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Abstract
In this article, we introduce a hybrid iteration involving inertial-term for split equilibrium problem and fixed point for a
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1. Introduction

Fixed point theory of nonexpansive mappings has valuable applications in different fields such as;
convex feasibility problems, convex optimization problems, approximation theory, game theory, signal
and image processing, partial differential equations and so on (see for example [16, 33] and the references
therein). Existence of solutions associated with the above-mentioned problems depends on the existence
of fixed points of certain noinlinear mappings.

In 1994, Censor and Elfving [11] introduced in finite dimensional real Hilbert spaces, the split feasibility
problems (SFP) for modeling inverse problems which arise from phase retrievals and in medical image
reconstruction. It is now known that SFP can be applied in many disciplines such as; image restoration,
computer tomograph and radiation therapy treatment planning (see [8, 9, 12, 13]). Consequently, the
study of SFP has received the attention of many researchers (see [4, 27, 34, 36] and the references therein).

Let H1 and H2 be two real Hilbert spaces and C and Q be nonempty closed convex subsets of H1 and
H2, respectively. The SFP is formulated as follows; find a point q ∈ H1 such that

q ∈ C and Aq ∈ Q, (1.1)
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where A : H1 → H2 is a bounded linear operator. If (1.1) has solution, it can be shown that x ∈ C solves
(1.1) if and only if it solves the following fixed point equation:

x = PC((I− γA
∗(I− PQ))A)x, (1.2)

where PC and PQ are the metric projections onto C and Q, respectively, γ is a positive constant and A∗

denotes the adjoint of A. Under appropriate conditions on γ, it can be shown that the operator PC((I−
γA∗(I− PQ)A associated with (1.2) is nonexpansive.

For an equilibrium bifunction f : C×C→ R, the equilibrium problem is defined as; find x ∈ C such that
f(x,y) > 0, ∀ y ∈ C. We remark that iterative solution of equilibrium problems and fixed point problems
has been studied extensively in the last three decades or so (see [2, 6, 9, 17, 19, 28, 30, 32]).

For two equilibrium bifunctions f and g satisfying certain conditions (see Section 2 below), the split
equilibrium problem (SEP) entails finding a solution of an equilibrium problem, x∗ ∈ EP(f) such that the
image of x∗ under a bounded linear map, Ax∗ is a solution of another equilibrium problem EP(g). This
problem has been studied and successfully employed as a model in intensity-modulated radiation therapy
treatment planning, see for instance, [4, 10, 23] and the references contained therein.

In 1967, Browder and Petryshyn [7] introduced the class of strict pseudo contractive maps as a gener-
alization of the class of nonexpansive mappings. Other generalizations of nonexpansive mappings have
also been introduced and studied in the literature (see Alber et al. [1] and Yang et al. [35]).

In [14], the authors studied SFP involving quasi-nonexpansive mapping and total asymptotically strict
pseudo-contractive mapping. Other authors have also studied the same problem using different assump-
tions (see [20, 25, 26, 31] and the references therein). Unfortunately, the stepsize in these existing results
often depend on the norm of the associated bounded linear operator or on the spectral radius of A∗A.
This makes those results very difficult to use in any possible application.

Inertial-type algorithms are based on the heavy ball methods of the two-order time dynamical system.
Polyak [29] first proposed an inertial extrapolation as a speed up process to solve the smooth convex
minimization problem. The inertial algorithm is a two-step iterative method in which the next iteration is
obtained by the previous two iterates, which improve the convergence rate of the iterative sequence (see
[5, 21, 29]).

Inspired by the ongoing research explored above, it is our purpose in this article to design an inertial-
type iterative algorithm in which the stepsize does not need prior knowledge of the norm of the associated
bounded linear operator and prove strong convergence of the sequence for SEP and fixed point of total
asymptotically strict pseudo-contractive mapping in real Hilbert spaces.

The rest of the paper is arranged as follows. In Section 2, we provide some definitions and preliminary
results which will be needed throughout the paper. Sections 3 is devoted to the main result, while in
Section 4, we apply the result of Section 3 to study some related problems.

2. Preliminaries

This section is devoted to recalling some fundamental definitions, properties and notations concerned
with the split equilibrium problem and fixed point problem in real Hilbert spaces. Throughout the paper,
xk → x (resp. xk ⇀ x ) denotes strong convergence (resp. weak convergence) of a sequence {xk}. Except
otherwise stated, H stands for a real Hilbert space and C ⊆ H denotes a closed convex subset of H.

Let C be a nonempty subset of a real Hilbert space H and let T : C → C be a mapping. We denote by
F(T) the set of fixed points of the mapping T . That is, F(T) = {x ∈ C : T(x) = x}.

