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Abstract

In this paper, the resonance response of piezoelectric vibration energy harvester (VEH) driven by bounded noise is discussed
through the quasi-conservative stochastic averaging method. A nonlinear transformation based on the total energy is firstly
established to transform piezoelectric VEH system from an electromechanical coupled nonlinear system into a single-degree-of-
freedom (SDOF) system. Then the SDOF system is rewritten as Itô stochastic system about the energy and residual phase under
the case of p:q resonance through the quasi-conservative stochastic averaging method. And the joint probability density function
(JPDF) of the stationary response is obtained by solving the corresponding two-dimensional Fokker-Planck-Kolmogorov (FPK)
equation using the finite difference method. Meanwhile, the mean-square electric voltage and the mean output power are further
analytically given through the JPDF. Finally, the resonance response of piezoelectric VEH system is analyzed in detail in case
of the primary resonance, and the Monte Carlo (MC) simulation technique is adopted to validate the effectiveness of the finite
difference method.
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method, finite difference method.
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1. Introduction

With the development of wireless technology, the portable devices, wireless sensors and other MEMS
devices have been used more and more widely [19, 23]. However, as a traditional power supply equip-
ment, the battery has some disadvantages including bulky volume, limited lifetime and frequent replace-
ment, etc. All of these can add the difficulty of further application of the MEMS devices, especially in
complex geology condition. As an effective way to get clean energy, the vibration energy harvester (VEH)
is capable of generating electricity spontaneously and can transform vibration mechanical energy of the
environment into electrical energy, which provides power to low-power MEMS devices and has gained
more and more attention.

In general, the energy harvesting mechanisms of VEH devices include electrostatic, electromagnetic
and piezoelectric. And the piezoelectric transduction mechanism has prominent mechanical energy har-
vesting mechanism owing to its high electromechanical coupling coefficient and piezoelectric coefficient
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and has been widely studied and applied. In addition, the VEH systems can also be classified into linear
and nonlinear system according to the structures of dynamics. Compared with the linear structure, the
nonlinear structure can progressively extend the frequency response range and energy collection efficiency
of VEH system, and even implement large periodic motion under the excitation of low frequency and low
amplitude [6, 25]. As research continues, there are many different nonlinear VEH systems that have
been designed and studied through constructing nonlinear oscillation characteristic, such as monostabtle
[12, 30], bistable [24, 34] and tristable states [13, 32, 33], etc. For example, Yang et al. [27, 28] concluded
that the high-efficiency compressive-mode piezoelectric VEH can cause high power output with wide
working bandwidth and has favorable nonlinear phenomena at low frequency range. Then the monos-
table piezoelectric VEH under low-level excitation was presented and it could be found that the system
can exhibit rich dynamic features, including the softening hysteresis, tunable operating bandwidth, and
adjustable voltage and power levels [4]. Lopes et al. [18] investigated the bistable piezo-magneto-elastic
VEH to determine the influence of parameters of external force on the system response, such as time se-
ries, phase space trajectories, Poincare maps and bifurcation diagrams. And the harmonic balance method
was developed to study the nonlinear tristable VEH and it is feasible to achieve the high energy interwell
oscillation in the multi-solution range of the tristable VEH [31]. Panyam et al. [20] researched the effective
bandwidth of tristable VEH which decreases with the increase of the electromechanical coupling result.

