$Y \subseteq \bigcup_{s \in S} H(s) = \bigcup_{s \in S} H(a \lor s) = H(T) = H((T)),$$

where $T = \{a \lor s : s \in S\}$. If $x \notin (T]$, then, by Proposition 2.6, there exists a prime ideal P of A such that $(T] \subseteq P$ and $x \notin P$ so that $P \in H(x)$ and $P \notin H((T])$ a contradiction. Therefore $x \in (T]$ and hence, $x = (\bigvee_{i=1}^{n} (a \lor s_i)) \land y$ for some $y \in A$ and $s_1, s_2, \ldots, s_n \in S$. Now, $P \in H(x) \Rightarrow x \notin P \Rightarrow \bigvee_{i=1}^{n} (a \lor s_i) \notin P$ $\Rightarrow P \in H(\bigvee_{i=1}^{n} (a \lor s_i)) = \bigcup_{i=1}^{n} H(a \lor s_i) = \bigcup_{i=1}^{n} H(s_i)$. Therefore $Y \subseteq \bigcup_{i=1}^{n} H(s_i)$. Thus Y is compact. Conversely, suppose that Y is compact open. Since Y is open, $Y = \bigcup_{s \in S} H(S), S \subseteq A$. By compactness of Y,

$$Y = \bigcup_{i=1}^{n} H(s_i) = H(\bigvee_{i=1}^{n} s_i) = H(s), \text{ where } s = \bigvee_{i=1}^{n} s_i.$$

Note that, for any $x \in A$, the interval $[x, \infty) = \{y \in A : x \leq y < \infty\}$ is an ADL under the induced operations \land and \lor with x as its smallest element.

Theorem 4.3. Let $H = h_{\mathbb{P}}(\mathfrak{a})$. Then the following statements are equivalent:

- (1) H is a Haussdorff space;
- (2) H is a T_1 -space;
- (3) P is maximal ideal for each $P \in H$;
- (4) P is a-minimal prime ideal for each $P \in H$;
- (5) a(P) = P for all $P \in H$;
- (6) $[a, \infty)$ is a relatively complemented ADL.

Proof.

(1) \Rightarrow (2) It is clear.

(2) \Rightarrow (3) Let P \in H. By(2), {P} is closed in H and hence $\overline{\{P\}} = \{P\}$; that is $h_H(P) = h_H(k(\{P\})) = P$ which implies that there is no prime ideal containing a and P, other than P it self. Thus P is maximal ideal.

(3) \Rightarrow (4) It is trivial.

(4) \Rightarrow (5) It follows by Theorem 3.9.

 $(5)\Rightarrow(6)$ Let b and $x \in A$ such that $a \leq x \leq b$. Put $J = \langle x, a \rangle$. If $b \notin (x] \lor J$, then by Proposition 2.6, there exists a prime ideal P of A such that $b \notin P$ and $(x] \lor J \subseteq P$ so that $P \in H$. By (5), a(P) = P. Since $x \in P$, $x \in \langle y, a \rangle$ for some $y \in A$ -P. Therefore $y \land x \in (a]$ and hence $x \land y \in (a]$, where $y \in A$ -P. This implies that $y \in \langle x, a \rangle$ so that $y \in P$; a contradiction. Therefore $b \in (x] \lor J$. Then $b = (x \land f) \lor g$ for some $f \in A$ and $g \in J$. As $g \in \langle x, a \rangle$, $x \land g \in (a]$ so that $a \land x \land g = x \land g$. Clearly $a \leq a \lor g \leq b$. Now,

$$\mathbf{x} \wedge (\mathbf{a} \vee \mathbf{g}) = (\mathbf{x} \wedge \mathbf{a}) \vee (\mathbf{x} \wedge \mathbf{g}) = \mathbf{a} \vee (\mathbf{a} \wedge \mathbf{x} \wedge \mathbf{g}) = \mathbf{a} \vee (\mathbf{a} \wedge \mathbf{g}) = \mathbf{a}$$

and

$$x \lor b = x \lor ((x \land f) \lor g) = (x \lor (x \land f)) \lor g = x \lor g.$$

Then, $x \lor (a \lor g) = (x \lor a) \lor g = x \lor g = x \lor b = b$. Therefore $a \lor g$ is the complement of x in [a, b] and hence [a, b] is a Boolean algebra. Thus $[a, \infty)$ is a relatively complemented ADL.