Definition 2.1. The mapping T is said to be:

(i) nonexpansive if
||Tx− Ty|| 6 ||x− y||, ∀ x,y ∈ C;

(ii) uniformly Θ− Lipschitzian if there exists Θ > 0 such that

||Tnx− Tny|| 6 Θ||x− y||, ∀ x,y ∈ C, ∀n > 1;
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(iii) pseudo-contractive if

||Tx− Ty||2 6 ||x− y||2 + ||(I− T)x− (I− T)y||2, ∀ x,y ∈ C;

(iv) k-strict pseudo contractive, if there exists k ∈ [0, 1) such that

||Tx− Ty||2 6 ||x− y||2 + k||(I− T)x− (I− T)y||2, ∀ x,y ∈ C;

(v) (k, {λn}, {µn},φ)-total asymptotically strictly pseudo contraction (see [35]), if there exists a constant
k ∈ [0, 1) and sequences of nonnegative real numbers {λn}, {µn}, and a strictly increasing continuous
function φ : R+ → R+ with φ(0) such that

||Tnx− Tny||2 6 ||x− y||2 + k||(I− Tn)x− (I− Tn)y||2 + λnφ(||x− y||) + µn, ∀ x,y ∈ C, ∀ n > 1.

Let E be a smooth Banach space, C a nonempty subset of E, and T : C→ C a mapping. Following [3], see
also [22] we say that T is of type (P) if

〈Tx− Ty, J(x− Tx) − J(y− Ty)〉 > 0, ∀ x,y ∈ C. (2.1)

If E is a Hilbert space, then J = I and hence T is of type (P) if and only if T is firmly nonexpansive, that is,

||Tx− Ty||2 6 〈Tx− Ty, x− y〉, ∀ x,y ∈ C.

For any x ∈ H, there exists a unique nearest point to C denoted by PCx, such that

||x− PCx|| 6 ||x− y||, ∀x,y ∈ C.

The mapping PC : H→ C is known as the metric projection of H onto C and satisfies the following.

Lemma 2.2.

||y− PCx||
2 + ||x− PCx||

2 6 ||x− y||2 ∀ x ∈ H,y ∈ C, 〈PCx− x,y− PCx〉 > 0, ∀ y ∈ C. (2.2)

For more properties of PC, one can consult [15].

Definition 2.3 ([15]). A Banach space E is said to have the Kadec-Klee property if whenever {xn} is a
sequence in E that converges weakly to x0 ∈ E and ||xn||→ ||x0||, as n→∞, then {xn} converges strongly
to x0.

Lemma 2.4 ([14]). Let C be a nonempty subset of a real Hilbert space H and let S : C → C be a uniformly Θ-
Lipschitzian and (k, {λn}, {µn},φ)-total asymptotically strictly pseudo contraction, then S is demiclosed at origin.
That is, if for any sequence {xn} in C with xn ⇀ x and ||xn − Sxn||→ 0, n→∞, we have x = Sx.

Lemma 2.5. The following statements hold in a real Hilbert space, H.

(i) ||x+ y||2 = ||x||2 + 2〈x,y〉+ ||y||2 , ∀ x,y ∈ H;

(ii) ||x+ y||2 6 ||x||2 + 〈y, x+ y〉, ∀ x,y ∈ H;

(iii) ||αx+ (1 −α)y||2 = α||x||2 + (1 −α)||y||2 −α(1 −α)||x− y||2 , ∀x,y ∈ H, , ∀ α ∈ [0, 1].

Definition 2.6 ([6, 17]). Let f : C × C → R be an equilibrium bifunction. That is: f(x, x) = 0. The
equilibrium problem is: find x∗ ∈ C:

f(x∗,y) > 0, ∀ y ∈ C. (2.3)

We shall denote by EP(f) the set of solutions of (2.3).

Assumption 2.7. For solving the equilibrium problem, we assume that f and the set C satisfy the following
conditions:
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(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is f(x,y) + f(y, x) 6 0 for all x,y ∈ C;
(A3) f is upper hemicontinuous, i.e., for each x,y, z ∈ C, limt→0 f(tz+ (1 − t)x,y) 6 f(x,y);
(A4) f(x, .) is convex and lower semi-continuous for each x ∈ C.

With the above assumptions, we have the following Lemma.

Lemma 2.8 (Blum and Oettli [6], Combettes and Hirstoaga [17]). Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C×C → < be a bifunction satisfying assumptions (A1)-(A4). For r > 0
and x ∈ H, there exists z ∈ C such that

f(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀ y ∈ C.

