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Abstract

This paper is concerned with the controllability of impulsive differential equations with nonlocal conditions. First, we estab-
lish a property of measure of noncompactness in the space of piecewise continuous functions. Then, by using this property and
Darbo-Sadovskii’s fixed point theorem, we get the controllability of nonlocal impulsive differential equations under compactness
conditions, Lipschitz conditions, and mixed-type conditions, respectively.
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1. Introduction

Impulsive systems are described by the occurrence of an abrupt change in the state of the system,
which arises at certain time instants over a negligible time period. The dynamic behavior of systems
with impulses is much more complex than the behavior of dynamic systems without impulse effects. In
these models, the investigated simulating processes and phenomena are subjected to certain perturbations
whose duration is negligible in comparison with the total duration of the process. These processes tend
to be more suitably modeled by impulsive differential equations, which allow for discontinuities in the
evolution of the state. For more facts on the results and applications of impulsive differential systems,
one can refer to the monographs of Bainov and Simenov [4], Lakshmikanthan et al. [21] and the papers
of [7, 13, 17, 18, 20, 23, 33], where the numerous properties of their solutions are studied and detailed
bibiliographies are given.
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In various fields of science and engineering, many problems that are related to linear viscoelasticity,
nonlinear elasticity and Newtonian or non-Newtonian fluid mechanics have mathematical models. Popu-
lar models essentially fall into two categories: the differential models and the integrodifferential models.
A large class of scientific and engineering problems is modeled by partial differential equations, integral
equations or coupled ordinary and partial differential equations which can be described as differential
equations in infinite dimensional spaces using semigroups. In general, functional differential equations,
or evolution equations, serve as an abstract formulation of many partial integrodifferential equations
which arise in problems connected with heat-flow in materials with memory and many other physical
phenomena.

The study of abstract nonlocal conditions was initiated by Byszewski [8]. The importance of the
problem consists in the fact that it is more general and is more effective than the classical initial conditions
u(0) = u0. Therefore, it has been studied extensively under various conditions. Readers may refer to
[13, 18, 20, 24, 33], where authors studied impulsive differential equations with nonlocal conditions. In
particular, the measure of noncompactness has been used as an important tool to deal with some similar
functional differential and integral equations; see [3, 5, 14, 19, 29].

Motivated by the fact that a dynamical system may evolve through an observable quantity rather than
the state of the system, a general class of evolutionary equations is defined. This class includes standard
ordinary and partial differential equations as well as functional differential equations of retarded and
neutral types. In this way, the theory serves as a unifier of these classic problems. Included in this
general formulation is a general theory for the evolution of temperature in a solid material. In the general
case, temperature is transmitted as waves with a finite speed of propagation. Special cases include a
theory of delayed diffusion. When physical problems are simulated, the model often takes the form of
semilinear equations. Such problems in the control fluid flow can be modeled by a semilinear system in a
Banach space. For actual flow, control problems are leading to this kind of model and the resulting model
equation are discussed in [15].

Control theory, on the other hand, is the branch of application-oriented mathematics that deals with
the basic principles underlying the analysis and design of control systems. To control an object implies
the influence of its behavior in order to accomplish a desired goal. In order to implement this influence,
practitioners build devices and their interaction with the object being controlled is the subject of control
theory. In control theory, one of the most important qualitative aspects of a dynamical system is control-
lability. Controllability is an important property of a control system and that property plays a crucial role
in many control problems such as the stabilization of unstable systems by feedback or optimal control.
Roughly, the concept of controllability denotes the ability to move a system around its entire configu-
ration space using only certain admissible manipulations. Many basic problems of Control Theory like
pole-assignment, structural engineering, and optimal control, may be solved under the assumption that
the linear system is controllable. In recent years, significant progress has been made in the controllability
of linear and nonlinear deterministic systems [1, 9, 10, 12, 16, 30].

In this paper, we discuss the controllability of the following impulsive differential equations with
nonlocal conditions:

u ′(t) = Au(t) + f(t,u(t)) +Bv(t), t ∈ J = [0,b], t 6= ti,
u(0) = g(u),

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , s,
(1.1)

where A : D(A) ⊆ X→ X is the infinitesimal generator of a strongly continuous semigroup T(t), t > 0 in a
Banach space X, B : U ⊆ X→ X is a bounded linear operator; the control function v (.) is given in L2(J,U),
with U as a Banach space; f, g are appropriate continuous functions to be specified later; Ii : X → X is a
nonlinear map, ∆u(ti) = u(t+i ) − u(t

−
i ), for all i = 1, 2, . . . , s, 0 = t0 < t1 < t2 < · · · < ts < ts + 1 = b,

where u(t−i ),u(t
+
i ) denote the left and right limit of u at t = ti, respectively.