(6) \Rightarrow (1) Let P \in H and Q is an ideal of A such that P \subset Q. Choose $x \in$ Q such that $x \notin$ P. Let $y \in$ A. Then $a \lor x$ and $a \lor y \in [a, \infty)$. Since the ADL $[a, \infty)$ is relatively complemented, there exists $z \in [a, \infty)$ such that $(a \lor x) \land z = a$ and $(a \lor x) \lor z = (a \lor x) \lor (a \lor y)$. Since $x \notin$ P, $a \lor x \notin$ P. Also $(a \lor x) \land z \in$ P. Since P is prime we get $z \in$ P. Then $(a \lor x) \lor z \in$ Q which implies $a \lor y \in$ Q. Now $y = (a \lor y) \land y \in$ Q. Therefore Q = A. Hence P is a maximal ideal of A. So every element in H is a maximal ideal and hence a-minimal prime ideal of A. Let P, Q \in H such that P \neq Q. Then P \notin Q and Q \notin P since P and Q are maximal. Choose an element $x \in$ P such that $x \notin$ Q. As $x \in$ P, $\langle x, a \rangle \notin$ P (by Theorem 3.5) and hence there exists $y \notin$ P such that $x \land y \in (a]$; that is, $a \land x \land y = x \land y$. Now H(y) and H(x) are open sets in H containing P and Q, respectively and

$$\begin{aligned} H(x) \cap H(y) &= H(x \land y) \quad \text{(by Lemma 4.1 (2))} \\ &= H(a \land x \land y) = H(a) \cap H(x \land y) = \phi \cap H(x \land y) = \phi \quad \text{(by Lemma 4.1 (8)).} \end{aligned}$$

Thus H is a Haussdorff space.

5. The space of α-minimal prime ideals

In this section, we consider the space of all a-minimal prime ideals of A, which will be denoted by min $h_{\mathbb{P}}(a)$. We fix the following notations.

$$\begin{split} &\mathsf{H}=\mathsf{h}_{\mathbb{P}}(\mathfrak{a});\\ &\mathsf{H}_{\mathfrak{m}}=\{M:M \text{ is a-minimal prime ideal of A}\}; \end{split}$$

$$\begin{split} \mathsf{H}_{\mathfrak{m}}(S) &= \mathsf{H}(S) \cap \mathsf{min} \ h_{\mathbb{P}}(\mathfrak{a}) = \{ \mathsf{M} \in \mathsf{H}_{\mathfrak{m}} : \ S \nsubseteq \mathsf{M} \};\\ \mathsf{H}_{\mathfrak{m}}(x) &= \mathsf{H}(x) \cap \mathsf{min} \ h_{\mathbb{P}}(\mathfrak{a}) = \{ \mathsf{M} \in \mathsf{H}_{\mathfrak{m}} : \ x \notin \mathsf{M} \};\\ \text{also, } \mathsf{h}_{\mathsf{H}_{\mathfrak{m}}}(S) &= \{ \mathsf{M} \in \mathsf{H}_{\mathfrak{m}} : \ S \subseteq \mathsf{M} \};\\ \text{and } \mathsf{h}_{\mathsf{H}_{\mathfrak{m}}}(x) &= \{ \mathsf{M} \in \mathsf{H}_{\mathfrak{m}} : \ x \in \mathsf{M} \}. \end{split}$$

Theorem 5.1. For each $x \in A$, $H_m(x)$ is closed and open in min $h_{\mathbb{P}}(a)$.

Proof. By Theorem 3.5, it follows that $H_m(x) \cap H_m(\langle x, a \rangle) = \phi$ and $H_m(x) \cup H_m(\langle x, a \rangle) = H_m$. Hence $H_m(x) = H_m - H_m(\langle x, a \rangle)$; so that $H_m(x)$ is closed.