Moreover, define a mapping Tfr : H→ C as follows:

Tfr (x) = {z ∈ C : f(z,y) +
1
r
〈y− z, z− x〉 > 0, y ∈ C}

for all x ∈ H. Then the following conclusions hold:

(1) for each x ∈ H, Tfr (x) 6= ∅;
(2) Tfr is single- valued;
(3) Tfr is firmly nonexpansive, i.e., for each x,y ∈ H,

〈Tfrx− Tfry, Tfrx− T
f
ry〉 6 〈Tfrx− Tfry, x− y〉;

(4) F(Tfr ) = EP(f);
(5) EP(f) is closed and convex.

3. Main results

We now prove our main result.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and Q ⊆ H2 be nonempty closed convex
subsets of H1 and H2, respectively. Let f : C × C → R and g : Q ×Q → R be two bifunctions satisfying
assumptions (2.7). Let S : C → C be a uniformly Θ- Lipschitzian and continuous total asymptotically strict
pseudo contractive mapping and let A : H1 → H2 be a bounded linear map with adjoint A∗ : H2 → H1. Let
Ω := {z ∈ C : z ∈ EP(f) : Az ∈ EP(g)} 6= ∅ and assume that Γ := F(S)∩Ω 6= ∅. Let the stepsize γk be chosen such

that, for some ε > 0, γk ∈
(
ε, min

{ 2||Awk−TgskAw
k||2

||A∗(Awk−TgrkAw
k)||2

− ε,
||Awk−TgskAw

k||2

2||A∗(Awk−TgrkAw
k)||2

− ε
})

if wk 6= T
g
skAw

k,

otherwise γk = γ (where γ is any nonnegative constant). For arbitrary z0, z1 ∈ H1, define the sequence {zk} by the
following algorithm: 

C0 = H1,
wk = zk + (zk − zk−1),
uk = Tfrk

(
wk − γkA∗(I− Tgsk)Aw

k
)
,

vk = αku
k + (1 −αk)S

kuk,
Ck+1 = {q ∈ Ck : ||vk − q||2 6 ||wk − q||2 + θk},
zk+1 = PCk+1z

0, ∀ k > 1,

(3.1)

where θk := (1 − αk){λkφ(M) + λkM
∗Dk + µk} with Dk = sup{||wk − p||;p ∈ Γ }, {rk}, {sk} are two sequences

of positive real numbers and {αk} is a sequence in (0, 1) such that the following conditions are satisfied:

(I) 0 6 k < a 6 αk 6 b < 1;
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(II) lim infk→∞ rk > 0, lim infk→∞ sk > 0;
(III)

∑∞
k=1 µk <∞ and

∑∞
k=1 λk <∞;

(IV) there exist constants M,M∗ > 0 such that φ(λ) 6M∗λ2, ∀ λ >M.

Then the sequence {zk} generated by (3.1) converges strongly to ζ ∈ Γ , with ζ = PΓz0.

Proof. We divide the proof into six steps.

Step I: We show that the sequence {zk} defined in (3.1) is well defined. For this, we first show by mathe-
matical induction that Γ ⊆ Ck, ∀ k > 1. Obviously Γ ⊆ C0 = H1. Now, assume that Γ ⊆ Cj for some j > 1.
Let p ∈ Γ , from (3.1) and (2.1), we estimate as follows:

||uj − p||2 = ||Tfrj
(
wj − γjA∗(I− Tgsj)Aw

j
)
− Tfrjp||

2

6 ||wj − γjA∗(I− Tgsj)Aw
j
)
− p||2

= ||wj − p||2 − 2γj〈wj − p,A∗(I− Tgsj)Aw
j〉+ (γj)2||A∗(I− Tgsj)Aw

j||2

= ||wj − p||2 − 2γj〈Awj −Ap, (I− Tgsj)Aw
j〉+ (γj)2||A∗(I− Tgsj)Aw

j||2

= ||wj − p||2 − 2γj〈Awj − TgsjAw
j + TgsjAw

j −Ap, (I− Tgsj)Aw
j〉

+ (γj)2||A∗(I− Tgsj)Aw
j||2

= ||wj − p||2 − 2γj||Awj − TgsjAw
j||2 − 2γj〈TgsjAw

j − TgsjAp, (I− Tgsj)Aw
j〉

+ (γj)2||A∗(I− Tgsj)Aw
j||2

6 ||wj − p||2 − 2γj||Awj − TgsjAw
j||2 + (γj)2||A∗(I− Tgsj)Aw

j||2 using (2.1)

= ||wj − p||2 − γj
(
2||Awj − TgsjAw

j||2 − γj||A∗(I− Tgsj)Aw
j||2
)

6 ||wj − p||2.

