A study of paranormed sequence space defined by Motzkin matrix
Authors
T. A. Malik
- Department of Mathematics, Govt. Boys Higher Secondary School, Darhal, Jammu and Kashmir-185135, India.
Abstract
The goal of this manuscript is to present the formulation of a novel regular matrix containing Motzkin numbers to obtain new paranormed sequence space \(\ell(\mathcal{M}, \mu, q)\) as the domain of Motzkin matrix on the space of absolutely \(p\)-summable sequences. Also, some topological properties and Schauder basis of the paranormed space \(\ell(\mathcal{M}, \mu, q)\) are introduced. Additionally, investigations have been made for computing their Kohe- Toeplitz dual, generalized Kothe-Toeplitz dual and Garling dual of the paranormed space \(\ell(\mathcal{M}, \mu, q)\). Finally, we emphasize on the characterization of certain matrix mappings from \(\ell(\mathcal{M}, \mu, q)\) into the classical sequence spaces.
Share and Cite
ISRP Style
T. A. Malik, A study of paranormed sequence space defined by Motzkin matrix, Journal of Nonlinear Sciences and Applications, 18 (2025), no. 3, 180--192
AMA Style
Malik T. A., A study of paranormed sequence space defined by Motzkin matrix. J. Nonlinear Sci. Appl. (2025); 18(3):180--192
Chicago/Turabian Style
Malik, T. A.. "A study of paranormed sequence space defined by Motzkin matrix." Journal of Nonlinear Sciences and Applications, 18, no. 3 (2025): 180--192
Keywords
- Motzkin numbers
- paranormed space
- Schauder basis
- matrix mappings
MSC
References
-
[1]
M. Aigner, Motzkin numbers, European J. Combin., 19 (1998), 663–675
-
[2]
B. Altay, F. Ba¸sar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., 319 (2006), 494–508
-
[3]
C. Aydın, F. Ba¸sar, Some new paranormed sequence spaces, Inform. Sci., 160 (2004), 27–40
-
[4]
E. Barrucci, R. Pinzani, R. Sprugnoli, The Motzkin family, PUMA Series A, 2 (1991), 249–279
-
[5]
F. Ba¸sar, B. Altay, Matrix mappings on the space bs(p) and its α-, β- and γ-duals, Aligarh Bull. Math., 21 (2002), 79–91
-
[6]
B. Altay, F. Ba¸sar, On the paranormed Riesz sequence space of non-absolute type, Southeast Asian Bull. Math., 26 (2002), 701–715
-
[7]
F. Ba¸sar, A. F. Çakmak, Domain of the triple band matrix on some Maddox’s spaces, Ann. Funct. Anal., 3 (2012), 32–48
-
[8]
F. Ba¸sar, M. Ye¸silkayagil, A survey for paranormed sequence spaces generated by infinite matrices, TWMS J. Pure Appl. Math., 10 (2019), 3–38
-
[9]
B. Choudhary, S. K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24 (1993), 291–301
-
[10]
M. C. Da˘ glı, A novel conservative matrix arising from Schröder numbers and its properties, Linear Multilinear Algebra, 71 (2023), 1338–1351
-
[11]
M. C. Da˘ glı, Matrix mappings and compact operators for Schröder sequence spaces, Turkish J. Math., 46 (2022), 2304–2320
-
[12]
S. Demiriz, S. Erdem, Mersenne matrix operator and its application in p-summable sequence space, Commun. Adv. Math. Sci., 7 (2024), 42–55
-
[13]
R. Donaghey, L. W. Shapiro, Motzkin numbers, J. Comb. Theory Ser. A, 23 (1977), 291–301
-
[14]
S. Erdem, S. Demiriz, H. B. Ellidokuzo˘ glu, Paranormed Motzkin sequence spaces, Dera Natung Govt. Coll. Res. J., 9 (2024), 36–51
-
[15]
S. Erdem, S. Demiriz, A. ¸Sahin, Motzkin sequence spaces and Motzkin core, Numer. Funct. Anal. Optim., 45 (2024), 283–303
-
[16]
K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), 223–238
-
[17]
M. ˙Iłkhan, A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces c and c0, Linear Multilinear Algebra, 68 (2020), 417–434
-
[18]
M. ˙Iłkhan, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl., 498 (2021), 17 pages
-
[19]
E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013 (2013), 15 pages
-
[20]
E. E. Kara, M. Ba¸sarır, An application of Fibonacci numbers into infinite Toeplitz matrices, Caspian J. Math. Sci., 1 (2012), 43–47
-
[21]
M. Karakas, M. C. Da˘ glı, Some topologic and geometric properties of new Catalan sequence spaces, Adv. Oper. Theory, 8 (2023), 15 pages
-
[22]
M. Karaka¸s, H. Karabudak, An application on the Lucas numbers and infinite Toeplitz matrices, Cumhuriyet Sci. J., 38 (2017), 557–562
-
[23]
M. Karaka¸s, A. M. Karaka¸s, New Banach sequence spaces that is defined by the aid of Lucas numbers, I ˘gdır Univ. J. Inst. Sci. Tech., 7 (2017), 103–111
-
[24]
M. Karakas, On the sequence spaces involving Bell numbers, Linear Multilinear Algebra, 71 (2023), 2298–2309
-
[25]
C. G. Lascarides, I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Philos. Soc., 68 (1970), 99–104
-
[26]
G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167–190
-
[27]
I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2), 18 (1967), 345–355
-
[28]
E. Malkowsky, F. Ba¸sar, A survey on some paranormed sequence spaces, Filomat, 31 (2017), 1099–1122
-
[29]
M. Mursaleen, F. Ba¸sar, Sequence spaces—topics in modern summability theory, CRC Press, Boca Raton, FL (2020)
-
[30]
S. Singh, T. A. Malik, Paranormed Norlund Nt-difference sequence spaces and their α-, β- and γ-duals, Proyecciones, 42 (2023), 879–892
-
[31]
T. Yaying, F. Ba¸sar, On some Lambda-Pascal paranormed sequence spaces, Acta Sci. Math. (Szeged), (2024), 20 pages
-
[32]
T. Yaying, B. Hazarika, O. M. K. S. K. Mohamed, A. A. Bakery, On new Banach sequence spaces involving Leonardo numbers and the associated mapping ideal, J. Funct. Spaces, 2022 (2022), 21 pages
-
[33]
T. Yaying, B. Hazarika, S. A. Mohiuddine, Domain of Padovan q-difference matrix in sequence spaces ℓp and ℓ∞, Filomat, 36 (2022), 905–919
-
[34]
M. Ye¸silkayagil, F. Ba¸sar, On the paranormed Nörlund sequence space of nonabsolute type, Abstr. Appl. Anal., 2014 (2014), 9 pages
-
[35]
M. Ye¸silkayagil, F. Ba¸sar, Domain of the Nörlund matrix in some of Maddox’s spaces, Proc. Nat. Acad. Sci. India Sect. A, 87 (2017), 363–371