SOME NEW ESTIMATES FOR DISTANCES IN ANALYTIC FUNCTION SPACES OF SEVERAL COMPLEX VARIABLES AND DOUBLE BERGMAN REPRESENTATION FORMULA
-
1439
Downloads
-
2313
Views
Authors
ROMI SHAMOYAN
- Department of Mathematics, Bryansk State University, Bryansk, Russia.
MEHDI RADNIA
- Department of Mathematics, Tabriz University, Tabriz, Iran.
Abstract
Using double Bergman representation formula we provide new sharp estimates
for distances from fixed analytic functions to some subspaces of holomorphic functions in
unit polydisk and unit ball. We will enlarge the list of previously known assertions of this
type obtained recently by R. Zhao and W. Xu.
Share and Cite
ISRP Style
ROMI SHAMOYAN, MEHDI RADNIA, SOME NEW ESTIMATES FOR DISTANCES IN ANALYTIC FUNCTION SPACES OF SEVERAL COMPLEX VARIABLES AND DOUBLE BERGMAN REPRESENTATION FORMULA, Journal of Nonlinear Sciences and Applications, 3 (2010), no. 1, 48-54
AMA Style
SHAMOYAN ROMI, RADNIA MEHDI, SOME NEW ESTIMATES FOR DISTANCES IN ANALYTIC FUNCTION SPACES OF SEVERAL COMPLEX VARIABLES AND DOUBLE BERGMAN REPRESENTATION FORMULA. J. Nonlinear Sci. Appl. (2010); 3(1):48-54
Chicago/Turabian Style
SHAMOYAN , ROMI, RADNIA, MEHDI. "SOME NEW ESTIMATES FOR DISTANCES IN ANALYTIC FUNCTION SPACES OF SEVERAL COMPLEX VARIABLES AND DOUBLE BERGMAN REPRESENTATION FORMULA." Journal of Nonlinear Sciences and Applications, 3, no. 1 (2010): 48-54
Keywords
- holomorphic function
- distance function
- Bloch-type space
- Bergman-type classes
- unit ball
- unit polydisk.
MSC
References
-
[1]
L. V. Ahlfors , Bounded analytic functions, Duke Math Journal, 14 (1947), 1-14.
-
[2]
M. M. Djrbashian, F. A. Shamoian, Topics in theory of \(A^p_\alpha\) classes, Teubner zur Mathematics, v105. (1988)
-
[3]
P. L. Duren, Theory of \(H^p\) spaces , Academic Press, New York (1970)
-
[4]
P. G. Ghatage, D. Zheng, Analytic functions of bounded mean oscillation and the Bloch space, Integr. Equat. Oper. Theory, 17 (1993), 501-515.
-
[5]
D. Khavinson, M. Stessin, Certain linear extremal problems in Bergman spaces of analytic function, Indiana Univ. Math. J., 3(46) (1997), 933-974.
-
[6]
S. Ya Khavinson, On an extremal problem in the theory of analytic function, Russian Math. Surv., 4 (1949), 158-159.
-
[7]
W. Rudin, Analytic functions of class \(H^p\), Trans AMS, 78 (1955), 46-66.
-
[8]
W. Rudin, Function theory in polydisks, Benjamin, New York (1969)
-
[9]
R. Shamoyan, O. Mihic , Analytic classes on subframe and expanded disk and the Rs differential operator in polydisk, Journal of Inequalities and applications, (2010)
-
[10]
R. Shamoyan, S. Li , On some properties of a differential operator on the polydisk , Banach Journal of Mathematical Analysis, 3(1) (2009), 68-84.
-
[11]
J. Xiao, Holomorphic \(Q_p\) classes, Lecture Notes in Math,1767, Springer-Verlag (2006)
-
[12]
J. Xiao , Geometric \(Q_p\) functions, Frontiers in math, Birkhauser-Verlag (2006)
-
[13]
W. Xu, Distances from Bloch functions to some Möbius invariant function spaces in the unit ball of \(C^n\) , J. Funct. Spaces Appl., 7(1) (2009), 91-104.
-
[14]
R. Zhao, Distances from Bloch functions to some Möbius invariant function spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 303-313.
-
[15]
K. Zhu, Spaces of Holomorphic Functions in the Unit Ball , Graduate Texts in Mathematics, 226, Springer-Verlag, New York (2005)