On the logarithmic Petrovsky equation with distributed delay: existence, decay, and blow up
Authors
E. Piskin
- Department of Mathematics, Dicle University, Diyarbakir, Turkey.
H. Yuksekkaya
- Department of Mathematics, Hakkari University, Hakkari, Turkey.
J. Ferreira
- Department of Exact Sciences, Federal Fluminense University, Brazil.
M. Shahrouzi
- Department of Mathematics, Jahrom University, Jahrom, P.O. Box 74137-66171, Iran.
Abstract
In this article, we deal with a logarithmic
Petrovsky equation with distributed internal delay. Firstly, we prove the
local existence of solutions utilizing the semigroup theory. Later, we
obtain the global existence of solutions by using the well-depth method.
Moreover, under appropriate assumptions on the weight of the delay and that
of frictional damping, we get the exponential decay. Finally, we establish
the blow up of solutions.
Share and Cite
ISRP Style
E. Piskin, H. Yuksekkaya, J. Ferreira, M. Shahrouzi, On the logarithmic Petrovsky equation with distributed delay: existence, decay, and blow up, Journal of Nonlinear Sciences and Applications, 18 (2025), no. 3, 148--164
AMA Style
Piskin E., Yuksekkaya H., Ferreira J., Shahrouzi M., On the logarithmic Petrovsky equation with distributed delay: existence, decay, and blow up. J. Nonlinear Sci. Appl. (2025); 18(3):148--164
Chicago/Turabian Style
Piskin, E., Yuksekkaya, H., Ferreira, J., Shahrouzi, M.. "On the logarithmic Petrovsky equation with distributed delay: existence, decay, and blow up." Journal of Nonlinear Sciences and Applications, 18, no. 3 (2025): 148--164
Keywords
- Logarithmic Petrovsky equation
- existence
- decay
- blow up
- distributed delay
MSC
References
-
[1]
R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam (2003)
-
[2]
M. M. Al-Gharabli, S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105–125
-
[3]
K. Bartkowski, P. Górka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, 41 (2008), 11 pages
-
[4]
I. Białynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 23 (1975), 461–466
-
[5]
I. Białynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62–93
-
[6]
T. Cazenave, A. Haraux, , , 2 (1980), 21–51
-
[7]
W. Chen, Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal., 70 (2009), 3203–3208
-
[8]
R. Datko, J. Lagnese, M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152–156
-
[9]
P. Górka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59–66
-
[10]
M. Kafini, On the decay of a nonlinear wave equation with delay, Ann. Univ. Ferrara Sez. VII Sci. Mat., 67 (2021), 309–325
-
[11]
M. Kafini, S. A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13 (2016), 237–247
-
[12]
M. Kafini, S. A. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., 99 (2020), 530–547
-
[13]
V. Komornik, Exact controllability and stabilization, Masson, Paris; John Wiley & Sons, Ltd.,, Chichester (1994)
-
[14]
K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574–1590
-
[15]
G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263–289
-
[16]
S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr., 231 (2001), 105–111
-
[17]
S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585
-
[18]
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York (1983)
-
[19]
E. Pi¸skin, B. kutmu¸stur, An introduction to Sobolev spaces, Bentham Science Publishers, Ltd., Sharjah (2021)
-
[20]
E. Pi¸skin, N. Polat, On the decay of solutions for a nonlinear Petrovsky equation, Math. Sci. Lett., 3 (2013), 43–47
-
[21]
H. Yüksekkaya, E. Pi¸skin, S. M. Boulaaras, B. B. Cherif, S. Ahmed Zubair, Existence, Nonexistence, and Stability of Solutions for a Delayed Plate Equation with the Logarithmic Source, Adv. Math. Phys., 2021 (2021), 11 pages
-
[22]
E. Zuazua, Exponential decay for the semi-linear wave equation with locally disributed damping, Commun. Partial Differ. Equ., 15 (1990), 205–235