It is well known that the noises are widely existing in various systems of the natural world, and there is
a great deal of researches indicating that the noises play an important role in influencing the dynamics of
the system, especially nonlinear system, so the VEH techniques based on the noise have gotten increasing
interest in recent years. For example, Jiang et al. [10] used the state-space-split method to investigate the
statistical characteristics of strongly nonlinear VEH with Gaussian white noise excitation. Ramakrishnan
et al. [21] researched the stochastic stability of the piezoelectric VEH under parametric excitation. The
stochastic responses of nonlinear piezoelectric VEH under Gaussian colored noise and filtered Gaussian
white noise were discussed, respectively [14, 15]. In particular, the bounded noise [3, 9, 16, 17, 26, 29],
which can induce resonance has been considered as a reasonable noise model, because it has Drydon
spectrum and Von Kaman spectrum in atmospheric turbulence, wind turbulence and seismic ground
motion. Zhu et al. [8, 35] researched the resonance response and optimal feedback control of strongly
non-linear system with bounded noise when the p/q resonance happened. Besides, another stochastic
analysis method, namely the multiple scales method was proposed to study the dynamical behaviour
of the Duffing system subject to the bounded noise [22]. Subsequently, the stochastic averaging method
was further expanded to discuss the stochastic response characters of the strongly non-linear oscillator
under bounded noise excitation with fractional derivative damping [7] and time-delayed feedback [5],
respectively. Recently, Bobryk [2] found that the stochastic multiresonance can be induced when a har-
monic oscillator has parametric bounded noise and external periodic force. Precisely because the bounded
force has made so plentiful dynamics phenomena, particularly the resonant frequencies which can cause
greater amplitude than other frequencies, the impact of bounded force on the capture efficiency of VEH
system attract more and more public attention. For example, Alevras [1] researched the optimal condition
for stochastic resonance of VEH system with harmonic force and Gaussian white noise, and explored
the effect of realistic architecture in the electrical circuit on the achievable power output and the system
dynamics. Jin et al. [11] developed the multiple scales method to analyze the dynamics of the bistable
VEH system of the time-delayed feedback circuit under narrow-band random process. However, to the
best knowledge of authors, no attention has been paid to the resonant response of nonlinear resonance
vibration energy harvester (RVEH). To compensate the lack of research, in this manuscript we will focus
on the study of the resonant response of nonlinear VHE subject to the bounded noise excitation.

The paper is organized as follows. Sect. 2 gives the mathematical model of the nonlinear RVEH
system under bounded noise and introduces a transformation to uncoupled to get a single-degree-of-
freedom (SDOF) system. Sect. 3 derives the analytical expression of the joint probability density function
(JPDF) and the mean-square electric voltage by the p/q resonance and the stochastic averaging method.
Sect. 4 gives an example of the primary resonance case and studies the effects of the nonlinear stiffness
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coefficient, the electromechanical coupling coefficient and the frequency perturbation strength on the
random response of RVEH and the mean-square electric voltage. Finally, some concluding remarks are
made in Sect. 5.

2. Mathematical modelling

Considering a class of nonlinear resonance vibration energy harvester (RVEH) with piezoelectric work
mechanism subject to the bounded noise excitation, and the corresponding dimensionless equation of
motion can be written as

Ẍ+ cẊ+ω2
0X+αX3 +βV = ξ (t) , (2.1)

V̇ + λV = Ẋ, (2.2)

where X means the oscillator displacement and the dot is the differentiation with respect to t; c represents
the linear viscous damping coefficient; ω2

0 and α denote the linear and cubic nonlinear stiffness coefficient;
β is the electromechanical coupling coefficient; V is the output voltage; ξ (t) stands for a bounded noise
and it can be described as

ξ (t) = f cos (Ωt+ σB (t)) , (2.3)

in which f is a constant representing the amplitude of the stochastic excitation; Ω and σ2 are also constants
representing the center frequency and the strength of frequency perturbation, respectively, of the bounded
noise; B (t) stands for a standard Winner process; and ξ (t) is a stationary random process in a wide sense
with auto correlation function

R (τ) =
f2

2
exp

(
−
σ2

2
|τ|

)
cosΩτ

and spectral density

S (ω) =
f2σ2

4π
ω2 +Ω2 + 1

4σ
4(

ω2 −Ω2 − 1
4σ

4
)2

+ σ4ω2
.

Obviously the bandwidth of process ξ (t) depends mainly on the parameter σ, and it becomes a narrow-
band process when σ is small, or is a wide-band process.

For the undamped free vibration system corresponding to system (2.1)-(2.2), we introduce a transfor-
mation

sgnX
√
U (X) =

√
H cos θ, (2.4)

Ẋ = −
√

2H sin θ, (2.5)

where U (X) and H are potential energy and total energy of undamped free motion of system (2.1)-(2.2).
θ = θ (t) is the total phase angle and

θ = θ (t) = v (t) +φ,
dv

dt
= ω̃(H, θ).

