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Abstract
In this paper, we consider the following quasilinear Choquard equation with critical nonlinearity{

−4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ u2(2∗)−2u, x ∈ RN,
u > 0, x ∈ RN,

where Iα is a Riesz potential, 0 < α < N, and N+α
N < p < N+α

N−2 , with 2∗ = 2N
N−2 . Under suitable assumption on V , we research

the existence of positive ground state solutions of above equations. Moreover, we consider the ground state solution of the
equation (1.4). Our work supplements many existing partial results in the literature.
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1. Introduction and main results

In present paper, we investigate the following quasilinear Choquard equation with critical growth{
−4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ u2(2∗)−2u, x ∈ RN,
u ∈ H1(RN), x ∈ RN,

(1.1)

where Iα is a Riesz potential, 0 < α < N, and N+α
N < p < N+α

N−2 . Quasilinear Schrödinger equations of the
form

i∂tz = −4z+ V(x)z− f(|z|2)z−4h(|z|2)h ′(|z|2)z, (1.2)

have been derived as models of several physical phenomena. Here V = V(x), x ∈ RN, is a given potential,
K,V are real functions. For instance in the case h(s) = s, we obtain

i∂tz = −4z+ V(x)z− f(|z|2)z− (4|z|2)z, (1.3)
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which has been called the superfluid film equation in plasma physics by Kuriharn in [16] (cf. [17, 18]),
In the case h(s) = (1 + s)

1
2 , equation (1.2) models the self-channeling of a high-power ultra short laser

in mater, see [4, 12] and the references in [10]. Equation (1.2) also appears in plasma physics and fluid
mechanics [16, 17, 21, 26], the theory of Heisenberg ferromagnets and magnons [3], dissipative quantum
mechanics, and condensed matter theory [13, 22]. For more details, we refer the readers to [19] and the
references therein.

In recent years, the study on the quasilinear Schrödinger equation (1.2) is always a topic of great inter-
est, mathematicians have established several methods to treat Eq. (1.3), for example, the dual approach,
the perturbation method, and the Nehari method. See for instance [1, 6, 9, 11, 14, 23–25, 27–30, 32], and
the references therein. However, the problem (1.1) with Choquard type nonlinearity has only been studied
in [2, 7, 8, 33].

It’s remarkable that there are few papers investigating quasilinear Choquard equation with critical
growth. In [7], they study the following Choquard type quasilinear Schrödinger equation

−4u+ V(x)u−4(u2)u = (Iα ∗ |u|p)|u|p−2u, x ∈ RN,

where N > 3, 0 < α < N, 2(N+α)
N < p <

2(N+α)
N−2 , V : RN → R is radial potential and Iα is a Riesz

potential. They consider the existence of ground state solutions. By the motivation of above work, In our
article, we establish the existence of ground state solution for problem (1.1) with critical. Moreover, we
are interested in the problem that how the potential V(x) affect the existence of ground state solution for
the problem (1.1). Since the nonlinearity of problem (1.1) is nonlocal, it is much more difficult to obtain
the existence of ground solutions.

Before stating our main result, we suppose that the functions V(x) satisfy the following assumptions:

(V1) V ∈ C(RN) satisfies infx∈RN V(x) > V0 > 0, where V0 is a constant;
(V2) meas{x ∈ RN : −∞ < V(x) 6 µ} < +∞ for all µ ∈ R.

Now we state our main results as follows.

Theorem 1.1. Suppose that 0 < α < N, N+α
N < p < N+α

N−2 , and (V1), (V2) hold, then equation (1.1) admits a
ground state solution in E.

Next, we study the ground state solution of the following equation.{
−4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ uq−2u, x ∈ RN,
u ∈ H1(RN), x ∈ RN,

(1.4)

where N+α
N < p < N+α

N−2 , q ∈ (2, 2∗).