(3.2)

That is.

||uj − p||2 6 ||wj − p||2. (3.3)

From (3.1) and utilizing (3.3), we have the following:

||vj − p||2 = ||αju
j + (1 −αj)S

juj − p||2

= αj||u
j − p||2 + (1 −αj)||S

juj − p||2 −αj(1 −αj)||u
j − Sjuj||2

6 αj||u
j − p||2 + (1 −αj){||u

j − p||2 + κ||uj − Sjuj||2 + λjφ(||u
j − p||) + µj}

−αj(1 −αj)||u
j − Sjuj||2

6 ||uj − p||2 + (1 −αj){κ||u
j − Sjuj||2 + λjφ(M) + λjM

∗||uj − p||2 + µj}

−αj(1 −αj)||u
j − Sjuj||2

= ||uj − p||2 − (αj − κ)(1 −αj)||u
j − Sjuj||2 + (1 −αj){λjφ(M) + λjM

∗||uj − p||2 + µj}.

From condition (I), we have that (αj − κ) > 0 and so we conclude that

||vj − p||2 6 ||uj − p||2 + θj, (3.4)

where θj = (1 − αj){λjφ(M) + λjM
∗Dj + µj} with Dj := sup{||wj − p||2 : p ∈ Γ }. From (3.4) we obtain that

p ∈ Cj+1. Since p is arbitrary, we conclude that Γ ⊆ Ck+1, ∀ k > 1. Next we show that the set Ck is closed
and convex for all k > 1. Observe that

{z ∈ Ck : ||uk − z||2 6 ||wk − z||2 + θk} = {z ∈ Ck : ||uk||2 − ||wk||2 6 2〈uk −wk, z〉+ θk}.

So, the set Ck is closed and convex for all k > 1. Hence the sequence {zk} defined by (3.1) is well defined.
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Step II: We show that {zk}, {vk}, {uk}, and {wk} are all bounded.
Since zk = PCkz

0, then using (2.2), we have

0 6 〈zk − z0, z∗ − zk〉, ∀ z∗ ∈ Ck.

For each p ∈ Γ , we get

0 6 〈zk − z0,p− zk〉 = 〈zk − z0,p+ z0 − z0 − zk〉
= 〈zk − z0, z0 − zk〉+ 〈zk − z0,p− z0〉 6 −||zk − z0||2 + ||zk − z0||||p− z0||.

(3.5)

From (3.5), we get
||zk − z0|| 6 ||p− z0||, ∀ p ∈ Γ , ∀ k > 1. (3.6)

Hence {zk} is bounded. Consequently {vk}, {uk}, and {wk} are all bounded.

Step III: limk→∞ ||Awk − TgskAw
k|| = 0.

From zk = PCkz
0 and zk+1 = PCk+1z

0 ∈ Ck+1 ⊆ Ck, we have

0 6 〈zk − z0, zk+1 − zk〉.

Following similar argument as in (3.5), we have

||zk − z0|| 6 ||zk+1 − z0||, ∀ k > 1. (3.7)

From (3.6) and (3.7), we conclude that {||zk − z0||} is bounded and nondecreasing. Hence

lim
k→∞ ||zk − z0|| exists.

Furthermore, since zm = PCmz
0 ∈ Cm ⊂ Ck for m > k, we obtain from Lemma 2.2 that

||zm − zk||2 6 ||zk − z0||2 − ||zk − z0||2. (3.8)

Since limn→∞ ||zk − z0|| exists, we have from (3.8) that

lim
n→∞ ||zm − zk|| = 0.

Thus, {zk} is a Cauchy sequence. Hence

lim
k→∞ ||zk+1 − zk|| = 0. (3.9)

Since zk+1 ∈ Ck+1, then
||vk − zk+1|| 6 ||wk − zk+1||+

√
θk. (3.10)

Notice that
||wk − zk|| = ||zk − zk−1||→ 0 k→∞ from (3.9).

Also,

||wk − zk+1|| = ||wk − zk + zk − zk+1|| 6 ||wk − zk||+ ||zk − zk+1||→ 0 by (3.9). (3.11)

Applying (3.11) in (3.10), we have that

lim
k→∞ ||vk − zk+1|| = 0. (3.12)

Therefore, by (3.11) and (3.12)

||vk −wk|| 6 ||vk − zk+1||+ ||zk+1 −wk||→ 0 k→∞. (3.13)



J. N. Ezeora, P. C. Jackreece, J. Nonlinear Sci. Appl., 14 (2021), 359–371 365

From (3.2), we have

γk
(
2||Awk − TgskAw

k||2 − γk||A
∗(I− Tgsk)Aw

k||2 6 ||wk − p||2 − ||uk − p||2

6 ||wk − p||2 − ||vk − p||2 + θk

6
(
||wk − p||+ ||vk − p||

)
||wk − vk||+ θk.