Here ω̃(H, θ) represents the instantaneous frequency and φ denotes the residual phase angle. Expanding
ω̃−1 (H, θ) = dt/dv into Fourier series, the following equation can be obtained [8]:

ω̃−1 (H, θ) = C0(H) +

∞∑
n=1

Cn(H) cosnθ, (2.6)
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in which Ci (H) (i = 0, 1, 2, . . .) are the Fourier coefficients. Then integrating Eq. (2.6) with respect to v,
one can obtain

t = C0 (H) v+

∞∑
n=1

1
n
Cn (H) sinnθ. (2.7)

Hence the period T (H) is obtained by integrating Eq. (2.6) from 0 to 2π in v. So

T (H) = 2πC0(H)

and the average frequency ω (H) of the oscillator can be expressed as

ω (H) =
2π
T (H)

=
1

C0(H)
.

Then

θ (t) ≈ ω (H) t+φ.

Now consider the random vibration of RVEH system (2.1)-(2.2). Then the corresponding variables
H (t) and θ (t) of transformation (2.4)-(2.5) are all random processes. H (t) is slowly varying and φ = φ (t)

denotes the residual phase and it is slowly varying. Therefore, one can obtain the following expression

θ (t− τ) = ω (H) (t− τ) +φ (t− τ) = ω (H) (t− τ) +φ (t) = θ (t) −ω (H) τ,

Ẋ (t− τ) = −
√

2H sin (θ (t− τ)) = Ẋ cos (ω (H) τ) + sgnX
√

2U (X) sin (ω (H) τ) .
(2.8)

Integrating the electric equation (2.2), and substituting Eq. (2.8) into the integrated results, the electric
voltage might be represented as

V
.
=

∫t
0
Ẋ (t− τ) exp (−λτ)dτ =

ω2 (H)

λ2 +ω2 (H)
X+

λ

λ2 +ω2 (H)
Ẋ. (2.9)

Substituting expression (2.9) into Eq. (2.1), then the nonlinear coupled RVEH system (2.1)-(2.2) is approx-
imately rewritten as

Ẍ+ (c+C (H)) Ẋ+
(
ω2 (H) +ω2

0
)
X+αX3 = f cos (Ωt+ σB (t)) , (2.10)

where C (H) = βλ/
[
λ2 +ω2 (H)

]
and ω2 (H) = βω2 (H) /

[
λ2 +ω2 (H)

]
. Then

U (X) =
1
2
(
ω2 (H) +ω2

0
)
X2 +

1
4
αX4, H =

1
2
Ẋ2 +U (X) .

3. Resonance responses

3.1. Stochastic averaging of quasi-conservative

In this study, we aim to analyze the resonance response of VEH system (2.10) through the quasi-
conservative stochastic averaging technique. Substituting Eq. (2.4)-(2.5) into Eq. (2.10), the following two
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first-order differential equation about H (t) and φ (t) can be obtained:

Ḣ = −2H (c+C (H)) sin2 θ− f
√

2H sin θ cos (Ωt+Λ) = F1 (H, θ,Ωt+Λ) ,

φ̇ = −(c+C (H)) sin θ cos θ−
f√
2H

cos θ cos (Ωt+Λ) = F2 (H, θ,Ωt+Λ) ,
(3.1)

where Λ = σB (t). In this investigation, the narrow-band excitation and resonant case will be considered
when the parameter σ is small, so the following relationship exists

Ω

ω (H)
=
q

p
+ δ, (3.2)

where p and q are relatively prime positive small integers and δ is a detuning parameter, then applying
the Eqs. (2.7) and (3.2), one can obtain

Ωt =
q

p
θ (t) + δv (t) −

q

p
φ (t) +Ω

∞∑
n=1

1
n
Cn(H) sinnθ.

For convenience, we introduce two new variables

Γ = δv (t) −
q

p
φ (t) +Λ, Ψ = Ψ (H, θ) =

q

p
θ (t) +Ω

∞∑
n=1

1
n
Cn(H) sinnθ, (3.3)

then the variable Ωt+Λ can be rewritten as

Ωt+Λ = Ψ+ Γ . (3.4)

Substituting Eqs. (3.3) and (3.4) into Eq. (3.1), the following Itô stochastic differential equations can be
derived:

dH = F1 (H, θ,Ψ+ Γ)dt, dΓ =

[(
Ω

ω (H)
−
q

p

)
ω̃(H, θ) −

q

p
F2 (H, θ,Ψ+ Γ)

]
dt+ σ dB (t) ,

in which

F1 (H, θ,Ψ+ Γ) = −2 (c+C (H))H sin2 θ− f
√

2H sin θ cos (Ψ+ Γ) ,

F2 (H, θ,Ψ+ Γ) = − (c+C (H)) sin θ cos θ−
f√
2H

cos θ cos (Ψ+ Γ) .