From a practical and theoretical view point, it is natural for mathematics to combine impulsive con-
ditions and controllability of the system. Recently, the controlability of nonlocal impulsive differential
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problem of type (1.1) has been discussed in the papers of Liu [26] and Ji et al. [19]. The main contribu-
tions are as follows.

1. The study of controllability of impulsive differential equations via measure of noncompactness de-
scribed in the form (1.1) is an untreated topic in the literature and this is an additional motivation
for writing this paper.

2. We assume the nonlinear term only satisfies a weak compactness condition and does not require the
compactness of the semigroup.

3. We establish some sufficient conditions for the nonlocal controllability when the solution operators
are only equicontinuous, by means of the Darbo’s fixed point theorem via the noncompactness
measure.

4. Our theorems guarantee the effectiveness of nonlocal controllability results under some weak com-
pactness conditions.

5. We emphasize that our methods avoid a technical error when the compactness of semigroup and
other hypotheses are satisfied, the application of controllability results are only restricted to the
finite dimensional space.

The presentation of our work is as follows. Section 2 provides the definitions and preliminary results
to be used in this article. In particular, we review some of the standard facts on evolution families,
Hausdorff measure of noncompactness, and certain useful fixed point results. In Section 3, we focus
our attention on controllability results for nonlinear systems using the measure of noncompactness and
Darbo’s fixed point theorem.

2. Preliminaries

Let (X, ‖.‖) and (U, ‖.‖) be real Banach spaces. T(t) is a strongly continuous semigroup on X, with
generator A, is A : D(A) → X. We denote by C([0,b];X) the space of X-valued continuous functions on
[0,b] with the norm ‖x‖ = sup {‖x(t)‖ , t ∈ [0,b]}. L1([0,b];X) is the space of X-valued Bochner integrable
functions on [0,b] with the norm ‖f‖L1 =

∫b
0 ‖f(t)‖dt.

The semigroup T(t) is said to be equicontinuous if {T(t)x : x ∈ B} is equicontinuous at t > 0 for any
bounded subset B ⊂ X (cf.27). Obviously, if T(t) is a compact semigroup, it must be equicontinuous. The
converse of the relation is not correct. Throughout this paper, we suppose that

(HA) The semigroup {T(t) : t > 0} generated by A is equicontinuous. Moreover, there exists a positive
number M such that M = sup06t6b ‖T(t)‖.

For the sake of simplicity, we put J = [0,b]; J0 = [0, t1]; Ji = (ti, ti + 1], i = 1, 2, . . . ., s. In order to define
a mild solution of the problem (1.1), we introduce the set PC([0,b];X) = {u : [0,b] → X : u is continuous
at t 6= ti and left continuous at t = ti and the right limit u(t+i ) exists, i = 1, 2, . . . , s}. It is easy to verify
that PC([0,b];X) is a Banach space with the norm ‖u‖PC=sup {‖u(t)‖ , t ∈ [0,b]}.

Consider the infinite-dimensional linear control system

u ′(t) = Au(t) +Bv(t), t ∈ J = [0,b], u(0) = u0,

where v(t) ∈ L2(J,U), A : X → X, B : U → X. Let B ∈ L(U,X) and b > 0. The linear operator
W : L2(J,U)→ X is defined by

Wv =

∫b
0
T(b− s)Bv(s)ds

such that

(i) W has an invertible operator W−1 which takes values in L2(J,U)/ker(W) (refer [28] for the invert-
ibility of the operator W), and there exist positive constants M1 and M2 such that ||B|| 6 M1 and
||W−1|| 6M2;
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(ii) there is Kw ∈ L−1(J,R+) such that, for every bounded set Q ⊂ X

β(W−1Q)(t) 6 Kw(t)β(Q).

We define control formally as

v(t) =W−1
[
u1 − T(b)g(u) −

∫b
0
T(b− s)f(s,u(s))ds−

∑
0<ti<t

T(t− ti)I[u(ti)](t)
]
.

Definition 2.1. A function u ∈ PC([0,b];X) is a mild solution of the problem (1.1) if

u(t) = T(t)g(u) +

∫t
0
T(t− s)f(s,u(s))ds+

∫t
0
T(t− s)Bv(s)ds+

∑
0<ti<t

T(t− ti)Ii[u(ti)],

for all t ∈ [0,b].

Now, we introduce the Hausdorff measure of noncompactness (for short MNC) defined by

β(Ω) = inf{ε > 0 : Ω has a finite ε− net in X},

for each bounded subset Ω in a Banach space X.
Some basic properties of the Hausdorff measure of noncompactness β(.) are given in the following

lemma.