Corollary 5.2. min $h_{\mathbb{P}}(\mathfrak{a})$ *is a Haussdorff space.*

Note that, for any $a \in A$, the relation defined by $\eta_a = \{(x, y) \in A \times A : \langle x, a \rangle = \langle y, a \rangle\}$ is a congruence relation on A.

The following is a straight forward verification and it gives us a set of relations between relative a-annihilators of A and the basic open (closed) sets of min $h_{\mathbb{P}}(a)$.

Lemma 5.3. For any $x, y, z \in A$, the following hold.

(1) $H_m(x) = h_{H_m}(\langle x, a \rangle).$

- (2) $H_m(\langle x, a \rangle) = h_{H_m}(x)$.
- (3) $h_{H_m}(x) = h_{H_m}(\langle x, a \rangle^*).$
- (4) $H_{\mathfrak{m}}(x) \subseteq H_{\mathfrak{m}}(y) \Leftrightarrow \langle y, \mathfrak{a} \rangle \subseteq \langle x, \mathfrak{a} \rangle.$
- (5) $h_{H_m}(x) \subseteq h_{H_m}(y) \Leftrightarrow \langle x, a \rangle \subseteq \langle y, a \rangle$.
- (6) $H_{\mathfrak{m}}(x) = H_{\mathfrak{m}}(y) \Leftrightarrow (x, y) \in \eta_{\mathfrak{a}}.$
- (7) $\langle z, a \rangle = \langle x, a \rangle \cap \langle y, a \rangle \Leftrightarrow h_{H_m}(z) = h_{H_m}(x) \cap h_{H_m}(y).$

(8) $\langle \mathbf{x}, \mathbf{a} \rangle^* = \langle \mathbf{y}, \mathbf{a} \rangle \Leftrightarrow \mathbf{h}_{\mathbf{H}_{\mathfrak{m}}}(\mathbf{x}) = \mathbf{h}_{\mathbf{H}_{\mathfrak{m}}}(\langle \mathbf{y}, \mathbf{a} \rangle).$

Now we give a characterization of a-dense elements.

Theorem 5.4. $D_a = \{x \in A : h_{H_m}(x) = \phi\}.$

Proof. Let $x \in D_a$. Then $h_{H_m}(x) = H_m(\langle x, a \rangle) = H_m((a]) = H_m(a) = \varphi$. Now,

$$\begin{aligned} h_{H_{\mathfrak{m}}}(x) &= \phi \Rightarrow H_{\mathfrak{m}}(\langle x, \mathfrak{a} \rangle) = \phi \\ &\Rightarrow \langle x, \mathfrak{a} \rangle \subseteq M \text{ for all } M \in H_{\mathfrak{m}} \\ &\Rightarrow \langle x, \mathfrak{a} \rangle \subseteq \bigcap_{M \in H_{\mathfrak{m}}} M = (\mathfrak{a}] \quad \text{(by Corollary 3.3)} \\ &\Rightarrow x \text{ is a-dense; so that } x \in D_{\mathfrak{a}}. \end{aligned}$$

Now, for any congruence θ on A, the quotient $A/\theta = \{x/\theta : x \in A\}$ is an ADL under the operations \land and \lor on A/θ defined by $x/\theta \land y/\theta = (x \land y)/\theta$ and $x/\theta \lor y/\theta = (x \lor y)/\theta$; and its zero element is $0/\theta$.

Theorem 5.5. Let J be an ideal of A and $A/\theta_{\rm I}$ be the quotient of A by an ideal congruence $\theta_{\rm I}$. Then the map

$$f(I) = I/\theta_I = \{x/\theta_I : x \in I\}$$

is an isomorphism of the lattice of all ideals of A containing J onto the lattice of all ideals of A/θ_J and this induces a homeomorphism from $h_{\mathbb{P}}(J)$ onto $\text{Spec}(A/\theta_J)$.