Theorem 1.2. Let N > 3, q ∈ (2, 2∗) and V ∈ L∞(RN), if (V ′1) inf
y∈RN

V(y) > 0, and

(V’2) V(x) 6 lim
|y|→∞V(y) = V∞ < +∞ and the inequality is strict in a subset of positive Lebesgue measure,

then Eq. (1.4) admits a ground state solution.

Remark 1.3. Here we don’t use the Pohozayev identity, and we have taken advantage of the monotonicity
of perturbation and Nehari manifold method to obtain the ground state solutions.

Notation. In this paper we make use of the following notations: C will denote various positive constants;
the strong (respectively weak) convergence is denoted by → (respectively ⇀); o(1) denotes o(1) → 0 as
n→∞, Bρ(0) denotes a ball centered at the origin with radius ρ > 0.

The remainder of this paper is organized as follows. In Section 2, some preliminary results are pre-
sented. In Section 3, we obtain that (1.1) and (1.4) have ground state solutions.
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2. Variational setting and preliminaries

To prove our conclusion, we give some basic notations and preliminaries. First, we can rewrite (1.1) as

−4u+ V(x)u−4(u2)u = Iα ∗ |u|p|u|p−2u+ |u|2(2∗)−2u, in RN.

It may also be noted that we can not apply directly the variational method to study (1.1), since the natural
associated functional I given by

I(u) =
1
2

∫
RN

(1 + 2u2)|∇u|2dx+
1
2

∫
RN
V(x)u2dx−

1
2p

∫
RN
Iα ∗ |u|p|u|p−1udx−

1
2(2∗)

∫
RN
u2(2∗)udx

is not well defined in general. we make the changing of variables w = f−1(u), where f is defined by:
f ′(t) = 1√

1+2f2(t)
on [0,∞) and f(t) = f(−t) on (−∞, 0]. If we make the change of variable (u = f(w)), we

may rewrite equation I(u) in the form

J(w) =
1
2

∫
RN

(|∇w|2 + V(x)f2(w))dx−
1

2p

∫
RN
Iα ∗ |f(w)|p|f(w)|p−1f(w)dx−

1
2(2∗)

∫
RN

|f(w)|2(2∗)dx. (2.1)

It can be easily proved that the functional J(w) is of class C1 (see [32]) in E. Moreover, the critical points
of J are weak solutions of the equation∫

RN
|∇w∇ϕ|+ V(x)f(w)f ′(w)ϕ−

∫
RN

(Iα ∗ |f(w)|p|f(w)|p−1f ′(w)ϕ−

∫
RN
f2(2∗−2(w)f(w)f ′(w)ϕ = 0.

Be aware that if w is a critical point of J, then, u = f(w) is a weak solution of the problem (1.1). For any
w ∈ E, let

E =

{
w ∈ H1(RN)|

∫
RN
V(x)f2(w)dx <∞}

be a Hilbert space endowed with inner product and norm

‖w‖E := 〈w,w〉 =
(∫

RN
(|∇w|2 + V(x)w2)dx

) 1
2

.

We denote by ‖ • ‖p the usual Lp-norm in the sequel for convenience, where 1 6 p 6 +∞. In this step,
we see that (1.1) is variational and its weak solutions are the critical points of the functional given by

J(w) =
1
2

∫
RN

[|∇w|2 + V(x)f2(w)]dx−
1

2p

∫
RN
Iα ∗ |f(w)|p|f(w)|p−1f(w)dx−

1
2(2∗)

∫
RN

|f(w)|2(2∗)dx.