Lemma 2.2 ([5]). Let X be a real Banach space and B,C ⊆ X be bounded. Then the following properties holds:

1. B is precompact if and only if β(B) = 0;
2. β(B) = β(B̄) = β(conv(B)), where B̄ and conv(B) means the closure of B and convex hull of B, respectively;
3. β(B) 6 β(C), when B ⊆ C;
4. β(B+C) 6 β(B) +β(C), where B+C = {x+ y : x ∈ B,y ∈ C};
5. β(B∪C) 6 max{β(B),β(C)};
6. β(λB) 6 |λ|β(B), for any λ ∈ R;
7. if the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then βZ(QB) 6 kβ(B) for any

bounded subset B ⊆ D(Q), where Z is a Banach space.

The map Q : D ⊆ X→ X is said to be β-condensing, if Q is continuous and bounded, and for any noncompact
bounded subset B ⊂ D, we have β(QB) < β(B), where X is a Banach space.

Lemma 2.3 ([5], Darbo-Sadovskii). If D ⊂ X is bounded, closed, and convex; the continuous map Q : D→ D is
β-condensing; then Q has at least one fixed point in D.

In order to remove the strong restriction on the coefficient in Darbo-Sadovskii’s fixed point theorem,
Sun and Zhang [31] generalized the definition of a β-condensing operator. At first, we give some nota-
tions. Let D ⊂ X be closed and convex, the map Q : D→ D and x0 ∈ D. For every B ⊂ D, set

Q(1,x0)(B) = Q(B),Q(1,x0)(B) = Q(conv{Q(n−1,x0)B, x0}),

where conv means the closure convex hull, n = 2, 3, . . ..

Definition 2.4. Let D ⊂ X be closed and convex. The map Q : D → D is said to be β-convex-power
condensing ifQ is continuous, bounded and there exist x0 ∈ D, n0 ∈ N such that for every nonprecompact
bounded subset B ⊂ D, we have

β(Q(n0,x0)(B)) < β(B).
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Obviously, if n0 = 1, then a β-convex-power condensing operator is β-condensing. Therefore, the
convex power condensing operator is a generalization of the condensing operator. Now, we give the fixed
point theorem about the convex-power condensing operator.

Lemma 2.5 ([31]). If D ⊂ X is bounded, closed and convex, the map Q : D → D is β-convex-power condensing,
then Q has at least one fixed point in D.

We rephrase an important property of the Hausdorff MNC in PC([0,b];X), which is an extension to
the property of MNC in C([0,b];X) and forces us to deal with the impulsive differential equations.

Lemma 2.6 ([5], Lemma 2). If W ⊆ C([0,b];X) is bounded, then β(W(t)) 6 β(W) for all t ∈ [0,b], where
W(t) = {u(t) : u ∈ W} ⊆ X. Further, if W is equicontinuous on [0,b], then β(W(t)) is continuous on [0,b] and
β(W) = sup {β(W(t)), t ∈ [0,b]}.

By applying Lemma 2.6, we shall extend the result to the space PC([0,b];X).

Lemma 2.7. If W ⊆ PC([0,b];X) is bounded, then β(W(t)) 6 β(W) for all t ∈ [0,b], where W(t) = {u(t),u ∈
W} ⊆ X. Furthermore, suppose the following conditions are satisfied:

1. W is equicontinuous on J0 = [0, t1] and each Ji = (ti, ti+1], i = 1, . . . , s;
2. W is equicontinuous at t = t+i , i = 1, . . . , s.

Then supt∈[0,b] β(W(t)) = β(W).

Proof. For arbitrary ε > 0, there exists Wi ⊆ PC([0,b];X), 1 6 i 6 n, such that

W = ∪ni=1Wi and diam(Wi) 6 2β(W) + 2ε, i = 1, 2, . . . ,n,

where diam(.) denotes the diameter of a bounded set. Now, we haveW(t) = ∪ni=1Wi(t) for each t ∈ [a,b],
and

‖x(t) − y(t)‖ 6 ‖x− y‖ 6 diam(Wi)

for x,y ∈Wi. From the above two inequalities, it follows that

2β(W(t)) 6 diam(Wi(t)) 6 diam(Wi) 6 2β(W) + 2ε.

By the arbitrariness of ε, we get that β(W(t)) 6 β(W) for every t ∈ [0,b]. Therefore, we have
supt∈[0,b] β(W(t)) 6 β(W).

Next, if the conditions (1) and (2) of Lemma 2.7 are satisfied, it remains to prove that β(W) 6
supt∈[0,b] β(W(t)). We denote W|Ji by the restriction of W on Ji = [ti, ti+1], i = 0, 1, . . . , s. That is,
for x ∈W|Ji , define that

x(t) =

{
x(t), ti < t 6 ti+1,
x(t+i ), t = ti,

and obviously W|Ji is equicontinuous on Ji due to the condition (1) and (2) of Lemma 2.7. Then from
Lemma 2.6, we have that

β(W|Ji) = sup
t∈Ji

β(W|Ji(t)).