Proof. Since the natural map $x \mapsto x/\theta_J$ of A onto A/θ_J is a homomorphism (in fact, it is an epimorphism), one can easily verify that for any ideal I of A containing J, I/θ_J is an ideal of the ADL A/θ_J . Hence f is well defined. For any ideals P and Q containing J of A, it is clear that

$$\mathsf{P} \subseteq \mathsf{Q} \Rightarrow \mathsf{P}/\theta_{\mathsf{I}} \subseteq \mathsf{Q}/\theta_{\mathsf{I}} \Rightarrow \mathsf{f}(\mathsf{P}) \subseteq \mathsf{f}(\mathsf{Q}).$$

On the other hand, suppose that $f(P) \subseteq f(Q)$. Then

$$\begin{aligned} x \in P \Rightarrow x/\theta_J \in P/\theta_J &\subseteq Q/\theta_J \\ \Rightarrow x/\theta_J = y/\theta_J \text{ for some } y \in Q \\ \Rightarrow (x, y) \in \theta_J \text{ for some } y \in Q \\ \Rightarrow a \lor x = a \lor y \text{ for some } a \in J \text{ and } y \in Q \\ \Rightarrow x = (a \lor x) \land x = (a \lor y) \land x \in Q \end{aligned}$$

and therefore $P \subseteq Q$. Hence, $P \subseteq Q \Leftrightarrow f(P) \subseteq f(Q)$; that is f and f^{-1} are order homomorphism. To prove f is onto, let K be an ideal of A/θ_J . Put

$$I = \{ x \in A : x/\theta_I \in K \}.$$

Clearly I is an ideal of A and $f(I) = I/\theta_J = K$ and hence f is onto. Therefore $f : \mathfrak{I}_J(A) \mapsto \mathfrak{I}(A/\theta_J)$ is an order isomorphism and thus f is an isomorphism.

To prove the second part; we note that, if K is a prime ideal in A/θ_J , then there exists a prime ideal P of A containing J such that $f(P) = P/\theta_J = K$. Now, let $\mathbb{P}_{A/\theta_J}(K)$ be an open subset of $\text{Spec}(A/\theta_J)$, where K is an ideal of A/θ_J . Then

$$f^{-1}(\mathbb{P}_{A/\theta_{J}}(K)) = \{ P \in h_{\mathbb{P}}(J) : f(P) \in \mathbb{P}_{A/\theta_{J}}(K) \}$$
$$= \{ P \in h_{\mathbb{P}}(J) : K \nsubseteq f(P) \}$$
$$= \{ P \in h_{\mathbb{P}}(J) : f^{-1}(K) \nsubseteq P \}$$
$$= \{ P \in h_{\mathbb{P}}(J) : P \in \mathbb{P}(f^{-1}(K)) \}$$
$$= h_{\mathbb{P}}(J) \cap \mathbb{P}(f^{-1}(K)),$$

which is an open subset of $h_{\mathbb{P}}(J)$ and hence f is continuous.

Again, let $\mathbb{P}(I) \cap h_{\mathbb{P}}(J)$ be an open subset of $h_{\mathbb{P}}(J)$ where I is an ideal of A. Then,

$$\begin{split} f(\mathbb{P}(I) \cap h_{\mathbb{P}}(J)) &= \{f(P) : f^{-1}(f(P)) \in \mathbb{P}(I) \cap h_{\mathbb{P}}(J)\} \\ &= \{f(P) : P \in \mathbb{P}(I) \cap h_{\mathbb{P}}(J)\} \\ &= \{f(P) : I \nsubseteq P \text{ and } J \subseteq P\} \\ &= \{f(P) : f(I) \nsubseteq f(P) \text{ and } 0/\theta_J = f(J) \subseteq f(P)\} \\ &= \mathbb{P}_{A/\theta_J}(f(I)), \end{split}$$

and this is an open subset of $\text{Spec}(A/\theta_J)$; so that f^{-1} is continuous. Hence $h_{\mathbb{P}}(J)$ and $\text{Spec}(A/\theta_J)$ are homeomorphic; that is, $h_{\mathbb{P}}(J) \cong \text{Spec}(A/\theta_J)$.