Lemma 2.1 ([12]). The function f satisfies the following properties:

(A1) f is uniquely defined C∞function and invertible;
(A2) |f ′(s)| 6 1 and |f(s)| 6 |s| for all s ∈ R;
(A3) f(s)

s → 1 as s→ 0;

(A4) f(s)√
s
→ 2

1
4 as s→∞;

(A5) f(s)
2 6 sf ′(s) 6 f(s) for all s > 0;

(A6) |f(s)| 6 2
1
4 |s|

1
2 for all s ∈ R;

(A7) the function f2(s) is strictly convex;
(A8) there exists a positive constant C such that

|f(s)| >

{
C|s|, |s| 6 1,
C|s|

1
2 , |s| > 1;
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(A9) for each λ > 1, we have f2(λs) 6 λf2(s) for all t ∈ R;
(A10) the function f−q(s)f ′(s) is strictly decreasing for s > 0 and 0 < q < 1;
(A11) the function fq(s)f ′(s)s−1 is strictly increasing for q > 3 and s > 0.

Now we recall the well know Hardy-Littlewood-Sobolev Inequality.

Proposition 2.2 ([15, Hardy-Littlewood-Sobolev inequality]). Let t, r > 1 and 0 < µ < n with 1
t +

µ
n + 1

r , f ∈
Lt(RN) and h ∈ Lr(RN). There exists a sharp constant C(t,n,µ, r), independent of f,h such that∫

RN

∫
RN

f(x)h(y)

|x− y|µ
dxdy 6 C(t,n,µ, r)‖f‖Lt(RN)‖h‖Lr(RN).

If t = r = 2n
2n−µ , then

C(t,n,µ, r) = C(n,µ) = π
µ
2
Γ(n2 − µ

2 )

Γ(n− µ
2 )

{
Γ(µ2 )

Γ(n)

}−1+µ
n

.

In this case there is equality in (2.1) if and only if f = (constant)h and

h(x) = A(r2 + |x− a|2)−
2n−µ

2

for some A ∈ C. 0 6= r ∈ R and a ∈ RN.

Applying the Hardy-Littlewood-Sobolev inequality above and the Sobolev embedding theorem, we
have ∫

RN
(Iα ∗ |u|p)|u|p 6 C(

∫
RN

|u|
2Np
N+α )

N+α
N 6 C‖u‖p (2.2)

for any p ∈ (N+α
N , N+α

N−2 ), where C > 0 is a constant depending on N, α and p.

3. Proof of Theorem 1.1

The functional J>(w) satisfies the mountain pass geometry. Consider the set S(ρ) = {w ∈ E : Φ(w) =
ρ2}, where Φ : E→ R is given by

Φ(w) =

∫
RN

(|∇w|2 + V(x)f2(w))dx,

since Φ(w) is continuous, then S(ρ) is a closed subset and disconnects the space E for ρ > 0.

Lemma 3.1. There exist ρ and m such that J(w) > α when
∫

RN(|∇w|2 + V(x)f2(w))dx = ρ,w ∈ S(ρ).

Proof. By Lemma 2.1, (A2), and (2.1), we get that

J(w) =
1
2

∫
RN

(|∇w|2 + V(x)f2(w))dx−
1

2p

∫
RN

(Iα ∗ |f(w)|p)|f(w)|pdx−
1

22∗

∫
RN

|f(w)|22∗

>
1
2

∫
RN

(|∇w|2 + V(x)f2(w))dx−−
1

2p

∫
RN

(Iα ∗ |f(w)|p)|f(w)|pdx−C(
∫

RN
|∇w|2dx)

2∗
2

>
1
2
ρ2 −C0ρ

2p −C1ρ
2∗

for small ε > 0, where C0, C1 are constant. Choosing ρ > 0 with 1
2ρ

2 − C0ρ
2p − C1ρ

2∗ = α > 0, then
J(w) > α for all w ∈ S(ρ). We complete the proof.

Lemma 3.2. There exists ‖e‖ > ρ, with J>(w) < 0.
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Proof.

J(tw) 6
t2

2

∫
RN

|∇w|2 + V(x)w2dx−
t2p

2p

∫
RN

(Iα ∗ |f(w)|p)|f(w)|pdx−
1

22∗

∫
RN

|f(tw)|22∗dx

6
t2

2

∫
RN

(|∇w|2 + V(x)w2)dx−
t2p

2p

∫
RN

(Iα ∗ |f(w)|p)|f(w)|pdx−Ct2∗
∫

RN
w22∗dx

→ −∞
as t→ +∞. This implies that there exists ‖e‖ > ρ, such that J < 0. The proof is completed.