Hence,

2γk||Awk − TgskAw
k||2 6

(
||wk − p||+ ||vk − p||

)
||wk − vk||+ θk + γ2

k||A
∗(I− Tgsk)Aw

k||2,

2||Awk − TgskAw
k||2 6

1
γk

{
(
||wk − p||+ ||vk − p||

)
||wk − vk||+ θk}+ γk||A

∗(I− Tgsk)Aw
k||2

6
1
γk

{
(
||wk − p||+ ||vk − p||

)
||wk − vk||+ θk}

+
||(I− Tgsk)Aw

k||2

2||A∗(I− Tgsk)Awk||2
||A∗(I− Tgsk)Aw

k||2,

4||Awk − TgskAw
k||2 6

2
γk

{
(
||wk − p||+ ||vk − p||

)
||wk − vk||+ θk}+ ||(I− Tgsk)Aw

k||2.

(3.14)

So, using (3.14), we have

3||Awk − TgskAw
k||2 6

2
γk

{
(
||wk − p||+ ||vk − p||

)
||wk − vk||+ θk}→ 0.

That is
lim
k→∞ ||Awk − TgskAw

k|| = 0. (3.15)

Step IV: lim ||wk − Swk|| = 0.
Let p ∈ Γ . Using firm nonexpansiveness of Tfrk , we have the following estimates:

||uk − p||2 = ||Tfrk
(
wk − γkA

∗(I− Tgsk)Aw
k
)
− Tfrkp||

2

6 〈uk − p,wk − γkA∗(I− Tgsk)Aw
k − p〉

=
1
2
{
||uk − p||2 + ||wk − γkA

∗(I− Tgsk)Aw
k − p||2 − ||uk −wk − γkA

∗(I− Tgsk)Aw
k||2
}

6
1
2
{
||uk − p||2 + ||wk − p||2 − ||uk −wk − γkA

∗(I− Tgsk)Aw
k||2
}

=
1
2
{
||uk − p||2 + ||wk − p||2 −

(
||uk −wk||2 + γ2

k||A
∗(I− Tgsk)Aw

k||2

− 2γk〈uk −wk,A∗(I− Tgsk)Aw
k〉
)}

6 ||wk − p||2 − ||uk −wk||2 + 2γk||A(uk −wk)||||A∗(I− Tgsk)Aw
k||.

(3.16)

Notice that from argument of (3.3), we have

||vk − p||2 6 αk||w
k − p||2 + (1 −αk)||u

k − p||2 + θk. (3.17)

Applying (3.17) in (3.16) and re-arranging the terms, we have

(1 −αk)||u
k −wk||2 6

(
||wk − p||+ ||vk − p||

)
||vk −wk||+ 2γk||A(uk −wk)||||A∗(I− Tgsk)Aw

k||.

Letting k→∞, we have using (3.13) and (3.15) that

||uk −wk||→ 0, k→∞. (3.18)
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Furthermore, from (3.13) and (3.18) we have

||vk −wk|| 6 ||vk − uk||+ ||uk −wk||→ 0, k→∞.

From (3.1), we get that ||vk −uk|| = (1 −αk)||S
kuk −uk||. Utilizing condition (I) and conclusion (3.13), we

obtain
|Skuk − uk||→ 0, k→∞. (3.19)

Using (3.19) we obtain

||Skuk −wk|| 6 ||Skuk − uk||+ ||uk −wk||→ 0, k→∞,

||Skuk − vk|| 6 ||Skuk − uk||+ ||uk − vk||→ 0, k→∞.
(3.20)

Utilizing (3.20), we get

||Skwk −wk|| 6 ||Skwk − Skuk||+ ||Skuk −wk|| 6 Θ||wk − uk||+ ||Skuk −wk||→ 0, k→∞.

||wk − Swk|| 6 ||wk − Skwk||+ ||Skwk − Swk|| 6 ||wk − Skwk||+Θ||Sk−1wk −wk||→ 0, k→∞.
(3.21)

Step V: ω(wk) ⊆ Γ , where ω(wk) is the set of all weak cluster points of {wk}.
Since {wk} is bounded, ω(wk) 6= ∅. Let ζ ∈ ω(wk), then there exists a subsequence {wki} of {wk} such

that wki ⇀ ζ. Applying Lemma 2.4 and conclusion (3.21), we get that ζ ∈ F(S). Next, we verify that
ζ ∈ EP(f). From definition of {uk}, uk = Tfrk

(
wk − γkA

∗(I− Tgsk)Aw
k
)
. That is:

f(uk,y) +
1
rk
〈y− uk,uk −wk − γkA∗(I− Tgsk)Aw

k〉 > 0, ∀y ∈ C.

