Sensitivity analysis and optimization of dynamic control parameters for a damped Euler-Bernoulli flexible beam
Authors
B. G. Jean-Marc
- Université Nangui Abrogoua d’Abobo-Adjamé and UFR Sciences Fondamentales et Appliquées, Ivory Coast.
Abstract
In this work, we propose an integrated method that allows to identify and then optimize the most influential control parameters, according to their directions, for certain classes of damped Euler-Bernoulli flexible beams. The method combines finite element discretization (FEM), sensitivity analysis based on Sobol indices, directional impact by One-at-time (OAT) and advanced optimization algorithms (Genetic Algorithm, Particle Swarm Optimization). This integration, validated by numerical simulations, seems to promote a better rate of decrease in vibrational energy while preserving the exponential stability of the structure.
Share and Cite
ISRP Style
B. G. Jean-Marc, Sensitivity analysis and optimization of dynamic control parameters for a damped Euler-Bernoulli flexible beam, Journal of Nonlinear Sciences and Applications, 18 (2025), no. 2, 110--121
AMA Style
Jean-Marc B. G., Sensitivity analysis and optimization of dynamic control parameters for a damped Euler-Bernoulli flexible beam. J. Nonlinear Sci. Appl. (2025); 18(2):110--121
Chicago/Turabian Style
Jean-Marc, B. G.. "Sensitivity analysis and optimization of dynamic control parameters for a damped Euler-Bernoulli flexible beam." Journal of Nonlinear Sciences and Applications, 18, no. 2 (2025): 110--121
Keywords
- Vibrations of beam
- finite element method
- Sobol analysis
- optimization algorithms
MSC
References
-
[1]
A.-P. Abro Goh, K. A. Touré, G. J.-M. Bomisso, Influence of control parameters on the stabilization of an Euler-Bernoulli flexible beam, J. Numer. Anal. Approx. Theory, 53 (2024), 5–19
-
[2]
P. Z. Bar-Yoseph, D. Fisher, O. Gottlieb, Spectral element methods for nonlinear spatio-temporal dynamics of an Euler- Bernoulli beam, Comput. Mech., 19 (1996), 136–151
-
[3]
M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6 (2002), 58–73
-
[4]
F. Conrad, F.-Z. Saouri, Stabilisation d’une poutre, Etude du taux optimal de décroissance de l’énergie élastique, ESAIM Control Optim. Calc. Var., 7 (2002), 567–595
-
[5]
A. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Trans. Evol. Comput., 3 (1999), 124–141
-
[6]
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, (1989)
-
[7]
T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs (1987)
-
[8]
T. K. K. Isaac, B. G. Jean-Marc, T. K. Augustin, C. Adama, Study of the stability properties for a general shape of damped Euler-Bernoulli beams under linear boundary conditions, Abstr. Appl. Anal., 2023 (2023), 17 pages
-
[9]
B. G. Jean-Marc, Y. S. A. Joresse, T. K. Augustin, Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients, J. Nonlinear Sci. Appl., 16 (2023), 123–144
-
[10]
J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proc. IEEE Int. Conf. Neural Netw., 4 (1995), 1942–1948
-
[11]
M. H. Korayem, A. M. Shafei, A. Azimi, Sensitivity Analysis of Single Flexible Link Based on Sobol’s Method, Int. J. Ind. Eng. Prod. Res., 24 (2013), 169–175
-
[12]
M. Mileti´c, A. Arnold, A piezoelectric Euler-Bernoulli beam with dynamic boundary control: stability and dissipative FEM, Acta Appl. Math., 138 (2015), 241–277
-
[13]
S. S. Rao, Mechanical Vibrations, Fifth Edition, Addison-Wesley, (1999)
-
[14]
S. S. Rao, Engineering Optimization: Theory and Practice, John Wiley & Sons, (2012)
-
[15]
P. Reed, A. Hadjimichael, K. Malek, T. Karimi, C. R. Vernon, V. A. Srikrishnan, R. Gupta, D. Gold, B. S. Lee, K. Keller, T. B. Thurber, J. S. Rice, Addressing Uncertainty in MultiSector Dynamics Research, E-Book, Zenodo, (2022)
-
[16]
R. Serra, J. Olivier, Apport de l’optimisation par essaims particulaires pour la détection de modifications structurelles à partir des propriétés dynamiques, 23ème Congrès Français de Mécanique, Lille, France (2017)
-
[17]
I. H. Shames, C. L. Dym, Energy and finite element methods in structural mechanics, Hemisphere Publishing Corp., Washington, DC; McGraw-Hill International Book Co., New York (1985)
-
[18]
I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55 (2001), 271–280
-
[19]
Y. Zhang, G. Feng, B. Liu, Sensitivity Analysis and Multi-Objective Optimization Strategy of the Curing Profile for Autoclave Processed Thick Composite Laminates, Polymers, 15 (2023), 12 pages