Moreover, we define the map

Λ : PC([0,b];X)→ C([0, t1];X)×C([t1, t2];X)× · · · ×C([ts,b];X)

by x → (x0, x1, . . . , xs), where x ∈ PC([0,b];X), xi = x|Ji , ‖(x0, x1, . . . , xs)‖ = max06i6s ‖xi‖. As Λ is an
isometric mapping, noticing the equicontinuity of W|Ji on Ji, we have that

β(W) = β(W|J0
×W|J1

× · · · ×W|Js) 6 max
i
β(W|Ji) = max

i
sup
t∈Ji

β(W|Ji(t)).

And from the fact that supt∈Ji β(W|Ji(t)) 6 supt∈[0,b] β(W(t)), for each i = 0, . . . , s, we get that β(W) 6
supt∈[0,b] β(W(T)). This completes the proof.
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Lemma 2.8 ([5]). If W ⊂ C([0,b];X) is bounded and equicontinuous, then β(W(t)) is continuous and

β

(∫t
0
W(s)ds

)
6
∫t

0
β(W(s))ds,

for all t ∈ [0,b], where
∫t

0 W(s)ds = {
∫t

0 x(s)ds : x ∈W}.

Lemma 2.9. If the hypothesis (HA) is satisfied, i.e., {T(t) : t > 0} is equicontinuous and η ∈ L1([0,b];R+), then
the set {

∫t
0 T(t− s)u(s)ds : ‖u(s)‖ 6 η(s) for a.e. s ∈ [0,b]} is equicontinuous for t ∈ [0,b].

Proof. We let 0 6 t < t+ h 6 b and have that∥∥∥∥∥
∫t+h

0
T(t+ h− s)u(s)ds−

∫t
0
T(t− s)u(s)ds

∥∥∥∥∥
6

∥∥∥∥∫t
0
T(t+ h− s)u(s)ds−

∫t
0
T(t− s)u(s)ds

∥∥∥∥+ ∫t+h

t

‖T(t+ h− s)u(s)‖ds.

(2.1)

If t = 0, the the right hand side of (2.1) can be made small when h is small and independent of u. If t > 0,
then we can find a small ε > 0 with t− ε > 0. Then it follows from (2.1) that∥∥∥∥∫t

0
T(t+ h− s)u(s)ds−

∫t
0
T(t− s)u(s)ds

∥∥∥∥
6

∥∥∥∥T(h+ ε)

∫t−ε

0
T(t− ε− s)u(s)ds− T(ε)

∫t−ε

0
T(t− ε− s)u(s)ds

∥∥∥∥
+

∥∥∥∥∫t
t−ε

T(t+ h− s)u(s)ds

∥∥∥∥+ ∥∥∥∥∫t
t−ε

T(t− s)u(s)ds

∥∥∥∥
(2.2)

Here, as T(t) is equicontinuous for t > 0, thus∥∥∥∥[T(h+ ε) − T(ε)]

∫t−ε

0
T(t− ε− s)u(s)ds

∥∥∥∥→ 0, as h→ 0,

uniformly for u. Then from (2.1), (2.2), and the absolute continuity of integrals, we get that {
∫t

0 T(t −
s)u(s)ds, ‖u(s)‖ 6 η(s) for a.e. s ∈ [0,b]} is equicontinuous for t ∈ [0,b].

Lemma 2.10 ([27]). Let {fn}
∞
n=1 be a sequence of functions in L1([0,b];R+). Assume that there exists µ,η ∈

L1([0,b];R+) satisfying supn>1 ‖fn(t)‖ 6 µ(t) and β({fn(t)}∞n=1) 6 η(t) a.e. t ∈ [0,b], then for all t ∈ [0,b],
we have

β

({∫t
0
T(t− s)fn(s)ds : n > 1

})
6 2M1

∫t
0
η(s)ds.

3. Main result

In this section we give the existence results for the problem (1.1) under different conditions on g

and Ii when the semigroup is not compact, f is not compact, or Lipschitz continuous, by using Lemma
2.7 and the generalized β-condensing operator. More precisely, Theorem 3.1 is concerned with the case
that compactness conditions are satisfied. Theorem 3.2 deals with the case that Lipschitz conditions are
satisfied. Also, mixed-type conditions are considered in Theorems 3.3 and 3.4.

For a finite positive constant r, we set Br = {x ∈ X : ‖x‖ 6 r}, and Wr = {u ∈ PC([0,b];X) : u(t) ∈
Br, t ∈ [0,b]}. We define map G : PC([0,b];X)→ PC([0,b];X) relative to our mild solution u ∈ PC([0,b];X)
of the system (1.1) by

(Gu)(t) = T(t)g(u) +

∫t
0
T(t− s)f(s,u(s))ds+

∫t
0
T(t− s)Bv(s)ds+

∑
0<ti<t

T(t− ti)Ii(u(ti)) (3.1)
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with

(G1u)(t) = T(t)g(u), (G2u)(t) =

∫t
0
T(t− s)f(s,u(s))ds,

(G3u)(t) =

∫t
0
T(t− s)Bv(s)ds, (G4u)(t) =

∑
0<ti<t

T(t− ti)Ii(u(ti)),

for all t ∈ [0,b]. It is easy to see that u is the mild solution of the problem (1.1), if and only if, u is a fixed
point of the map G. We list the following hypotheses.