Replacing k with ki, we have

f(uki ,y) +
1
rki
〈y− uki ,uki −wki〉− 1

rki
〈y− uki ,γkA∗(I− Tgski )Aw

ki〉 > 0.

That is
1
rki
〈y− uki ,uki −wki〉− 1

rki
〈y− uki ,γkiA

∗(I− Tgski
)Awki〉 > f(y,uki). (3.22)

By (A4), (3.22), (3.15), (3.18), and taking limit as k→∞, we have

f(y, ζ) 6 0, ∀y ∈ H1.

Let zt = ty+ (1 − t)ζ ∀t ∈ (0, 1] and y ∈ C. This implies that zt ∈ C. Hence, f(zt, ζ) 6 0. From (A1),

0 6 f(zt, zt) 6 tf(zt,y) + (1 − t)f(zt, ζ) 6 tf(zt,y).

Hence,
0 6 f(zt,y),

from condition (A3), we obtain
f(ζ,y) > 0 ∀y ∈ H1.

This implies that
ζ ∈ EP(f).

Since wki ⇀ ζ and A is a bounded linear operator, then Awki → Aζ. Hence, it follows from (3.15) that

Tgski
Awki → Aζ, i→∞.
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From Lemma 2.5, we have

g
(
Tgski

Awki ,y
)
+

1
ski
〈y− TgskiAw

ki , TgskiAw
ki −Awki〉 > 0, ∀y ∈ Q. (3.23)

Since g is upper-hemicontinuous in the first argument, we have by taking lim sup as i → ∞ in (3.23),
condition (II) and (3.15) that

g
(
Aζ,y

)
> 0, ∀ζ ∈ Q.

That is, Aζ ∈ EP(g). So ζ ∈ Γ .

Step VI: zk → ζ = PΓz
0, k→∞. Let ξ = PΓz

0. Then ξ ∈ Γ . From ||zk − z0|| 6 ||ξ− z0||, we have

||ξ− z0|| 6 ||ζ− z0|| 6 lim inf
i→∞ ||zki − z0|| 6 lim sup

i→∞ ||zki − z0|| 6 ||ξ− z0||.

This implies that ||ξ− z0|| 6 ||ζ− z0|| 6 limi→∞ ||zki − z0|| 6 ||ξ− z0||. So, limi→∞ ||zki − z0|| = ||ξ− z0|| =
||ζ− z0||. Furthermore, by uniqueness of PΓz0, we have that ξ = ζ and so ||zki ||→ ||ζ||. Since Hilbert spaces
satisfy Kadec-Klee property, we conclude that zki → ζ, i→∞. But {zk} is Cauchy and so it is convergent.
Hence,

zk → ζ,k→∞.

This completes the proof.

Remark 3.2. In this work, we proved strong convergence theorem for approximating solution of split
equilibrium problem and fixed point of a total asymptotically strictly pseudocontractive mapping in
real Hilbert spaces. In our algorithm, the stepsize is independent of the knowledge of norm of the
bounded linear map, a restrictive condition that has been imposed by many authors (see, e.g., [18, 20,
24, 35]). Furthermore, no compactness-type condition was imposed either on the domain of the operator
or on the operator itself as is the case with many similar results in the literature (e.g., [14, 20]). We also
incoorporated inertial step into our algorithm which is known to speed up convergence rate of iterative
algorithms. Finally, we note that the result of Theorem 3.1 of this manuscript can be extended to finite
family of total asymptotically strictly pseudocontractive mappings. We did not prove that since the proof
follows same arguments as those used in proving Theorem 3.1 here.

4. Application

In this section, we apply the result of Theorem 3.1 to study SEP and fixed point of asymptotically
strictly pseudocontractive mapping in real Hilbet spaces.

Definition 4.1. A mapping T : C→ C is said to be an asymptotically k-strictly pseudocontractive mapping
(see [18, 24]), if there exists a sequence {νn} ⊂ [1,∞) with limn→∞ νn = 1 and a constant λ ∈ [0, 1) such
that

||Tnx− Tny||2 6 ν2
n||x− y||

2 + λ||(I− Tn)x− (I− Tny)||2, ∀x,y ∈ C.

Lemma 4.2 ([18]). Assume that C is a closed and convex subset of a real Hilbert space H, and let T : C→ C be an
asymptotically λ-strict pseudocontraction with Fix(T) 6= ∅. Then:

(i) for each n > 1, Tn satisfies the Lipschitz condition

||Tnx− Tny|| 6 Ln||x− y||, ∀ x,y ∈ C, where Ln =
λ+

√
1 + (kn − 1)(1 − λ)

1 − λ
;

(ii) T is demiclosed at 0;
(iii) F(T) is closed and convex.



