The reciprocity gap functional method for an impedance inverse scattering problem in chiral media
Authors
E. S. Athanasiadou
- Department of Mathematics , National and Kapodistrian University of Athens, Panepistimiopolis GR-15784, Athens, Greece.
Abstract
A time-harmonic electromagnetic wave is scattered by a buried object. We assume that the scattering object has an impedance boundary surface and it is embedded in a piecewise homogeneous isotropic background chiral medium. Using a chiral reciprocity gap operator and appropriate density properties of chiral Herglotz wave functions we solve an inverse scattering problem for reconstruction of the shape of the scatterer from the knowledge of the tangential components of electric and magnetic fields, without requiring any a priori information of the physical properties. Furthermore, a characterization of the surface impedance of the scattering object is proved.
Share and Cite
ISRP Style
E. S. Athanasiadou, The reciprocity gap functional method for an impedance inverse scattering problem in chiral media, Journal of Nonlinear Sciences and Applications, 16 (2023), no. 2, 79--89
AMA Style
Athanasiadou E. S., The reciprocity gap functional method for an impedance inverse scattering problem in chiral media. J. Nonlinear Sci. Appl. (2023); 16(2):79--89
Chicago/Turabian Style
Athanasiadou, E. S.. "The reciprocity gap functional method for an impedance inverse scattering problem in chiral media." Journal of Nonlinear Sciences and Applications, 16, no. 2 (2023): 79--89
Keywords
- Inverse scattering
- reciprocity gap functional
- chiral media
- impedance boundary condition
MSC
References
-
[1]
H. Ammari, J. C. N´ed´elec, Time-harmonic electromagnetic fields in thin chiral surved layeres, SIAM J. Math. Anal., 29 (1998), 395–423
-
[2]
T. Arens, F. Hagemann, F. Hettlich, A. Kirsch, The definition and measurement of electromagnetic chirality, Math. Meth. Appl. Sci., 41 (2018), 559–572
-
[3]
C. E. Athanasiadis, E. S. Athanasiadou, E. Kikeri, The reciprocity gap operator for electromagnetic scattering in chiral media, Appl. Anal., 14 (2022), 5006–5016
-
[4]
C. Athanasiadis, E. Kardasi, Beltrami Herglotz functions for electromagnetic scattering theory in chiral media, Appl. Anal., 84 (2005), 145–163
-
[5]
C. E. Athanasiadis, D. Natroshvili, V. Sevroglou, I. G. Stratis, An application of the reciprocity gap functional to inverse mixed impedance problems in elasticity, Inverse Probl., 26 (2010), 19 pages
-
[6]
C. E. Athanasiadis, V. I. Sevroglou, K. I. Skourogiannis, The direct electromagnetic scattering problem by a mixed impedance screen in chiral media, Appl. Anal., 91 (2012), 2083–2093
-
[7]
C. E. Athanasiadis, V. Sevroglou, K. I. Skourogiannis, The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media, Inverse Probl. Imaging, 9 (2015), 951–970
-
[8]
F. Cakoni, D. Colton, Qualitative Methods in Inverse Elctromagnetic Scattering Theory, Springer-Verlag, Berlin (2006)
-
[9]
F. Cakoni, D. Colton, Target identification of buried coated objects, Comput. Appl. Math., 25 (2006), 269-288
-
[10]
F. Cakoni, D. Colton, P. Monk, The electromagnetic inverse scattering problem for partially coated Lipschitz domains, Proc. R. Soc. Edinb. A: Math., 134 (2004), 661–682
-
[11]
F. Cakoni, D. Colton, P. Monk, The Linear sampling method in inverse electromagnetic scattering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)
-
[12]
F. Cakoni, M. Fares, H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inverse Probl., 22 (2006), 845–867
-
[13]
F. Cakoni, H. Haddar, Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data, J. Integral Equ. Appl., 19 (2007), 359–389
-
[14]
M. Charnley, A. Wood, Object identification in Radar imaging via the reciprocity gap method, Radio Sci., 55 (2020), 1–10
-
[15]
D. Colton, H. Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inverse Probl., 21 (2005), 383–398
-
[16]
A. Lakhtakia, Beltrami Fields in Chiral Media, World Scientific, Singapore (1994)
-
[17]
A. Lakhtakia, V. K. Varadan, V. V. Varadan, Time-harmonic electromagnetic fields in chiral media, Springer-Verlag, Berlin (1989)
-
[18]
I. Lindell, A. Sihvola, S. Tretyakov, A. J. Viitanen, Electromagnetic waves in chiral and bi-isotropic media, Artech House, (1994)
-
[19]
F. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York (2003)
-
[20]
Y. Sun, Y. Guo, F. Ma, The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., 95 (2016), 1327–1346
-
[21]
Z. Wang, F. Cheng, T. Winsor, Y. Liu, Optical Chiral Metamaterials: a Review of the Fundamentals, Fabrication Methods and Applications, Nanotechnology, 27 (2016), 20 pages
-
[22]
F. Zeng, X. Liu, J. Sun, L. Xu, Reciprocity gap method for an interior inverse scattering problem, J. Inverse Ill-Posed Probl., 25 (2017), 57–68