(Hf) f : [0,b]×X→ X satisfies the following conditions.
(i) f(t, .) : X → X is continuous for a.e. t ∈ [0,b] and f(., x) : [0,b] → X is measurable for all x ∈ X.

Moreover, for any r > 0, there exists a function ρr ∈ L1([0,b],R) such that

‖f(t, x)‖ 6 ρr(t)

for a.e. t ∈ [0,b] and x ∈ Br.
(ii) There exists a constant L1 > 0 such that for any bounded set D ⊂ X,

β(f(t,D)) 6 L1β(D)

for a.e. t ∈ [0,b].
(Hg1) g : PC([0,b];X)→ X is continuous and compact.
(HI1) Ii : X→ X is continuous and compact for i = 1, . . . , s.

Theorem 3.1. Assume that the hypotheses (HA), (Hf), (Hg1), and (HI1) are satisfied, then the nonlocal impulsive
problem (1.1) has at least one mild solution [0,b], provided that there exists a constant r > 0 such that

M

[
sup
u∈Wr

‖g(u)‖+ ‖ρr‖L1 +M1M2
√
b‖v‖L2 + sup

u∈Wr

s∑
i=1

‖Ii[u(ti)]‖

]
6 r. (3.2)

Proof. We will prove that the solution map G has a fixed point by using the fixed point theorem about the
β-convex-power condensing operator.

First, we prove that the map G is continuous on PC([0,b];X). For this purpose, let {un}
∞
n=1 be a

sequence in PC([0,b];X) with
lim
x→∞un = u

in PC([0,b];X). By the continuity of f with respect to the second argument, we deduce that for each
s ∈ [0,b], f(s,un(s)) converges to f(s,u(s)) in X. And we have,

‖Gun −Gu‖ = ‖[T(t)g(un) +
∫t

0
T(t− s)f(s,un(s))ds+

∫t
0
T(t− s)Bvn(s)ds

+
∑

0<t)i<t

T(t− ti)Ii(u(ti))] − [T(t)g(u) +

∫t
0
T(t− s)f(s,u(s))ds

+

∫t
0
T(t− s)Bv(s)ds+

∑
0<ti<t

T(t− ti)Ii(u(ti))]‖

6M‖g(un) − g(u)‖+M
∫t

0
‖f(s,un(s)) − f(s,u(s))‖ds+MM1‖vn − v‖L2 ,

where

‖vn − v‖ 6MM2

{∫b
0
‖f(s,un(s)) − f(s,u(s))‖ds+

s∑
i=1

‖Ii(un(ti)) − Ii(u(ti))‖

}
.
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Then, by the continuity of g, Ii and using the Dominated Convergence Theorem, we get
limn→∞Gun = Gu in PC([0,b];X)⇒ G is continuous on PC([0,b];X).

Secondly, we claim that GWr ⊆ Wr. In fact, for any u ∈ Wr ⊂ PC([0,b];X), from (3.1) and (3.2), we
have

‖(Gu)(t)‖ = ‖(G1u)(t) + (G2u)(t) + (G3u)(t) + (G4u)(t)‖

6 ‖T(t)g(u)‖+ ‖
∫t

0
T(t− s)f(s,u(s))ds‖+ ‖

∫t
0
T(t− s)Bv(s)ds‖

+ ‖
∑

0<ti<t

T(t− ti)Ii(u(ti))‖ 6M{‖g(u)‖+ ‖ρr‖L1 +MM2
√
b‖v‖L2 +

s∑
i=1

Ii(u(ti))},

where

‖v‖L2 6M2{‖u1‖+M‖g(u)‖+M
∫b

0
‖f(s,u(s))‖ds+M

s∑
i=1

Ii(u(ti))}.

Hence, ‖(Gu)(t)‖ 6 r for each t ∈ [0,b], which implies that

GWr ⊆Wr.

Now, we show that GWr is equicontinuous on J0 = [0, ti], Ji = [ti, ti+1] and is also equicontinuous at
t = t+i , i = 1, . . . , s. Indeed, we only need to prove that GWr is equicontinuous on [t1, t2] as the cases for
other subintervals are the same.

For u ∈Wr, t1 6 s < t 6 t2, we have, using the semigroup property,

‖T(t)g(u) − T(s)g(u)‖ 6M‖[T(t− s) − T(0)]g(u)‖.