J. N. Ezeora, P. C. Jackreece, J. Nonlinear Sci. Appl., 14 (2021), 359–371 368

Theorem 4.3. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and Q ⊆ H2 be nonempty closed
convex subsets of H1 and H2, respectively. Let f : C × C → R and g : Q × Q → R be two bifunctions
satisfying assumptions (2.7). Let S : C → C be an asymptotically κ-strictly pseudocontractive mapping with
(κ ∈ [0, 1)) and {νk} ⊂ [1,∞) : νk → 1, and letA : H1 → H2 be a bounded linear map with adjointA∗ : H2 → H1.
Let Ω := {z ∈ C : z ∈ EP(f) : Az ∈ EP(g)} 6= ∅ and assume that Γ := F(S)∩Ω 6= ∅. Let the stepsize γk be chosen

such that, for some ε > 0, γk ∈
(
ε, min

{ 2||Awk−TgskAw
k||2

||A∗(Awk−TgrkAw
k)||2

−ε,
||Awk−TgskAw

k||2

2||A∗(Awk−TgrkAw
k)||2

−ε
})

ifwk 6= TgskAwk,

otherwise, γk = γ(where γ is any nonnegative constant). For arbitrary z0, z1 ∈ H1, define the sequence {zk} by the
following algorithm: 

C0 = H1,
wk = zk + (zk − zk−1),
uk = Tfrk

(
wk − γkA∗(I− Tgsk)Aw

k
)
,

vk = αku
k + (1 −αk)S

kuk,
Ck+1 = {q ∈ Ck : ||vk − q||2 6 ||wk − q||2 + θk},
zk+1 = PCk+1z

0, ∀ k > 1,

(4.1)

where θk := (1 − αk)(ν
2
k − 1)Dk with Dk = sup{||wk − p||2;p ∈ Γ }, {rk}, {sk} are two sequences of positive real

numbers and {αk} is a sequence in(0, 1) such that the following conditions are satisfied:

(I): 0 6 k < a 6 αk 6 b < 1;
(II): lim infk→∞ rk > 0, lim infk→∞ sk > 0.

Then the sequence {zk} generated by (4.1) converges strongly to ζ ∈ Γ , with ζ = PΓz0.

Proof. We divide the proof into six steps.

Step I: We show that {zk} defined in (3.1) is well defined. For this, we first show by mathematical induc-
tion that Γ ⊆ Ck, ∀ k > 1. Obviously, Γ ⊆ C0 = H1. Now, assume that Γ ⊆ Cj for some j > 1. Let p ∈ Γ ,
from (4.1) and (2.1), we estimate as follows:

||uj − p||2 = ||Tfrj

(
wj − γjA∗(I− TgsjAw

j
)
− Tfrjp||

2

6 ||wj − γjA∗(I− TgsjAw
j
)
− p||2

= ||wj − p||2 − 2γj〈wj − p,A∗(I− Tgsj)Aw
j〉+ (γj)2||A∗(I− Tgsj)Aw

j||2

= ||wj − p||2 − 2γj〈Awj −Ap, (I− Tgsj)Aw
j〉+ (γj)2||A∗(I− Tgsj)Aw

j||2

= ||wj − p||2 − 2γj〈Awj − TgsjAw
j + TgsjAw

j −Ap, (I− Tgsj)Aw
j〉+ (γj)2||A∗(I− Tgsj)Aw

j||2

= ||wj − p||2 − 2γj||Awj − TgsjAw
j||2 − 2γj〈TgsjAw

j − TgsjAp, (I− Tgsj)Aw
j〉+ (γj)2||A∗(I− Tgsj)Aw

j||2

6 ||wj − p||2 − 2γj||Awj − TgsjAw
j||2 + (γj)2||A∗(I− Tgsj)Aw

j||2 using (2.1)

= ||wj − p||2 − γj
(
2||Awj − TgsjAw

j||2 − γj||A∗(I− Tgsj)Aw
j||2
)

6 ||wj − p||2.

That is.

||uj − p||2 6 ||wj − p||2. (4.2)

From (4.1) and utilizing (4.2), we have the following:

||vj − p||2 = ||αju
j + (1 −αj)S

juj − p||2

= αj||u
j − p||2 + (1 −αj)||S

juj − p||2 −αj(1 −αj)||u
j − Sjuj||2

6 αj||u
j − p||2 + (1 −αj){ν

2
j ||u

j − p||2 + κ||uj − Sjuj||2}−αj(1 −αj)||u
j − Sjuj||2

= αj||u
j − p||2 + (1 −αj){ν

2
j ||u

j − p||2 + ||uj − p||2 − ||uj − p||2 + κ||uj − Sjuj||2}
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−αj(1 −αj)||u
j − Sjuj||2

= ||uj − p||2 + (1 −αj)(ν
2
j − 1)||uj − p||2 + (1 −αj){κ||u

j − Sjuj||2}−αj(1 −αj)||u
j − Sjuj||2

6 ||uj − p||2 + (1 −αj)(ν
2
j − 1)||uj − p||2 + (1 −αj){κ||u

j − Sjuj||2}−αj(1 −αj)||u
j − Sjuj||2

= ||uj − p||2 + (1 −αj)(ν
2
j − 1)||uj − p||2 − (αj − κ)(1 −αj)||u

j − Sjuj||2.