Now, if J is an ideal of A, then by a minimal prime ideal belonging to J, we mean a minimal element in the set of all prime ideals of A containing J. In [3], it was proved that, a prime ideal P of A containing an ideal J is a minimal prime ideal belonging to J iff for each $x \in P$ there exists $y \notin P$ such that $x \land y \in J$.

For any ideal J of A, let m_A^J denote the set of all minimal prime ideals belonging to J, and min p^JA denote the space of minimal prime ideals belonging to J equipped with the hull-kernel topology. Then we have the following Corollaries as a direct consequence of the above theorem.

221

Corollary 5.6. min $p^{J}A \cong \min \text{Spec}(A/\theta_{J})$.

Corollary 5.7. min $h_{\mathbb{P}}(\mathfrak{a}) \cong \min \text{Spec}(A/\theta_{\mathfrak{a}})$.

Theorem 5.8. *For any* $x \in A$, $H_m(x) \cong \min \text{Spec}(A/\theta_{\langle x, a \rangle})$.

Proof. By Corollary 5.6, min Spec $(A/\theta_{\langle x, \alpha \rangle}) \cong \min p^{\langle x, \alpha \rangle} A = \mathfrak{m}_A^{\langle x, \alpha \rangle}$. So it sufficies to prove that $H_m(x) = \mathfrak{m}_A^{\langle x, \alpha \rangle}$. Let $M \in H_m(x)$. Then M is a minimal prime ideal and $x \notin M$, which implies that $\langle x, \alpha \rangle \subseteq M$, so that M is a minimal prime ideal belonging to $\langle x, \alpha \rangle$; that is $M \in \mathfrak{m}_A^{\langle x, \alpha \rangle}$. On the other hand let $M \in \mathfrak{m}_A^{\langle x, \alpha \rangle}$, then, for any $s \in M$ there exists $t \notin M$ such that $s \wedge t \in \langle x, \alpha \rangle$. Therefore $x \notin M$; for if $x \in M$, then $\langle x, \alpha \rangle \rangle = \langle x, \alpha \rangle \notin M$, a contradiction. Thus, for $s \in M$, we have $x \wedge t \notin M$ and $s \wedge x \wedge t \in (\alpha]$, so that $\langle s, \alpha \rangle \notin M$. Therefore M is a-minimal prime ideal and $x \notin M$; that is $M \in H_m(x)$. Hence $H_m(x) = \mathfrak{m}_A^{\langle x, \alpha \rangle}$.

Acknowledgment

The authors thanks the editor and anonymous reviewers for their careful reading and useful comments that have resulted in a significant improvement of the manuscript.

References

- [1] G. Grätzer, General Lattice Theory, Academic Press, New York-London, (1978).
- [2] M. Mandelker, Relative annhilators in lattices, Duke Math. J., 37 (1970), 377–386.
- [3] G. C. Rao, S. Ravi Kumar, Minimal prime ideals in Almost Distributive Lattices, Int. J. Contemp. Math. Sci., 4 (2009), 475–484. 5
- [4] C. S. Sundar Raj, S. N. Rao, K. R. Rao, a-Maximal filters in Almost Distributive Lattices, J. Int. Math. Virtual Inst., 10 (2020), 309–324. 1, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22
- [5] C. S. Sundar Raj, S. N. Rao, K. R. Rao, a-pseudo complementation on an ADL's, Asian-Eur. J. Math., (Accepted). 1, 2.15
- [6] C. S. Sundar Raj, S. N. Rao, M. Santhi, K. R Rao, Relative pseudo-complementations on ADL'S, Int. J. Math. Soft Comput., 7 (2017), 95–108. 2.14
- U. M. Swamy, G. C. Rao, Almost Distributive Lattices, J. Austral. Math. Soc. Ser A, 31 (1981), 77–91. 1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12
- [8] U. M. Swamy, G. C. Rao, G. Nanaji Rao, Pseudo-complementation on Almost Distributive Lattices, Southeast Asian Bull. Math., 24 (2000), 95–104. 1, 2.13
- [9] J. C. Varlet, Relative annihilators in semilattices, Bull. Austral. Math. Soc., 9 (1973), 169–185.