Thus G1Wr is equicontinuous on [t1, t2] due to the compactness of g and the strong continuity of T(.).
The same idea can be used to prove the equicontinuity of G4Wr on [t1, t2], i.e., for u ∈Wr, t1 6 s < t 6 t2,
we have

‖T(t− t1)I1(u(t1)) − T(s− t1)I1(u(t1))‖ 6M‖[T(t− s) − T(0)]I1(u(t1))‖,

which implies the equicontinuity of G4Wr on [t1, t2] due to the compactness of I1 and the strong continuity
of T(.).

Moreover, from Lemma 2.9, we have that G2Wr is equicontinuous on [0,b]. Therefore, the functions in
GWr = (G1 +G2 +G3 +G4)Wr are equicontinuous on each [ti, ti+1], i = 0, 1, . . . , s.

Set W = conv(G(Wr)), where conv means the closure of convex hull. It is easy to verify that G maps
W into itself andW is equicontinuous on each Ji = [ti, ti+1], i = 0, 1, . . . , s. Now, we show that G :W →W

is a convex-power condensing operator. Take x0 ∈ W, we shall prove that there exists a positive inegral
n0 such that

β(G(n0,x0))(D)) < β(D)

for every non-precompact bounded subset D ⊂ W. From Lemmas 2.2 and 2.8, noticing the compactness
of g and Ii, we have

β((G(1,x0)D)(t)) = β((GD)(t)) 6 β(T(t)g(D)) +β

(∫t
0
T(t− s)f(s,D(s))ds

)

+β

(∫t
0
T(t− s)Bv(s)ds

)
+β

 ∑
0<ti<t

T(t− ti)Ii(D(ti))
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6
∫t

0
β(T(t− s)f(s,D(s)))ds+

∫t
0
β(T(t− s)Bv(s))ds

6M
{ ∫t

0
β(f(s,D(s)))ds+

∫t
0
β(Bv(s))ds

}
6M

{ ∫t
0
L1β(D)ds+M1

∫t
0
β(v(s))ds

}
6ML1{t+MM1b

3/2Kw(s)}β(D)

for each t ∈ [0,b], where β(v(s)) 6 Kw(s)MLbβ(D). Further,

β
(
(G(2,x0)D)(t)

)
= β

(
(Gconv({G(1,x0)D, x0}))(t)

)
6 β

(
T(t)g(conv({G(1,x0)D(s), x0)}))

)
+β

(∫t
0
T(t− s)f(s, conv({G(1,x0)D(s), x0(s)}))ds

)
+β

(∫t
0
T(t− s)Bv(s)ds

)

+β

 ∑
0<ti<t

T(t− ti)Ii[conv({G(1,x0)D(ti), x0(ti)})]


6 β

(∫t
0
T(t− s)f(s, conv({G(1,x0)D(s), x0(s)}))ds

)
β

(∫t
0
T(t− s)Bv(s)ds

)
6M

∫t
0
β
(
f(s, conv({G(1,x0)D(s), x0(s)}))

)
ds+MM1

∫t
0
β(v(s))ds

6M
∫t

0
L1β(conv({G(1,x0)D(s), x0(s)}))ds+MM1

∫t
0
β(v(s))ds

6ML1

∫t
0
β((G(1,x0)D)(s))ds+MM1

∫t
0
β(v(s))ds

6ML1

∫t
0
ML1sβ(D)ds+MM1

∫t
0
β(v(s))ds

6M2L2
1β(D)

∫
0
tsds+MM1

∫t
0
β(v(s))ds

6M2L2
1β(D)

t2

2!
+MM1

√
b{
M2L2

1b
2

2!
β(D)}

6
M2L2

1
2!

β(D){t2 +MM1b
5/2}

for t ∈ [0,b], where β(v(s)) 6 M2L2
1

√
bb2

2! β(D). We can continue this iterative procedure and get that

β((G(n,x0)D)(t)) 6
MnLn1
n!

β(D){bn +MM1b
n
√
b} 6

MnLn1 b
n

n!
β(D){1 +MM1

√
b}

for t ∈ [0,b]. As G(n,x0)(D) is equicontinuous on each [ti, ti+1], by Lemma 2.7, we have that

β(G(n,x0)D) = sup
t∈[0,b]

β((G(n,x0)D)(t)) 6
MnLn1 b

n

n!
β(D){1 +MM1

√
b}.

By the fact that MnLn
1 b

n

n! → 0 as n → ∞, we know that there exists a large enough positive integral n0
such that

Mn0Ln0
1 b

n0

n0!
< 1,
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which implies that G : W → W is a convex-power condensing operator. From Lemma 2.5, G has at
least one fixed point in W, which is just a mild solution of the non local impulsive problem (1.1). This
completes the proof of Theorem 3.1.