H and φ are the slowly varying process comparing to θ, so Γ is also slowly varying. Furthermore, the
total energy process H and process Γ are approximately Markovian, and the quasi-conservative stochastic
averaging technique can be applied and we can obtain the following averaged Itô stochastic differential
equation

dH = m1 (H, Γ)dt, dΓ = m2 (H, Γ)dt+ σ dB (t) , (3.5)

where

m1 (H, Γ) = −H (c+C (H)) +
√

2Hf sin Γ 〈sin θ sinΨ〉θ ,

m2 (H, Γ) =
(

Ω

ω (H)
−
q

p

)
〈ω̃(H, θ)〉θ +

q

p

f√
2H

cos Γ 〈cos θ cosΨ〉θ .
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3.2. The resonance response of the nonlinear VEH system

The corresponding averaged FPK equation of Eq. (3.5) is

∂p

∂t
= −

∂ [m1 p]

∂H
−
∂ [m2 p]

∂Γ
+

1
2
σ2∂

2p

∂Γ 2 , (3.6)

where p = p (H, Γ , t|H0, Γ0, t0) is the transition joint probability density function (JPDF) of H and Γ with
initial condition p = δ (H−H0) δ (Γ − Γ0). The boundary condition with respect to Γ is periodic, which
means that

p|Γ+2nπ = p|Γ ,
∂p

∂t

∣∣∣∣
Γ+2nπ

=
∂p

∂t

∣∣∣∣
Γ

.

The boundary conditions with respect to H are

p = finite when H = 0, p,
∂p

∂t
→ 0 when H→∞.

The corresponding stationary JPDF of Eq. (3.6) is obtained when ∂p
∂t = 0, that is

−
∂ [m1 p]

∂H
−
∂ [m2 p]

∂Γ
+

1
2
σ2∂

2p

∂Γ 2 = 0. (3.7)

Solving Eq. (3.7) by the finite difference method with mesh of 60 × 60, we can get the stationary
JPDF p (H, Γ) of H and Γ . p (H, Γ) is periodic with respect to Γ , so in this paper, we only consider
Γ ∈ [−π/2, 3π/2]. The stationary marginal probability density function of the total energy H is

p (H) =

∫ 3π
2

−π
2

p (H, Γ)dΓ .

Then, the stationary JPDF of the displacement X and velocity Ẋ can be obtained from

p
(
X, Ẋ

)
=
p (H)

T (H)

∣∣∣∣
H= 1

2 Ẋ
2+U(X)

.

Naturally, applying the relation between displacement, velocity and electric voltage, which has been given
in Eq. (2.9), the mean square value of the electric voltage can be written as

E
(
V2) = E[( ω2 (H)

λ2 +ω2 (H)
X+

λ

λ2 +ω2 (H)
Ẋ

)2
]

=

∫∞
−∞

∫∞
−∞
(

ω2 (H)

λ2 +ω2 (H)
X+

λ

λ2 +ω2 (H)
Ẋ

)2

p
(
X, Ẋ

)
dXdẊ,

and at the same moment the mean output power E (P) can be further given according to the linear square
relationship between the power and the electric voltage:

E (P) = βλE
(
V2) .

The above special case and their examination allow a further understanding of the generality of the
derived equations. Then the next section gives an example to illustrate their uses and advantages.
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Figure 1: The time history of (a) displacement X, (b) velocity Ẋ, (c) output voltage V with different
frequency perturbation strength, (d) phase space trajectory (α = 0.2, c = 0.02, ω2

0 = 0.5, Ω = 1.2, f = 0.2,
λ = 0.1, β = 0.5).
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Figure 2: Stationary JPDF p (H, Γ) of system(1), c = 0.02, ω2
0 = 0.5, Ω = 1.2, f = 0.2, σ2 = 0.02, λ = 0.1,

β = 0.5, p = 1, q = 1. (a) α = 0.2, finite difference method; (b) α = 0.2, MC method; (c) α = 0.3, finite
difference method; (d) α = 0.3, MC method.
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4. Probabilistic analysis of primary resonance response

As an example, the primary resonance case (p = q = 1) is used to investigate the effectiveness of the
proposed solution procedure. In this case, the effects of various physical parameters on the JPDF of the
VEH system are examined, and the changes of the corresponding energy collection efficiency are also
analyzed. These physical parameters include the nonlinear stiffness coefficient α, the electromechanical
coupling coefficient β and the frequency perturbation strength σ2. In Eqs. (2.1)-(2.2) and Eqs. (2.3), the
parameters of the stochastic RVEH system are given as α = 0.2, c = 0.02, ω2

0 = 0.5, Ω = 1.2, f = 0.2,
σ2 = 0.02, λ = 0.1, and β = 0.5, unless otherwise mentioned.