Define

Γ = {γ ∈ C1([0, 1],E)|γ(0) = 0,γ(1) = e}. (3.1)

Then
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t))

is a critical value of I(u).

Lemma 3.3. Suppose that the condition (V) hold. If {wn} ⊂ E is such that J(wn) → c and J ′(wn) → 0, then
{wn} is bound in E.

Proof. By {wn} ⊂ E and J(wn)→ c ,J ′(wn)→ 0, we have

J(wn) =
1
2

∫
RN

|∇wn|2dx+
1
2

∫
RN
V(x)f2(wn)dx

−
1

2p

∫
RN
Iα ∗ |f(wn|p|f(wn|pdx−

1
22∗

∫
RN

|f(wn|
22∗dx.

Thus for any ϕ ∈ C∞0 (RN)

J ′(wn)ϕ =

∫
RN

|∇wn∇ϕ|+ V(x)f(wn)f ′(wn)ϕ−

∫
RN
Iα ∗ |f(wn)|p|f(wn)|p−2f(wn)f

′(wn)dx

−

∫
RN

|f(wn|
22∗−2f(wn)f

′(wn) = o(1)‖ϕ‖E.

It’s remarkable that f(t)
f ′(t) → 0 as t → 0. We get f(t)

f ′(t) ∈ E by direct computation moreover since C∞0 (RN)

is dense in E. We may choose ϕ =
f(wn)
f ′(wn)

as test functions and obtain

〈J ′(wn),ϕ〉 =
∫

RN
|∇wn|2dx+

∫
RN
V(x)f2(wn)dx−

∫
RN
Iα ∗ |f(wn)|p|f(wn)|pdx−

∫
RN

|f(wn)|
22∗dx.

Thus it can be seen that

c+ o(1)‖wn‖E =J(wn) −
1

2p
〈J ′(wn),ϕ〉

>(
1
2
−

1
2p

)

∫
RN

(|∇wn|2 + V(x)|f(wn)|2)dx+ (
1

2p
−

1
22∗

)

∫
RN

|f(wn)|
22∗dx.

(3.2)

Hence, We get {wn} is bounded in E. It is noteworthy that |∇f(wn)| 6 |∇wn|, it is concluded that {f(wn)}
is also bounded in E. The proof is completed.

Lemma 3.4. For each τ > 0, and the condition (V) holding, then there existsw ∈ H1(RN) such that max
t>0

J(tvε) 6

1
2NS

N
2 , where S := inf

u∈D1,2(RN)

∫
RN

|∇w|2dx

(
∫

RN
|w|2

∗dx)
2

2∗
.
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Proof. Let φ ∈ C∞0 (RN, [0, 1]), and the possible candidate for w is vε = wεφ where φ is a smooth cut-off
function such that φ(x) = 1 if |x| 6 1, φ(x) = 0 if |x| > 2 and |∇φ| 6 2 and the function wε defined

wε(x) =
(N(N−2)ε)

N−2
8

(ε+|x|2)
N−2

4
, ε > 0. Note that the function vε = w2

ε solves the equation 4vε + v
N+2
N−2
ε = 0.

Following [5] by direct calculation we work out the terms of J(tvε) as follows for 0 < α < 2.∫
RN

|∇v2
ε|

2dx = S
N
2 + o(ε

N−2
2 ),

∫
RN

|∇vε|2dx = o(ε
N−2

4 | ln ε|),∫
RN

|vε|
α|∇vε|2dx = o(ε

N−2
8 (2−α)),

∫
RN

|∇vε|2(2∗)dx = S
N
2 + o(ε

N
2 ,

∫
RN
vrεdx ≈


ε
N
2 − 1

8r(N−2), 2∗ < r < 2(2∗),
ε
N
4 |lnε|, r = 2∗,
ε

1
8r(N−2), r < 2∗.