Remark 3.2. By using the method of the measure of noncompactness, we require f to satisfy some proper
conditions of MNC, but do not require the compactness of a semigroup T(t). Note that if f is compact or
Lipschitz continuous, the condition (Hf) (ii) is satisfied. And our work improves many previous results,
where they need the compactness of T(t) of f, or the Lipschitz continuity of f. In the proof, Lemma
2.7 plays an important role for the impulsive differential equations, which provides us with the way to
calculate the measure of noncompactness in PC([0,b];X). The use of noncompact measure in functional
differential and integral equations can also be seen in [6, 12, 18, 20].

Remark 3.3. When we apply Darbo-Sadovskii’s fixed point theorem to get the fixed point of a map, a strong
inequality is needed to guarantee its condensing property. By using the β-convex-power condensing
operator developed by Sun et al. [31], we do not impose any restrictions on the coefficient L1. This
generalized condensing operator also can be seen in Liu et al. [26], where nonlinear Volterra integral
equations are discussed. In the following, by using Lemma 2.7 and Darbo-Sadovskii’s fixed point theorem,
we give the existence results of the problem (1.1) under Lipschitz conditions and mixed-type conditions
respectively.

We give the following hypothesis:

(Hg2) g : PC([0,b];X)→ X is Lipschitz continuous with the Lipscitz constant k;
(HI2) Ii : X→ X is Lipschitz continuous with the Lipschitz constant ki; that is,

‖Ii(x) − Ii(y)‖ 6 ki‖x− y‖,

for x,y ∈ X, i = 1, 2, . . . , s.

Theorem 3.4. Assume that the hypotheses (HA), (Hf), (Hg2), (HI2) are satisfied, then the nonlocal impulsive
problem (1.1) has at least one mild solution on [0,b], provided that

M

(
k+ L1b+MM+ 1L1b

3/2Kw(s) +

s∑
i=1

ki

)
< 1, (3.3)

and (3.2) is satisfied.

Proof. From the proof of Theorem 3.1, we have that the solution operator G is continuous and maps Wr

into itself. It remains to show that G is β-condensing in Wr.
By the conditions (Hg2) and (HI2), we get that G1 +G4 : Wr → PC([0,b];X) is Lipschitz continuous

with the Lipschitz constant M(k+
∑s

i=1 ki). In fact, for u,w ∈Wr, we have

‖(G1 +G4)u− (G1 +G4)w‖PC = sup
t∈[0,b]

‖T(t)(g(u) − g(w))‖+
∑

0<ti<t

‖T(t− ti)(Ii(u(ti)) − Ii(w(ti)))‖

6M{‖g(u) − g(w)‖+
s∑

i=1

‖Ii(u(ti)) − Ii(w(ti))‖}

6M{k+

s∑
i=1

ki}‖u−w‖PC.

Thus from Lemma 2.7, we obtain that

β((G1 +G4)Wr) 6M(k+

s∑
i=1

ki)β(Wr). (3.4)
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For the operator (G2u)(t) =
∫t

0 T(t− s)f(s,u(s))ds, from Lemmas 2.6, 2.8, and 2.9, we have

β(G2Wr) = sup
t∈[0,b]

β((G2Wr))(t)

6 sup
t∈[0,b]

∫t
0
β(T(t− s)f(s,Wr(s)))ds

6 sup
t∈[0,b]

M

∫t
0
L1β(Wr(s))ds

6ML1bβ(Wr).

(3.5)

For the operator (G3u)(t) =
∫t

0 T(t− s)Bv(s)ds,

β(G3Wr) = sup
t∈[0,b]

β((G3Wr)(t)) 6 sup
t∈[0,b]

∫t
0
β(T(t− s)Bv(s))ds

6 sup
t∈[0,b]

MM1

∫t
0
β(v(s))ds 6M2M1L1b

3
2Kw(s)β(Wr).

(3.6)

Combining (3.4), (3.5), and (3.6), we have

β(GWr) 6 β((G1 +G4)Wr) +β(G2Wr) +β(G3Wr)

6M{k+

s∑
i=1

ki + L1b+MM1L1b
( 3

2Kw(s)}β(Wr).

From the condition (3.3),M(k+L1b+MM1L1b
3
2Kw(s)+

∑s
i=1 ki)< 1, the solution mapG is β-condensing

in Wr. By Darbo-sadovskii’s fixed point theorem, G has a fixed point in Wr which is just a mild solution
of the nonlocal impulsive problem (1.1). This completes the proof of Theorem 3.4.

Among the previous works on nonlocal impulsive differential equations, a few are concerned with the
mixed-type conditions. Here, by using Lemma 2.7, we can also deal with the mixed-type conditions in a
similar way.

Theorem 3.5. Assume that the hypotheses (HA), (Hf), (Hg1), (HI2) are satisfied, then the nonlocal impulsive
problem (1.1) has at least one mild solution on [0,b] provided that

M(1 +MM1
√
bKw)(L1b+

s∑
i=1

ki) < 1, (3.7)

and (3.2) is satisfied.