From condition (I), we have that (αj − κ) > 0, so we conclude that

||vj − p||2 6 ||uj − p||2 + θj, (4.3)

where θj := (1−αj)(ν2
j − 1)Dj with Dj = sup{||wj − p||2;p ∈ Γ }. From (4.3), we obtain that p ∈ Cj+1. Since

p is arbitrary, we conclude that Γ ⊆ Ck+1, ∀ k > 1. Next, we show that the set Ck is closed and convex for
all k > 1. Observe that

{z ∈ Ck : ||uk − z||2 6 ||wk − z||2 + θk} = {z ∈ Ck : ||uk||2 − ||wk||2 6 2〈uk −wk, z〉+ θk}.

So, the set Ck is closed and convex for all k > 1. Hence the sequence {zk} defined by (3.1) is well defined.
The remaining part of the proof follows same argument as the arguments of steps II-VI of the proof

of Theorem 3.1 above. We therefore omit them.

Remark 4.4. Theorem 4.3 carries over easily to the case of finite family of the map, T . We state without
proof the result in the next theorem.

Theorem 4.5. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and Q ⊆ H2 be nonempty closed
convex subsets of H1 and H2, respectively. For 1 6 i 6 N, let fi : C × C → R and gi : Q × Q → R

be two bifunctions satisfying assumptions (2.7). Let Si : C → C be an asymptotically κi-strictly pseudocon-
tractive mapping, with (κi ∈ [0, 1)) and {νik} ⊂ [1,∞) : νik → 1,k → ∞ and let Ai : H1 → H2 be a
bounded linear map with adjoint A∗i : H2 → H1. Let Ω := {z ∈ C : z ∈ ∩Ni=1EP(fi) : Az ∈ ∩Ni=1EP(gi)} 6=
∅ and assume that Γ := ∩Ni=1F(Si) ∩Ω 6= ∅. Let the stepsizes γk,i be chosen such that, for some εi > 0,

γk,i ∈
(
εi, min

{ 2||Awk−TgiskAw
k||2

||A∗(Awk−T
gi
rk
Awk)||2

− εi,
||Awk−T

gi
sk
Awk||2

2||A∗(Awk−TgirkAw
k)||2

− εi
})

if wk 6= T
gi
skAw

k, otherwise, γki =

γi(where γi is any nonnegative constant), i = 1, 2, . . . ,N. For arbitrary z0, z1 ∈ H1, define the sequence {zk} by
the following algorithm: 

C0 = H1,
wk = zk + (zk − zk−1),
uk = Tfirk

(
wk − γkA∗k(modN)(I− T

gi
sk )Aw

k
)
,

vk = αku
k + (1 −αk)S

k
k(modN)u

k,

Ck+1 = {q ∈ Ck : ||vk − q||2 6 ||wk − q||2 + θk},
zk+1 = PCk+1z

0, ∀ k > 1,

(4.4)

where θk := (1 − αk)(ν
2
k − 1)Dk with Dk = sup{||wk − p||2;p ∈ Γ }, {rk}, {sk} are two sequences of positive real

numbers and {αk} is a sequence in(0, 1) such that the following conditions are satisfied:
(I): 0 6 k < a 6 αk 6 b < 1;

(II): lim infk→∞ rk > 0, lim infk→∞ sk > 0.

Then the sequence {zk} generated by (4.4) converges strongly to ζ ∈ Γ , with ζ = PΓz0.

Remark 4.6. In [18], the authors proved strong convergence result for common fixed point of finite fam-
ily of asymptotically strictly pseudocontractive mappings requiring that the domain of the operators be
bounded. This is quite restrictive. In Theorem 4.5 of this manuscript, we obtained strong convergence
result for a finite family of SEP and common fixed point of finite family of asymptotically strictly pseudo-
contractive mapping without requiring boundedness of the domain of the mappings. The stepsize used
is independent of any knowledge of the norm of the involved bounded linear map. Consequently, our
result, Theorem 4.5 is an extension and a significant improvement of the results of [18] and many other
important results in this direction of research.
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