Furthermore,∫
RN

∫
RN

|vε(x)|
p|vε(y)|

p

|x− y|α
> Cε

p(N−2)
4

∫
B1

∫
B1

1

|x− y|α(ε+ |x|2)
p(N−2)

4 (ε+ |y|2)
p(N−2)

4

> o(ε
2N−α

2 −
p(N−2)

4

∫
B1

∫
B1

1

|x− y|α(1 + |x|2)
p(N−2)

4 (1 + |y|2)
p(N−2)

4

= o(ε
2N−α

2 −
p(N−2)

4 ).

From the previous discussion, therefore, we obtain

sup
t>0

J(tvε) 6t
4
∫

RN
v2
ε|∇vε|2dx−

N− 2
4N

t2(2∗)
∫

RN
v

2(2∗)
ε dx

+
1
2
t2
∫

RN
(|∇vε|2 + V∞v2

ε)dx− λ

∫
RN
Iα ∗ |vε|p|vε|pdx

6
1
4
t4S

N
2 −

N− 2
4N

t2(2∗)S
N
2 + o(ε

N−2
4 ln ε) − λo(ε

2N−α
2 −

p(N−2)
4 )

6
1

2N
S
N
2 − λo(ε

2N−α
2 −

p(N−2)
4 )

<
1

2N
S
N
2 .

Lemma 3.5. Assume that {wn} ⊂ E be a bounded (C)c sequence of J, if 0 < c < 1
2NS

N
2 hold, then there exists a

ζ > 0 and a sequence {yn} ⊂ RN such that lim inf
∫
B(yn)

f2(wn)dx > ζ.

Proof. Assuming that the conclusion is not true, it can be inferred from Lemma 1.21 in [32] that f(wn)→ 0
in Lp(RN) for all 2 < p < 2∗. By Lemma 2.1, (A6), and the Hardy-Littlewood-Sobolev inequality, we get∫

RN
Iα ∗ |wn|p|wn|pdx → 0 for any p ∈ (2, 2∗). Owing to c > 0 and {wn} being bounded in E. Passing to

a subsequence, ∫
RN

(1 + 4f2(wn))(1 + 2f2(wn)
−1|∇wn|2dx→ b

and ∫
RN

|f(wn)|
22∗dx→ d > 0.
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Applying the definition of S, we obtain

S(

∫
RN

|f(wn)|
22∗dx)

2
2∗ 6

∫
RN

|∇f2(wn)|
2dx

∫
RN

(1 + 4f2(wn))(1 + 2f2(wn)
−1|∇wn|2dx,

which yields Sd
2

2∗ 6 b. Let wn =
f(wn)
f ′(wn)

. Recall that f(wn)→ 0 in Lp+1(RN), we get

0 = lim
n→∞〈J ′(wn),wn〉 > b− d.

Hence d > S
N
2 and

c = lim
n→∞(J(wn) − 1

2
〈J ′(wn),wn〉 > lim

n→∞ 1
2N

∫
RN

|f(wn)|
22∗dx >

1
2N
S
N
2 ,

which contradicts c < 1
2NS

N
2 . The proof is completed.