4.1. Primary resonance response analysis of system
First, the stochastic response of system (2.1)-(2.2) is studied in detail. The time histories and phase

space trajectory of system (2.1)-(2.2) subject to different frequency perturbation strengths σ2 are shown
in Fig. 1. Notice that in Fig. 1, every color corresponds to a value of σ2, such as the red represents the
case of σ2 = 0.06. According to the comparison and analysis, we can see that the increase of frequency
perturbation strength σ2 exacerbate the response amplitude’s volatility, that is a typical random jump
phenomenon, which eventually causes the output voltage of RVEH system changes. By the phase space
trajectory in Fig. 1(d), it is more closer to the center with the increase of frequency perturbation strengths
σ2. Meanwhile, to verify the effectiveness of the proposed method in Sect. 3, the analysis results of
different nonlinear stiffness coefficients α getting by the finite difference method are given in Figs. 2(a)
and 2(c). The Monte Carlo (MC) method is then used to estimate the above results of analysis, which
are shown in Figs. 2(b) and 2(d). By comparison, it can be found that the proposed method is a highly
effective means for strong nonlinear RVEH system.
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Figure 3: Stationary JPDF p (H, Γ) of system(1), α = 0.2, c = 0.02, ω2
0 = 0.5, Ω = 1.2, f = 0.2, λ = 0.1,

β = 0.5, p = 1, q = 1. (a) σ2 = 0.01, finite difference method; (b) σ2 = 0.01, MC method; (c) σ2 = 0.03,
finite difference method; (d) σ2 = 0.03, MC method.

Then the effects of the frequency perturbation strength σ2 upon the JPDF are discussed, which are
shown in Figs. 3(a) and 3(c). It shows that the JPDF has a single peak, and the results are given by



D. Liu, Q. Fu, J. Nonlinear Sci. Appl., 15 (2022), 1–13 9

proposed procedure. By comparing the changes in the shape of the JPDF, one can see that a larger
diffusion area appear for a greater frequency perturbation strength σ2. The MC method is then used to
estimate the above result of analysis, which are shown in Figs. 3(b) and 3(d), and we find a high degree
of consensus.

Finally, to research the influence of the electromechanical coupling coefficient β on the stationary
JPDF, the JPDF relative to two different electromechanical coupling coefficients β = 0.4, 0.6 by analytical
approach are given and shown in Figs. 4(a) and 4(c). Therefore, by comparing the changes for JPDF,
one can see that the vibration center and the range of vibration of system undergo significant changes,
that is the system has higher level of concentration when the parameter β increases. The corresponding
simulation verification has also been given in Figs. 4(b) and 4(d) by the MC techniques, and a good
coherence is obtained.
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Figure 4: Stationary JPDF p (H, Γ) of system(1), α = 0.2, c = 0.02, ω2
0 = 0.5, Ω = 1.2, f = 0.2,σ2 = 0.02,

λ = 0.1, p = 1, q = 1. (a) β = 0.4, finite difference method; (b) β = 0.4, MC method; (c) β = 0.6, finite
difference method; (d) β = 0.6, MC method.

4.2. Effects of physical parameters on harvesting performance
The changes of physical parameters of the RVEH cause the stochastic response changes, which further

impact on the energy harvesting performance, so the mean square voltage varying with the nonlinear stiff-
ness coefficient α, the electromechanical coupling coefficient β and the frequency perturbation strength
σ2 will be studied in detail in this subsection.