Proof. We will also use Darbo-Sadovskii’s fixed point theorem to obtain a fixed point of the operator G
related to the mild solution of the system. From the proof of Theorem 3.1, we have that G is continuous
and maps Wr into itself.

Subsequently, we show that G is β-condensing in Wr. From the compactness of g and the strong
continuity of T(.), we get that {T(.)g(u) : u ∈ Wr} is equicontinuous on [0,b]. Then by Lemma 2.6, we
have that

β(G1Wr) = sup
t∈[0,b]

β((G1Wr)(t)) = sup
t∈[0,b]

β(T(t)g(Wr)) = 0. (3.8)

On the other hand, for u,w ∈Wr, we have

‖G4u−G4w‖ = sup
t∈[0,b]

‖
∑

0<ti<t

T(t− ti)(Ii(u(ti)) − Ii(w(ti)))‖
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6M
s∑

i=1

‖Ii(u(ti)) − Ii(w(ti))‖

6M
s∑

i=1

ki‖u−w‖PC.

Then by Lemma 2.7, we obtain that

β(G4Wr) 6M
s∑

i=1

kiβ(Wr) (3.9)

and

β(G3Wr) 6M
2M1L1

√
bKw(L1b+

s∑
i=1

ki)β(Wr). (3.10)

Combining (3.5), (3.8), (3.9), and (3.10), we get that

β(GWr) 6 β(G1Wr) +β(G2Wr) +β(G3Wr) +β(G4Wr)

6M(1 +MM1
√
bKw)(L1b+

s∑
i=1

ki)β(Wr).

From the condition (3.7), the map G is β-condensing in Wr. So, G has a fixed point in Wr due to Darbo-
Sadovskii’s fixed point theorem, which is just a mild solution of the nonlocal impulsive problem (1.1).
This completes the proof of Theorem 3.5.

Theorem 3.6. Assume that the hypotheses (HA), (Hf), (Hg2), (HI1) are satisfied, then the nonlocal impulsive
problem (1.1) has at least one mild solution on [0,b] provided that

M(1 +MM1
√
bKw)(k+ L1b) < 1, (3.11)

and (3.2) is satisfied.

Proof. From the proof of Theorem 3.1, we have that the solution operator G is continuous and maps Wr

into itself. In the following, we shall show that G is β-condensing in Wr.
By the Lipschitz continuity of g, we have that for u,w ∈Wr,

‖G1u−G1w‖PC = sup
t∈[0,b]

‖T(t)(g(u) − g(w))‖ 6Mk‖u−w‖PC.

Then by Lemma 2.7, we obtain that
β(G1Wr) 6Mkβ(Wr). (3.12)

Similar to the discussion in Theorem 3.1, from the compactness of Ii and the strong continuity T(.),
we get that G4Wr is equicontinuous on each Ji = [ti, ti+1], i = 0, 1, . . . , s. Then by Lemma 2.7, we have
that

β(G4Wr) = sup
t∈[0,b]

β((G4Wr)(t)) 6
s∑

i=1

β(T(t− ti)Ii(Wr(ti))) = 0 (3.13)

and
β(G3Wr) = sup

t∈[0,b]
β((G3Wr)(t)) 6M

2M1Kw

√
b(k+ L1b)β(Wr). (3.14)

Combining (3.5), (3.12), (3.13), and (3.14), we have that

β(GWr) 6 β(G1Wr) +β(G2Wr) +β(G3Wr) +β(G4Wr) 6M(1 +MM1
√
bKw)(k+ L1b)β(Wr).

From condition (3.11), the map G is β-condensing in Wr. So, G has a fixed point in Wr due to Darbo-
Sadovskii’s fixed point theorem, which is just a mild solution of the nonlocal impulsive problem (1.1).
This completes the proof of Theorem 3.6.
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4. Conclusion

In this manuscript, we dealt with the the controllability of impulsive differential equations with non-
local conditions. After studying the property of measure of noncompactness in the space of piecewise
continuous functions, we discussed the controllability of nonlocal impulsive differential equations un-
der compactness conditions, Lipschitz conditions and mixed-type conditions; using the the established
property and Darbo-Sadovskii’s fixed point theorem. Our theorems guarantee the effectiveness of con-
trollability results.

One can extend system (1.1) to second order system/inclusion and study the controllability result us-
ing sine and cosine operators and multivalued analysis. Time dependent and space dependendt finite and
infinite delay of the system/inclusion will be the future work with multiple applications. Fuzzy solution
and the controllability will be quite interesting using the same terminology of measure of noncompact-
ness. Controllability of nonlocal impulsive fractional order (0 < α < 1) functional differential equations
with measure of noncompactness will be another future work.
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