Proof of Theorem 1.1. Set c is given by (3.1). From Lemmas 3.1 and 3.2 and the mountain pass theorem, we
get that J has a (C)c sequence {wn} ⊂ E. In the light of (3.2), it is able to hypothesize that wn ⇀ w in
H1(RN) and f(wn) ⇀ f(w) in E. It is implies that vn → v in Lsloc(R

N) for 2 < s < 2∗ and f(wn) → f(w)
in Lrloc(R

N) for 2 < r < 22∗, hence 〈J ′(wn),ϕ〉 → 〈J ′(w),ϕ〉 = 0 for any ϕ ∈ C∞0 (RN), that is to say, v is a
weak solution of problem (1.1). Furthermore, since the embedding E ↪→ Ls(RN) is compact for 2 6 s < 2∗,
we obtain f(wn) → f(w) in Ls(RN) for 2 6 s < 2∗. We can infer from Lemma 3.4 that c < 1

2NS
N
2 , using

the Lemma 3.5. There is a constant ζ > 0 such that∫
RN
f2(w)dx = lim

n→∞
∫

RN
f2(wn)dx > ζ.

This implies that w is a nontrivial solution of (1.1). Therefore, u = f(w) is a nontrivial solution of (1.1). In
the end, applying d =: inf{f(w) : w ∈ E,w 6= 0, J ′(w) = 0} and by the lower semicontinuity, we can prove
that d is achieved and u is a ground state solution. We complete the proof.

In order to find ground state solutions of problem (1.4), the following limit equation plays a very
significant role. {

−4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ uq−2u, x ∈ RN,
u ∈ H1(RN), x ∈ RN,

where N+α
N < p < N+α

N−2 , q ∈ (2, 2∗), the associated functional is defined as

JV∞(w) = 1
2

∫
RN

|∇w|2 + V∞f2(w) −
1

2p

∫
RN
Iα ∗ |f(w)|p|f(w)|p−1f(w)dx−

1
q

∫
RN

|f(w)|qdx.

We define
c∞ = inf{JV∞(w)|w ∈ H1(RN)\{0} and J ′V∞(w) = 0}.

Proof of Theorem 1.2. Let us consider the following functional

JV(w) =
1
2

∫
RN

|∇w|2 + V(x)f2(w) −
1

2p

∫
RN
Iα ∗ |f(w)|p|f(w)|p−1f(w)dx−

1
q

∫
RN

|f(w)|qdx,

then critical points of the functional JV(w) are weak solution of Eq. (1.4), and vice versa. Similar to the
argument in the proofs of Lemmas 3.1 and 3.2, we can conclude that the functional JV(w) also has the
mountain pass geometry. Next we give the definition of cV , defined by cV = inf

γ∈ΓV
max
t∈[0,1]

JV(γ(t)), where

ΓV = {γ ∈ C[0, 1],H1(RN) γ(0) = 1, JV(γ(1)) < 0}. By the definition of V , we obtain cV < c∞. As a matter
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of fact, by Theorem 1.1 the level c∞ is attained at a ground state solution w∞ ∈ H1(RN) of the limit
problem JV∞(w). We can assume without loss of generality that there exists a set of positive measure on
which JV < J∞ otherwise Theorem 1.2 is a special of Theorem 1.1. We have

cV 6 max
t>0

JV(tw∞) = JV(t∗w∞) < JV∞(t∗w∞) 6 max
t>0

JV∞(tw∞) = c∞ < c,
where t∗ > 0 is unique and satisfies that 〈J ′V(t∗w∞), t∗w∞〉 = 0. Here, we have taken advantage of the
monotonicity of the perturbation, thus the Nehari manifold method works for the detail proofs, we refer
to [31]. Let {wn} be a (PS)ck sequence for the functional JV(w), a standard argument shows that {wn} is
bounded in H1(RN) as n → ∞. Up to a subsequence wn ⇀ w weakly in H1(RN) as n → ∞, and wn
converges to w almost everywhere in RN. By a similar argument as in the proof of Lemma 3.5, we see
that there exist {yn} ∈ RN and δ > 0 such that

lim
n→∞

∫
B1(yn)

|f(wn)|
2 > δ.