Multiplying Ẋ at both sides of Eq. (2.10), we can get

d

dt

[
1
2
Ẋ2 +

1
2
ω2

0x
2 +

1
4
αX4

]
+ cẊ2 +

(
ω2 (H)X+C (H) Ẋ

)
Ẋ = fẊ cos (Ωt+ σB (t)) . (4.1)

Note that the right-hand side of Eq. (4.1) is the product of velocity times narrow-band random force,
which expresses the instantaneous power. In addition, (ω2(H)X+C(H)Ẋ)Ẋ = βλV2 denotes the instanta-
neous electrical power harvested by the energy harvester. Therefore, the harvested electrical output power



D. Liu, Q. Fu, J. Nonlinear Sci. Appl., 15 (2022), 1–13 10

and the mean square voltage are influenced by the nonlinear stiffness coefficient α, the electromechanical
coupling coefficient β and the frequency perturbation intensity σ2.

Figure 5: The mean-square electric voltage E
(
V2
)

on frequency perturbation strength σ2 and electrome-
chanical coupling coefficient β. (α = 0.2, c = 0.02, ω2

0 = 0.5, Ω = 1.2, f = 0.2, λ = 0.1, p = 1, q = 1)

Figure 6: The mean-square electric voltage E
(
V2
)

on frequency perturbation strength σ2 and nonlinear
stiffness coefficient α (c = 0.02, ω2

0 = 0.5, Ω = 1.2, f = 0.2, λ = 0.1, β = 0.5, p = 1, q = 1).
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Figure 7: The mean-square electric voltage E
(
V2
)

on nonlinear stiffness coefficient α (c = 0.02, ω2
0 = 0.5,

Ω = 1.2, f = 0.2, σ2 = 0.04, λ = 0.1, β = 0.5, p = 1, q = 1).

To understand the impact of relevant physical parameters on the energy capture efficiency more
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Figure 8: The mean-square electric voltage E
(
V2
)

on electromechanical coupling coefficient β (α = 0.2,
c = 0.02, ω2

0 = 0.5, Ω = 1.2, f = 0.2, σ2 = 0.02, λ = 0.1, p = 1, q = 1).
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Figure 9: The mean-square electric voltage E
(
V2
)

on frequency perturbation strength σ2 (α = 0.2, c = 0.02,
ω2

0 = 0.5, Ω = 1.2, f = 0.2, λ = 0.1, β = 0.5, p = 1, q = 1).

clearly, the variation of mean square voltage with frequency perturbation strength σ2 and electrome-
chanical coupling coefficient β, and the variation tendency with frequency perturbation strength σ2 and
nonlinear stiffness coefficient α are given by proposed approach, which are shown in Figs. 5 and 6. It
can be seen that the mean-square electric voltage shows the same growth trend as α and β change, that
is the mean-square electric voltage decrease with the increase of these two parameters. By comparing the
variation trend, we find that the increase of the electromechanical coupling coefficient β could lead to
faster decrease of the mean-square electric voltage than frequency perturbation strength σ2. In order to
verify the effectiveness of the results, the results of MC numerical simulation are used to compare with
the theory analysis results, which are shown in Figs. 7 and 8. And the solid lines denote the analytical
results by the finite difference method, while the circles represent the results through the MC method.
Meanwhile, the effects of σ2 on the mean-square electric voltage are also analyzed for the given α and β
which are shown in Fig. 9, and the tread is also decrease with the increasing of σ2.

5. Conclusions

In this investigation, the quasi-conservative stochastic averaging method is used to analyze the reso-
nance response of the nonlinear VEH system driven by bounded noise excitation. Firstly, a transforma-
tion based on total energy of system is introduced to approximate the nonlinear coupled RVEH system
into an uncoupled SDOF system. Secondly, under the assumption that the equivalent system is quasi-
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conservative, the stochastic averaging method is used to derive the averaged Itô stochastic differential
equation about total energy and phase, which are dependent on the ratio of center frequency of bounded
noise and the frequency of system. Then the stationary JPDF is obtained through solving the correspond-
ing FPK equation by the finite difference method, and the mean-square electric voltage is also derived
through the relation between the electric voltage and the mechanical states. Finally, as an example, we
discuss the effects of the nonlinear stiffness coefficient, the electromechanical coupling coefficient and the
frequency perturbation strength on the random response of RVEH system in the case of primary reso-
nance. In addition, we also find that these physical parameters have essential effects on the mean-square
electric voltage when other parameters unaltered, that is they all lead a reduce of the mean-square electric
voltage when these parameters increases, and the corresponding results are verified through direct MC
simulation technique.
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