S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE
-
1618
Downloads
-
2663
Views
Authors
HONG GANG LI
- Institute of Applied Mathematics Research , Chongqing University of Posts and TeleCommunications, Chongqing 400065, China.
Abstract
In this work, the new concepts, normal product of two set-valued mappings,
s-weakly compatible, s-common fixed point and the (\(EA_s\)) property for two pairs of set-
valued mappings are introduced, and the s-common fixed point existence theorems for two
pairs of set-valued noncompatible mappings under strict contractive condition are proved,
without appeal to continuity of any map involved therein and completeness of underlying
space. The results presented in this paper generalize, improve, and unify some recent results
in this field.
Share and Cite
ISRP Style
HONG GANG LI, S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE, Journal of Nonlinear Sciences and Applications, 3 (2010), no. 1, 55-62
AMA Style
LI HONG GANG, S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE. J. Nonlinear Sci. Appl. (2010); 3(1):55-62
Chicago/Turabian Style
LI, HONG GANG. "S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE." Journal of Nonlinear Sciences and Applications, 3, no. 1 (2010): 55-62
Keywords
- Normal product
- s-coincidence point for two pairs of set-valued mappings
- s- common Fixed Point Theorems
- s-noncompatible
- s-weakly compatible
- (\(EA_s\)) property.
MSC
References
-
[1]
A. Azam, M. Arshad, I. Beg, Common fixed point theorems in cone metric spaces, The Journal of Nonlinear Science and its Applications, 2 (2009), 204-213.
-
[2]
A. Azam, I. Beg, Coincidence point ofcompatible multivalued mappings, Demonstratio Mathematica, 29 (1996), 17-22.
-
[3]
M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181- 188.
-
[4]
I. Beg, M. Abbas , Coincidence and fixed point theorems for two hybrid pairs of noncompatible maps, Nonlinear Analysis Series A, (in preen. ),
-
[5]
L. S. Dube, A theorem on common fixed points of multivalued mappings, Annal. Soc. Sci. Bruxells, 84 (1975), 463-468.
-
[6]
O. Hadzic, Common fixed point theorem for single valued and multivalued mappings , Rev. of Research for Sci. Math. Series., 18 (1988), 145-151.
-
[7]
G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Soc., 103 (1988), 977-983.
-
[8]
G. Jungck , Common fixed points for noncontinuous nonself maps on a nonmetric space, Far East J. Math. Sci., 4(2) (1996), 199-212.
-
[9]
G. Jungck, B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227-238.
-
[10]
G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261-263.
-
[11]
H. Kaneko, S. Sessa, Fixed point theorems for compatible multivalued and single valued mappings, Int. J. Math. Math. Sci., 12 (1989), 257-267.
-
[12]
T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., 299 (2004), 235-241.
-
[13]
H. G. Li, Perturbed Ishikawa Iterative Algorithm and Stability for Nonlinear Mixed Quasi-Variational Inclusions Involving (\(A,\eta\))-accretive Mappings, Advances in Nonlinear Variational Inequalities, 11(1) (2008), 41-50.
-
[14]
H. G. Li, Approximate algorithm of solutions for general nonlinear fuzzy mulitvalued quasi-varaiational inclusions with (\(G,\eta\))-monotone mappings, Nonlinear Functional Analysis and Applications, 13(2) (2008), 277-289.
-
[15]
Y. Li, F. Gu, Common fixed piont theorem of altman integral type mappings, The Journal of Nonlinear Science and its Applications, 2 (2009), 214-218.
-
[16]
Y. Liu, J. Wu, Z. Li, Common fixed points of single valued and multivalued maps, Int. J. Math. Math. Sci., 19 (2005), 3045-3055.
-
[17]
S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
-
[18]
R. P. Pant , Common fixed point ofnoncomuting mappings, J. Math. Anal. Appl., 188 (1994), 436-440.
-
[19]
B. E. Rhoades, On multivalued f-nonexpansive maps, Fixed Point Theory Appl., 2 (2001), 89-92.
-
[20]
S. Sessa, On a weak commutativity condition ofmappings in fixed point consideration, Publ. Inst. Math. Soc., 32 (1982), 149-153.
-
[21]
N. Shahzad, Invariant approximation and R- subweakly commuting maps, J. Math. Anal. Appl., 257 (2001), 39-45.
-
[22]
S. L. Singh, Ashish Kumar, Common fixed point theorems for contractive maps, Mat. Bech., 58 (2006), 85-90.
-
[23]
S. S. Zhang, On problem of nearst common fixed point of nonexpansive mapping, Applied Mathematics and Mechanics , 27(7) (2006), 775-781.