We next claim that {yn} is bounded in RN. Thus f(w) is a nontrivial solution of Eq. (1.4). It then follows
from Theorem 1.1 similarly, that JV(w) ∈ (0, ck]. We now complete this claim indirectly. Suppose that for
a subsequence |yn|→ +∞ as n→ +∞, we define vn = wn(·+ yn) and then {vn} is bounded in H1(RN),
and vn ⇀ v 6= 0. The assumption on the asymptotic shape of the potential V implies that v is a critical
point of JV∞(w). In fact, for any ϕ ∈ H1(RN) as n→∞, we have

|

∫
Ω

|V(x) − V∞(x)|f(wn(x))|f ′(wn(x))ϕ(x− yn)dx|
6
∫
B(yn)

2

(V(x) − V∞(x))f(|wn(x))|f ′(wn)|ϕ(x− yn)|dx
+

∫
Rn\

B(yn)
2

(V(x) − V∞(x))|f(wn(x))|f ′(wn)|ϕ(x− yn)|dx
6 2‖V‖L∞‖wn‖L2‖ϕ‖L2(Rn\

B(yn)

2
) + ‖V − V∞‖L∞(Rn\B(yn)2

)‖wn‖L2‖ϕ‖L2 → 0.

Since B(yn)
2 (−yn) ⊂ RN\

B(yn)
2 . Thus, since vn ⇀ v weakly in H1(RN) as n → ∞, for any ϕ ∈ H1(RN),

we obtain

〈J ′V∞(v),ϕ〉 =
∫

RN
|∇v||∇ϕ|+ V∞f(v)f ′(v)ϕ−

∫
RN
Iα ∗ |f(v)|p|f(v)|p−1f ′(v)ϕdx−

∫
RN

|f(v)|q−1f ′(v)ϕdx

=

∫
RN

|∇vn||∇ϕ|+ V∞f(vn)f ′(vn)ϕ−

∫
RN
Iα ∗ |f(vn)|p|f(vn)|p−1f ′(vn)ϕdx

−

∫
RN

|f(vn)|
q−1f ′(vn)ϕdx

= 〈J ′V(vn),ϕ(x− yn)〉+
∫

RN

(V(x) − V∞)|f(vn)|f ′(vn)ϕ(x− yn)dx
= 〈J ′V(vn),ϕ(x− yn)〉+ on(1)→ 0.

We can easily deduce that J ′V(v) = 0. However, Fatou’s lemma implies that

ck + on(1)‖wn‖ = JV(wn) −
1
2
(J ′V(wn),

f(wn)

f ′(wn)
)

>
1

2p

∫
RN

(Iα ∗ |f(v)|p)|f(v)|p + (
1
2
−

1
q
)

∫
RN
V∞|f(v)|2 + on(1)

= JV∞(v) − 1
2
〈J ′V∞(v), f(v)f ′(v)

〉+ on(1) > c∞ + on(1).
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Therefore, we obtain a contradiction with ck < c∞. Finally, following the strategy of Theorem 1.1, let us
consider the following set

m = inf{JV(v)|v ∈ H1(RN)|{0} and J ′V∞(v) = 0}.

Let {vn} be a minimizing sequence for m, on the one hand,

m+ on(1) = JV(vn) = JV(vn) −
1
q
〈J ′V(vn),

f(vn)

f ′(vn)
〉 > (

1
2
−

1
q
)‖vn‖2. (3.3)

On the other hand,

‖vn‖2 6
∫

RN
|∇vn|2 + V(x)f2(vn) =

∫
RN

∫
RN

(Iα ∗ |f(vn)|p)|f(vn)|p +
∫

RN
|f(vn)|

q

6 C(
∫

RN
|vn|

2)2p +

∫
RN

|vn|
q

6 C‖vn‖2p +C‖vn‖q.

(3.4)

We deduce from (3.3) and (3.4) that 0 < m 6 ck, and {vn}n∈N is bounded in H1(RN). The process is the
same as above, vn ⇀ v 6= 0 weakly in H1(RN) and J ′V(v) = 0. Applying Fatou’s Lemma, we can proof
JV(v) 6 m. As a result, we get the ground state solution of v is (1.4).
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